Araştırma Makalesi
BibTex RIS Kaynak Göster

Zeytin Kara Suyu, Pirina ve Külünün Kimyasal İçeriği ile Antimikrobiyal Özellikleri

Yıl 2024, Cilt: 10 Sayı: 1, 152 - 161, 30.06.2024
https://doi.org/10.29132/ijpas.1446936

Öz

Ülkemiz zeytin ağacı yetiştiriciliği ve zeytinyağı üretimi konusunda dünyanın önde gelen ülkelerinden biridir. Zeytinyağı üretiminin ekstraksiyon süreci, yüksek organik yükleri nedeniyle ciddi çevresel sorunlara neden olabilecek yan ürünler üretir. Zeytin-yağı üretimi sırasında, kullanılan üretim yöntemine bağlı olarak üç farklı yan ürün ortaya çıkmaktadır. Bunların yaklaşık %20’ si zeytinyağı, %30 ‘u pirina ve yakla-şık %50' si de atık su olarak bildiğimiz kara sudur. Bu çalışmamızda zeytin işleme sürecinden elde edilen zeytin kara suyu, pirina ve atık durumundaki yaprak ve dal parçalarının yakıl-ması ile elde edilen külünün kimyasal içerikleri LC/MS ile tespit edilmiştir. Ayrıca kara su ve pirinanın antimikrobiyal aktiviteleri seçilmiş mikroorga-nizmalar üzerinde disk difüzyon yöntemiyle araştırılmıştır. Buna göre; Pseudomonas. aeruginosa ve Klebsiella. pneumoniae türlerinde aktivite gözlenmezken diğer bütün türlerde antimikrobiyal ak-tivite tespit edilmiştir. En iyi sonuç kara su örneklerinde ve Bacillus. spizizenii, Entero-coccus. faecalis, Klebsiella. aerogenes, Streptomyces. pyogenes ve Candida. albicans’ da 0.3 cm olarak ölçülmüştür. LC/MS sonuçları, kara suda 10 farklı fenolik bileşik olduğunu kanıtlarken yan ürünlerde olması bekle-nen hidroksitirosol: 153.05, oleuropein: 377.14, elenolik asit: 213.07 gibi temel bile-şenler farklı miktarlarda tespit edilmiştir. Pirina da 6 bileşik tanımlanırken, hidroksiti-rosol ve oleuropein içeriğine rastlanama-mıştır. Kül de ise kara su ve pirinada da tes-pit edilen Pinoresinol ve Gingerol dışında fenolik bileşik tespit edilememiştir.

