Araştırma Makalesi
BibTex RIS Kaynak Göster

Structural and Optical Properties of ZnO-doped PCL+PVC-N3 Polymers

Yıl 2024, Cilt: 10 Sayı: 1, 174 - 189, 30.06.2024
https://doi.org/10.29132/ijpas.1454669

Öz

In this study, poly (-caprolactone) (PCL) and poly(vinyl chloride) (PVC-N3) blends were produced and the composite formed by the addition of ZnO semiconductor was investigated. First of all, PCL and PVC-N3 were obtained by mixing in a suitable solu-tion with the help of a homogenizer for a long time. ZnO, which was mixed with the same solvent in a separate place, was added to the prepared blend and the changes in the polymer blend were examined according to the changing ZnO ratio. 5%, 10%, 15% ZnO semiconductor was added. The structural results of the prepared samples were analyzed by XRD (X-Ray Diffraction) and SEM (Scanning Electron Microscopy) analysis. The optical properties of ZnO doped composites were characterized by UV-VIS spectrometry. XRD spectra of the samples showed the presence of ZnO with hexagonal wurtzite structure. SEM analysis showed increased clustering in the struc-ture, indicating that the polymer blend changes the surface roughness with doping. In addition, the interaction of PCL+PVC-N3 blend with ZnO was also investigated using UV-Vis spectroscopy. Using UV-Vis measurements, the changes in the forbidden en-ergy ranges of the samples were determined to show improvements for various appli-cations. The optical energy band gaps of ZnO-PCL+PVC-N3 composites were found to change with increasing doping content.