Etik Beyan

Çalışma ile ilgili etik beyan gerekliliği yoktur

Kaynakça

  • Souilem, S., Fki, I., Kobayashi, I., Khalid, N., Neves, M. A., Isoda, H., Sayadi, S., Nakajima, M. (2017). Emerging technologies for recovery of value-added components from olive leaves and their applications in food/feed industries. Food and Bioprocess Technology, 10(2), 229-248.
  • Xu, Y., Burton, S., Kim, C., Sismour, E. (2016). Phenolic compounds, antioxidant, and anti-bacterial properties of pomace extracts from four Virginia‐grown grape varieties. Food Sci-ence & Nutrition, 4(1), 125-133.
  • Oskay, D., Oskay, M. (2009). Bitki sekonder metabolitlerinin biyoteknolojik önemi. Ecolog-ical Life Sciences, 4(2), 31-41.
  • Aytul, K. K. (2010). Antimicrobial and antioxidant activities of olive leaf extract and its food applications (Doktora Tezi), İzmir Yüksek Teknoloji Enstitüsü, İzmir-Türkiye.
  • Bisignano, G., Tomaino, A., Cascio, R. L, Crisafi, G., Uccella, L., Saija, A. (1999). On the In-vitro Antimicrobial Activity of Oleuropein and Hydroxytyrosol. Journal of Pharmacy and Pharmacology, (51), 971-974.
  • Esteve, C., Marina, M. L, García, M. C (2015). Novel strategy for the revalorization of olive (Olea europaea) residues based on the extraction of bioactive peptides. Food Chem. (167), 272–280.
  • Rodrigues, F., Pimente, F. B., Oliveira, M. B. P. P. (2015). Olive by-products: Challenge ap-plication in cosmetic industry. Ind. Crops Prod.(70), 116–124. https://doi.org/10.1016/j.indcrop.2015.03.027
  • Vogel, P., Kasper Machado, I., Garavaglia, J., Zani, V. T., de Souza D., Morelo, S. D. B. (2014). Polyphenols benefits of olive leaf (Olea europaea L) to human health. Nutricion Hospitalaria, 31(3), 1427-1433.
  • Başoğlu, F. (2010). Yemeklik Yağ Teknolojileri. Dora Yayın Dağıtım, Bursa.
  • Dermeche, S., Nadour, M., Larroche, C., Moulti-Mati, F., Michaud, P. (2013). Olive mill wastes: Biochemical characterizations and valorization strategies. Process Biochem. (48), 1532–1552. https://doi.org/10.1016/j.procbio.2013.07.010
  • Filotheou, A., Ritzoulis, C., Avgidou, M., Kalogianni, E. P., Pavlou, A., Panayiotou, C. (2015). Novel emulsifiers from olive processing solid waste. Food Hydrocoll. (48), 274–281. https://doi.org/10.1016/j.foodhyd.2015.02.029
  • Muíño, I., Díaz, M. T., Apeleo, E., Pérez-Santaescolástica, C., Rivas-Cañedo, A., Pérez, C., Cañeque, V., Lauzurica, S., Fuente, J. (2017). Valorisation of an extract from olive oil waste as a natural antioxidant for reducing meat waste resulting from oxidative processes. J. Clean. Prod. (140), 24–932. https://doi.org/10.1016/j.jclepro.2016.06.175
  • Negro, M. J., Manzanares, P., Ruiz, E., Castro, E., Ballesteros, M. (2017). The biorefinery concept for the industrial valorization of residues from olive oil industry, in: Olive Mill Waste. Elsevier, pp. 57–78. https://doi.org/10.1016/B978-0-12-805314-0.00003-0
  • Manzanares, P., Ruiz, E., Ballesteros, M., Negro, M. J., Gallego, F. J., López-Linares, J. C., Castro, E. (2017). Residual biomass potential in olive tree cultivation and olive oil industry in Spain: valorization proposal in a biorefinery context. Spanish J. Agric. Res. 15, e0206. https://doi.org/10.5424/sjar/2017153-10868
  • Nunes, M. A, Pimentel, F. B., Costa, A. S. G., Alves, R. C., Oliveira, M. B. P. P. (2016). Olive by-products for functional and food applications: Challenging opportunities to face envi-ronmental constraints. Innov. Food Sci. Emerg. Technol. (35), 139–148. https://doi.org/10.1016/j.ifset.2016.04.016
  • AGAPA.(2015). Evaluación de la producción y usos de los subproductos de las agroindustrias del olivar en Andalucía. Cons. Agric. Pesca Desarro. https://doi.org/10.13140/RG.2.2.14921.39520
  • Nunes, M. A., Costa, A. S. G., Bessada, S., Santos, J., Puga, H., Alves, R. C, Freitas, V., Oliveira, M. B. P. P. (2018). Olive pomace as a valuable source of bioactive compounds: A study regarding its lipid- and water-soluble components. Sci. Total Environ. (644), 229–236. https://doi.org/10.1016/j.scitotenv.2018.06.350
  • Romero-García, J. M., Niño, L., Martínez-Patiño, C., Álvarez, C., Castro, E., Negro, M. J. (2014). Biorefinery based on olive biomass. State of the art and future trends. Bioresour. Technol. (159), 421–432. https://doi.org/10.1016/j.biortech.2014.03.062
  • Ruiz, E., Romero‐García, J. M., Romero, I., Manzanare, P., Negro, M. J, Castro, E. (2017). Olive‐ derived biomass as a source of energy and chemicals. Biofuels, Bioprod. Biorefining (11), 1077– 1094. https://doi.org/10.1002/bbb.1812
  • Lama-Muñoz, A., Rodríguez-Gutiérrez, G., Rubio-Senent, F., Fernández-Bolaños, J. (2012). Production, characterization and isolation of neutral and pectic oligosaccharides with low molecular weights from olive by-products thermally treated. Food Hydrocoll. (28), 92–104. https://doi.org/10.1016/j.foodhyd.2011.11.008
  • Araújo, M., Pimentel, F. B., Alves, R. C., Oliveira, M. B. P. P. (2015). Phenolic compounds from olive mill wastes: Health effects, analytical approach and application as food antioxi-dants.Trends Food Sci. Technol. (45), 200–211. https://doi.org/10.1016/j.tifs.2015.06.010
  • Rubio-Senent, F., Rodríguez-Gutíerrez, G., Lama-Muñoz, A., Fernández-Bolaños, J. (2012). New phenolic compounds hydrothermally extracted from the olive oil byproduct alperujo and their antioxidative activities. J. Agric. Food Chem. (60),1175–1186. https://doi.org/10.1021/jf204223w
  • Cioffi, G., Pesca, M. S., De Caprarii, P., Braca, A., Severino, L., De Tommasi, N. (2010). Phenolic compounds in olive oil and olive pomace from Cilento (Campania, Italy) and their antioxidant activity. Food Chem. (121), 105–111. https://doi.org/10.1016/j.foodchem.2009.12.013
  • Dalkılıç, B. (2018). Zeytinyağı Endüstrisi Yan Ürünlerinin Hayvan Besleme Alanında Değerlendirilme Olanakları. El-Cezeri Fen ve Mühendislik Dergisi, 5(3), 904–913. https://doi.org/10.31202/ecjse.433078
  • Seçmeler, Ö., ve Üstündağ, G. Ö. (2016). Zeytinyağı Sektörü Atık ve Yan Ürünlerindeki Biyoaktif Maddelerin Değerlendirilmesi. Dünya Gıda Dergisi, May 2015.
  • Çelik, G., Seven, Ü., Güçer, Ş. (2008). Zeytı̇n karasuyunun değerlendı̇rı̇lmesı̇. I.Ulusal Zeytin Öğrenci Kongresi, 1, 162–167.
  • Ouni, Y., Taamalli, A., Gómez-Caravaca, A. M., Segura-Carretero, A., Fernández-Gutiérrez, A., Zarrouk, M. (2011). Characterisation and quantification of phenolic compounds of ex-tra-virgin olive oils according to their geographical origin by a rapid and resolutive LC–ESI-TOF MS method. Food Chem, (127), 1263-1267.
  • Boselli, E,, Di Lecce, G., Strabbioli, R., Pieralisi, G., Frega, N. (2009). Are Virgin Olive Oils Obtained Below 27 °C Better than Those Produced at Higher Temperatures? Food Sci Tech, (42), 748-757.
  • Alkan, D., Tokatli, F., Ozen, B.(2011). Phenolic characterization and geographical classifi-cation of commercial extra virgin olive oils produced in Turkey. J Am Oil Chem Soc.Bas›mda. doi 10.1007/s11746-011-1917-6.
  • Visioli, F., Poli, A., Gall, C. (2002). Antioxidant and Other Biological Activities of Phenols from Olives and Olive Oil. Med Res Review, (22), 65-75.
  • Sousa, A. I. C., Ferreira, R., Calhelha, P. B., Andrade, P., Valentao, R., Seabra, L., Estevinho, A., Bento and Pereira, J. A. (2006). Phenolics and antimicrobial activity of traditional stoned table olives 'alcaparra'. Bioorg. Med. Chem. (14), 8533-8538.
  • Sanchez, J. C, Alsina, M. K., Herrlein and Mestres, C. (2007). Interaction between the anti-bacterial compound, oleuropein, and model membranes. Colloid Polym. Sci. (285), 1351–1360.
  • Sudjana, A. N. C., D'Orazio, V., Ryan, N., Rasool, J., Ng, N., Islam, T. V, and Hammer, K. A. (2009). Antimicrobial activity of commercial Olea europaea (olive) leaf extract. Int. J. An-timic. Age. 33(5), 461-463.
  • Lee, O. H., Lee, B. Y. (2010). Antioxidant and antimicrobial activities of individual and combined phenolics in Olea europaea leaf extract. Bioresour. Technol. 101(10), 37513754.
  • Juven, B., Henis, Y. (1970). Studies on antimicrobial activity of olive phenolic compounds. J. Appl. Bact. (33), 721-32.
  • Tassou, C. C, and Nychas, G. J. (1995). Inhibition of Salmonella enteritidis by oleuropein in broth and in a model food system. Lett. Appl. Microbiol. (20), 120-124.
  • Aziz, N. H., Farag, S. F., Mousa, L. A., Abo-Zaid, M. A.(1998). Comparative antibacterial and antifungal effects of some phenolic compounds. Microbios. (93), 43–54.
  • Furneri, P. M., Marino, A., Saija, A., Uccella, N., Bisignano, G.(2002). In vitro antimyco-plasmal activity of oleuropein. Int. J. Antimicrob. Age. (20), 293-296.

Chemical Content and Antimicrobial Properties of Olive Black Water, Po-mace and Ash

Yıl 2024, Cilt: 10 Sayı: 1, 152 - 161, 30.06.2024
https://doi.org/10.29132/ijpas.1446936

Öz

Our country is one of the world's leading countries in olive tree cultivation and olive oil production. The extraction process of olive oil production produces by-products that can cause serious environmental problems due to their high organic load. During olive oil production, three different by-products are produced depending on the production method used. Approximately 20% of these are olive oil, 30% are pomace and approximately 50% are black water, which we know as wastewater. In this study, the chemical contents of olive black water, pomace and ash obtained by incineration of waste leaves and twigs were determined by LC/MS. In addition, the antimicrobial activities of black water and pomace were investigated by disk diffusion method on selected microorganisms. Accordingly, no activity was observed in Pseudomonas. aeruginosa and Klebsiella. pneumoniae species, while antimicrobial activity was detected in all other species. The best result was measured at 0.3 cm in black water samples and in Bacillus. spizizenii, Enterococcus. faecalis, Klebsiella. aerogenes, Streptomyces. pyogenes and Candida. albicans. LC/MS results proved that there are 10 different phenolic compounds in black water, while hydroxytyrosol, which is expected to be in by-products: 153.05, oleuropein: 377.14, elenolic acid: 213.07 were detected in different amounts. While 6 compounds were identified in pomace, hydroxytyrosol and oleuropein content was not found. No phenolic compounds were detected in ash except for Pinoresinol and Gingerol which were also detected in black water and pomace.

Kaynakça

  • Souilem, S., Fki, I., Kobayashi, I., Khalid, N., Neves, M. A., Isoda, H., Sayadi, S., Nakajima, M. (2017). Emerging technologies for recovery of value-added components from olive leaves and their applications in food/feed industries. Food and Bioprocess Technology, 10(2), 229-248.
  • Xu, Y., Burton, S., Kim, C., Sismour, E. (2016). Phenolic compounds, antioxidant, and anti-bacterial properties of pomace extracts from four Virginia‐grown grape varieties. Food Sci-ence & Nutrition, 4(1), 125-133.
  • Oskay, D., Oskay, M. (2009). Bitki sekonder metabolitlerinin biyoteknolojik önemi. Ecolog-ical Life Sciences, 4(2), 31-41.
  • Aytul, K. K. (2010). Antimicrobial and antioxidant activities of olive leaf extract and its food applications (Doktora Tezi), İzmir Yüksek Teknoloji Enstitüsü, İzmir-Türkiye.
  • Bisignano, G., Tomaino, A., Cascio, R. L, Crisafi, G., Uccella, L., Saija, A. (1999). On the In-vitro Antimicrobial Activity of Oleuropein and Hydroxytyrosol. Journal of Pharmacy and Pharmacology, (51), 971-974.
  • Esteve, C., Marina, M. L, García, M. C (2015). Novel strategy for the revalorization of olive (Olea europaea) residues based on the extraction of bioactive peptides. Food Chem. (167), 272–280.
  • Rodrigues, F., Pimente, F. B., Oliveira, M. B. P. P. (2015). Olive by-products: Challenge ap-plication in cosmetic industry. Ind. Crops Prod.(70), 116–124. https://doi.org/10.1016/j.indcrop.2015.03.027
  • Vogel, P., Kasper Machado, I., Garavaglia, J., Zani, V. T., de Souza D., Morelo, S. D. B. (2014). Polyphenols benefits of olive leaf (Olea europaea L) to human health. Nutricion Hospitalaria, 31(3), 1427-1433.
  • Başoğlu, F. (2010). Yemeklik Yağ Teknolojileri. Dora Yayın Dağıtım, Bursa.
  • Dermeche, S., Nadour, M., Larroche, C., Moulti-Mati, F., Michaud, P. (2013). Olive mill wastes: Biochemical characterizations and valorization strategies. Process Biochem. (48), 1532–1552. https://doi.org/10.1016/j.procbio.2013.07.010
  • Filotheou, A., Ritzoulis, C., Avgidou, M., Kalogianni, E. P., Pavlou, A., Panayiotou, C. (2015). Novel emulsifiers from olive processing solid waste. Food Hydrocoll. (48), 274–281. https://doi.org/10.1016/j.foodhyd.2015.02.029
  • Muíño, I., Díaz, M. T., Apeleo, E., Pérez-Santaescolástica, C., Rivas-Cañedo, A., Pérez, C., Cañeque, V., Lauzurica, S., Fuente, J. (2017). Valorisation of an extract from olive oil waste as a natural antioxidant for reducing meat waste resulting from oxidative processes. J. Clean. Prod. (140), 24–932. https://doi.org/10.1016/j.jclepro.2016.06.175
  • Negro, M. J., Manzanares, P., Ruiz, E., Castro, E., Ballesteros, M. (2017). The biorefinery concept for the industrial valorization of residues from olive oil industry, in: Olive Mill Waste. Elsevier, pp. 57–78. https://doi.org/10.1016/B978-0-12-805314-0.00003-0
  • Manzanares, P., Ruiz, E., Ballesteros, M., Negro, M. J., Gallego, F. J., López-Linares, J. C., Castro, E. (2017). Residual biomass potential in olive tree cultivation and olive oil industry in Spain: valorization proposal in a biorefinery context. Spanish J. Agric. Res. 15, e0206. https://doi.org/10.5424/sjar/2017153-10868
  • Nunes, M. A, Pimentel, F. B., Costa, A. S. G., Alves, R. C., Oliveira, M. B. P. P. (2016). Olive by-products for functional and food applications: Challenging opportunities to face envi-ronmental constraints. Innov. Food Sci. Emerg. Technol. (35), 139–148. https://doi.org/10.1016/j.ifset.2016.04.016
  • AGAPA.(2015). Evaluación de la producción y usos de los subproductos de las agroindustrias del olivar en Andalucía. Cons. Agric. Pesca Desarro. https://doi.org/10.13140/RG.2.2.14921.39520
  • Nunes, M. A., Costa, A. S. G., Bessada, S., Santos, J., Puga, H., Alves, R. C, Freitas, V., Oliveira, M. B. P. P. (2018). Olive pomace as a valuable source of bioactive compounds: A study regarding its lipid- and water-soluble components. Sci. Total Environ. (644), 229–236. https://doi.org/10.1016/j.scitotenv.2018.06.350
  • Romero-García, J. M., Niño, L., Martínez-Patiño, C., Álvarez, C., Castro, E., Negro, M. J. (2014). Biorefinery based on olive biomass. State of the art and future trends. Bioresour. Technol. (159), 421–432. https://doi.org/10.1016/j.biortech.2014.03.062
  • Ruiz, E., Romero‐García, J. M., Romero, I., Manzanare, P., Negro, M. J, Castro, E. (2017). Olive‐ derived biomass as a source of energy and chemicals. Biofuels, Bioprod. Biorefining (11), 1077– 1094. https://doi.org/10.1002/bbb.1812
  • Lama-Muñoz, A., Rodríguez-Gutiérrez, G., Rubio-Senent, F., Fernández-Bolaños, J. (2012). Production, characterization and isolation of neutral and pectic oligosaccharides with low molecular weights from olive by-products thermally treated. Food Hydrocoll. (28), 92–104. https://doi.org/10.1016/j.foodhyd.2011.11.008
  • Araújo, M., Pimentel, F. B., Alves, R. C., Oliveira, M. B. P. P. (2015). Phenolic compounds from olive mill wastes: Health effects, analytical approach and application as food antioxi-dants.Trends Food Sci. Technol. (45), 200–211. https://doi.org/10.1016/j.tifs.2015.06.010
  • Rubio-Senent, F., Rodríguez-Gutíerrez, G., Lama-Muñoz, A., Fernández-Bolaños, J. (2012). New phenolic compounds hydrothermally extracted from the olive oil byproduct alperujo and their antioxidative activities. J. Agric. Food Chem. (60),1175–1186. https://doi.org/10.1021/jf204223w
  • Cioffi, G., Pesca, M. S., De Caprarii, P., Braca, A., Severino, L., De Tommasi, N. (2010). Phenolic compounds in olive oil and olive pomace from Cilento (Campania, Italy) and their antioxidant activity. Food Chem. (121), 105–111. https://doi.org/10.1016/j.foodchem.2009.12.013
  • Dalkılıç, B. (2018). Zeytinyağı Endüstrisi Yan Ürünlerinin Hayvan Besleme Alanında Değerlendirilme Olanakları. El-Cezeri Fen ve Mühendislik Dergisi, 5(3), 904–913. https://doi.org/10.31202/ecjse.433078
  • Seçmeler, Ö., ve Üstündağ, G. Ö. (2016). Zeytinyağı Sektörü Atık ve Yan Ürünlerindeki Biyoaktif Maddelerin Değerlendirilmesi. Dünya Gıda Dergisi, May 2015.
  • Çelik, G., Seven, Ü., Güçer, Ş. (2008). Zeytı̇n karasuyunun değerlendı̇rı̇lmesı̇. I.Ulusal Zeytin Öğrenci Kongresi, 1, 162–167.
  • Ouni, Y., Taamalli, A., Gómez-Caravaca, A. M., Segura-Carretero, A., Fernández-Gutiérrez, A., Zarrouk, M. (2011). Characterisation and quantification of phenolic compounds of ex-tra-virgin olive oils according to their geographical origin by a rapid and resolutive LC–ESI-TOF MS method. Food Chem, (127), 1263-1267.
  • Boselli, E,, Di Lecce, G., Strabbioli, R., Pieralisi, G., Frega, N. (2009). Are Virgin Olive Oils Obtained Below 27 °C Better than Those Produced at Higher Temperatures? Food Sci Tech, (42), 748-757.
  • Alkan, D., Tokatli, F., Ozen, B.(2011). Phenolic characterization and geographical classifi-cation of commercial extra virgin olive oils produced in Turkey. J Am Oil Chem Soc.Bas›mda. doi 10.1007/s11746-011-1917-6.
  • Visioli, F., Poli, A., Gall, C. (2002). Antioxidant and Other Biological Activities of Phenols from Olives and Olive Oil. Med Res Review, (22), 65-75.
  • Sousa, A. I. C., Ferreira, R., Calhelha, P. B., Andrade, P., Valentao, R., Seabra, L., Estevinho, A., Bento and Pereira, J. A. (2006). Phenolics and antimicrobial activity of traditional stoned table olives 'alcaparra'. Bioorg. Med. Chem. (14), 8533-8538.
  • Sanchez, J. C, Alsina, M. K., Herrlein and Mestres, C. (2007). Interaction between the anti-bacterial compound, oleuropein, and model membranes. Colloid Polym. Sci. (285), 1351–1360.
  • Sudjana, A. N. C., D'Orazio, V., Ryan, N., Rasool, J., Ng, N., Islam, T. V, and Hammer, K. A. (2009). Antimicrobial activity of commercial Olea europaea (olive) leaf extract. Int. J. An-timic. Age. 33(5), 461-463.
  • Lee, O. H., Lee, B. Y. (2010). Antioxidant and antimicrobial activities of individual and combined phenolics in Olea europaea leaf extract. Bioresour. Technol. 101(10), 37513754.
  • Juven, B., Henis, Y. (1970). Studies on antimicrobial activity of olive phenolic compounds. J. Appl. Bact. (33), 721-32.
  • Tassou, C. C, and Nychas, G. J. (1995). Inhibition of Salmonella enteritidis by oleuropein in broth and in a model food system. Lett. Appl. Microbiol. (20), 120-124.
  • Aziz, N. H., Farag, S. F., Mousa, L. A., Abo-Zaid, M. A.(1998). Comparative antibacterial and antifungal effects of some phenolic compounds. Microbios. (93), 43–54.
  • Furneri, P. M., Marino, A., Saija, A., Uccella, N., Bisignano, G.(2002). In vitro antimyco-plasmal activity of oleuropein. Int. J. Antimicrob. Age. (20), 293-296.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Bitki Biyokimyası
Bölüm Makaleler
Yazarlar

Elif Özbey 0000-0001-7215-1922

Erken Görünüm Tarihi 28 Haziran 2024
Yayımlanma Tarihi 30 Haziran 2024
Gönderilme Tarihi 4 Mart 2024
Kabul Tarihi 25 Haziran 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 10 Sayı: 1

Kaynak Göster

APA Özbey, E. (2024). Zeytin Kara Suyu, Pirina ve Külünün Kimyasal İçeriği ile Antimikrobiyal Özellikleri. International Journal of Pure and Applied Sciences, 10(1), 152-161. https://doi.org/10.29132/ijpas.1446936
AMA Özbey E. Zeytin Kara Suyu, Pirina ve Külünün Kimyasal İçeriği ile Antimikrobiyal Özellikleri. International Journal of Pure and Applied Sciences. Haziran 2024;10(1):152-161. doi:10.29132/ijpas.1446936
Chicago Özbey, Elif. “Zeytin Kara Suyu, Pirina Ve Külünün Kimyasal İçeriği Ile Antimikrobiyal Özellikleri”. International Journal of Pure and Applied Sciences 10, sy. 1 (Haziran 2024): 152-61. https://doi.org/10.29132/ijpas.1446936.
EndNote Özbey E (01 Haziran 2024) Zeytin Kara Suyu, Pirina ve Külünün Kimyasal İçeriği ile Antimikrobiyal Özellikleri. International Journal of Pure and Applied Sciences 10 1 152–161.
IEEE E. Özbey, “Zeytin Kara Suyu, Pirina ve Külünün Kimyasal İçeriği ile Antimikrobiyal Özellikleri”, International Journal of Pure and Applied Sciences, c. 10, sy. 1, ss. 152–161, 2024, doi: 10.29132/ijpas.1446936.
ISNAD Özbey, Elif. “Zeytin Kara Suyu, Pirina Ve Külünün Kimyasal İçeriği Ile Antimikrobiyal Özellikleri”. International Journal of Pure and Applied Sciences 10/1 (Haziran 2024), 152-161. https://doi.org/10.29132/ijpas.1446936.
JAMA Özbey E. Zeytin Kara Suyu, Pirina ve Külünün Kimyasal İçeriği ile Antimikrobiyal Özellikleri. International Journal of Pure and Applied Sciences. 2024;10:152–161.
MLA Özbey, Elif. “Zeytin Kara Suyu, Pirina Ve Külünün Kimyasal İçeriği Ile Antimikrobiyal Özellikleri”. International Journal of Pure and Applied Sciences, c. 10, sy. 1, 2024, ss. 152-61, doi:10.29132/ijpas.1446936.
Vancouver Özbey E. Zeytin Kara Suyu, Pirina ve Külünün Kimyasal İçeriği ile Antimikrobiyal Özellikleri. International Journal of Pure and Applied Sciences. 2024;10(1):152-61.

154501544915448154471544615445