Kaynakça

  • Malimabe, M., et al., Influence of ZnO: Ce3+/Eu3+ doped and co-doped nanopowders on the properties of poly (ε-caprolactone) nanocomposites. Journal of Luminescence, 2022. 251: p. 119134.
  • Haider, T.P., et al., Plastics of the future? The impact of biodegradable polymers on the environment and on society. Angewandte Chemie International Edition, 2019. 58(1): p. 50-62.
  • Forster, P.L., et al., Highly luminescent polycaprolactone films doped with diaquatris (thenoyltrifluoroacetonate) europium (III) complex. Journal of Luminescence, 2015. 167: p. 85-90.
  • Çetinkaya, S., et al., Characterization of Al/n-ZnO/p-Si/Al structure with low-cost solution-grown ZnO layer. Philosophical magazine letters, 2013. 93(9): p. 550-559.
  • Ramírez-Agudelo, R., et al., Hybrid nanofibers based on poly-caprolactone/gelatin/hydroxyapatite nanoparticles-loaded Doxycycline: Effective anti-tumoral and antibacterial activity. Materials Science and Engineering: C, 2018. 83: p. 25-34.
  • Akbaş, A., M.E. Taygun, and S. Küçükbayrak, Fabrication and characterization of PCL/ZnO-NP nanocomposite for wound dressing applications. Eurasian Journal of Biological and Chemical Sciences, 2018. 1(2): p. 54-58.
  • Barbanti, S.H., C.A.C. Zavaglia, and E.A.d.R. Duek, Effect of salt leaching on PCL and PLGA (50/50) resorbable scaffolds. Materials Research, 2008. 11: p. 75-80.
  • Ebersole, G.C., et al., Development of novel electrospun absorbable polycaprolactone (PCL) scaffolds for hernia repair applications. Surgical endoscopy, 2012. 26: p. 2717-2728.
  • Zhang, Y. and R.-x. Zhuo, Synthesis and in vitro drug release behavior of amphiphilic triblock copolymer nanoparticles based on poly (ethylene glycol) and polycaprolactone. Biomaterials, 2005. 26(33): p. 6736-6742.
  • Jia, W.J., et al., Preparation of biodegradable polycaprolactone/poly (ethylene glycol)/polycaprolactone (PCEC) nanoparticles. Drug delivery, 2008. 15(7): p. 409-416.
  • Abdelrazek, E., et al., Spectroscopic studies and thermal properties of PCL/PMMA biopolymer blend. Egyptian Journal of basic and applied sciences, 2016. 3(1): p. 10-15.
  • Ananchenko, D., et al. Luminescence of sapphire single crystals irradiated with high-power ion beams. in Journal of Physics: Conference Series. 2018. IOP Publishing.
  • Mallakpour, S. and N. Nouruzi, Evaluation of Zno-vitamin B1 nanoparticles on bioactivity and physiochemical properties of the polycaprolactone-based nanocomposites. Polymer-Plastics Technology and Engineering, 2018. 57(1): p. 46-58.
  • Campos, A.d. and S.M.M. Franchetti, Biotreatment effects in films and blends of PVC/PCL previously treated with heat. Brazilian Archives of Biology and Technology, 2005. 48: p. 235-243.
  • Nathan, A.A., A. Onoja, and A. Amah, Influence of PVA, PVP on crystal and optical properties of europium doped strontium aluminate nanoparticles. Amer. J. Eng. Res, 2015. 4(4).
  • Yousif, E., et al., Enhancement of the photo-chemical properties and efficacy of the mixing technique in the preparation of Schiff base-Cu (II)/poly (vinyl chloride) compounds. Emergent Materials, 2019. 2: p. 505-512.
  • Wang, X., et al., Crystalline morphology of electrospun poly (ε-caprolactone)(PCL) nanofibers. Industrial & Engineering Chemistry Research, 2013. 52(13): p. 4939-4949.
  • Mochane, M.J., et al., Morphology and properties of electrospun PCL and its composites for medical applications: A mini review. Applied Sciences, 2019. 9(11): p. 2205.
  • Pitt, C.G., T.A. Marks, and A. Schindler, Biodegradable drug delivery systems based on aliphatic polyesters: application to contraceptives and narcotic antagonists. 1980: Academic Press: New York.
  • Xu, Q., et al., Generation of microcellular biodegradable polycaprolactone foams in supercritical carbon dioxide. Journal of Applied Polymer Science, 2004. 94(2): p. 593-597.
  • Abdelghany, A., M. Meikhail, and N. Asker, Synthesis and structural-biological correlation of PVC\PVAc polymer blends. Journal of Materials Research and Technology, 2019. 8(5): p. 3908-3916.
  • Liu, W., et al., Design and structural study of a triple-shape memory PCL/PVC blend. Polymer, 2016. 104: p. 115-122.
  • Haruna, H., et al., Characterization, thermal and electrical properties of aminated PVC/oxidized MWCNT composites doped with nanographite. Journal of Thermal Analysis and Calorimetry, 2020. 139: p. 3887-3895.
  • Mareau, V.H. and R.E. Prud'Homme, Growth rates and morphologies of miscible PCL/PVC blend thin and thick films. Macromolecules, 2003. 36(3): p. 675-684.
  • Kia, H.G., et al., Shape memory polymer containing composite materials. 2016, Google Patents.
  • Thornton, J., Environmental impacts of polyvinyl chloride (PVC) building materials. Washington, DC: Healthy Building Network, 2002.
  • Nikam, P.N. and V.D. Deshpande, Dielectric behavior of plasticized PVC/alumina nanocomposites influenced with DC biasing field. Materials Today: Proceedings, 2018. 5(1): p. 2254-2262.
  • Miliute-Plepiene, J., A. Fråne, and A.M. Almasi, Overview of polyvinyl chloride (PVC) waste management practices in the Nordic countries. Cleaner Engineering and Technology, 2021. 4: p. 100246.
  • Habashy, M.M., et al., Performance of PVC/SiO 2 nanocomposites under thermal ageing. Applied Nanoscience, 2021. 11: p. 2143-2151.
  • Moulay, S., Chemical modification of poly (vinyl chloride)—Still on the run. Progress in Polymer Science, 2010. 35(3): p. 303-331.
  • Braun, D., Poly (vinyl chloride) on the way from the 19th century to the 21st century. Journal of Polymer Science Part A: Polymer Chemistry, 2004. 42(3): p. 578-586.
  • Ouerghui, A., et al., Chemical modifications of poly (vinyl chloride) to poly (vinyl azide) and “clicked” triazole bearing groups for application in metal cation extraction. Reactive and Functional Polymers, 2016. 100: p. 191-197.
  • Zhang, T., et al., Polymer composites based on polyvinyl chloride nanofibers and polypropylene films for terahertz photonics. Optical Materials Express, 2020. 10(10): p. 2456-2469.
  • Ranjan, N., et al., On polyvinyl chloride-polypropylene composite matrix for 4D applications: Flowability, mechanical, thermal and morphological characterizations. Journal of Thermoplastic Composite Materials, 2023. 36(4): p. 1401-1421.
  • Al-Muntaser, A., et al., Fabrication and characterizations of nanocomposite flexible films of ZnO and polyvinyl chloride/poly (N-vinyl carbazole) polymers for dielectric capacitors. Arabian Journal of Chemistry, 2023. 16(10): p. 105171.
  • Pingping, Z., Y. Haiyang, and W. Shiqiang, Viscosity behavior of poly-ϵ-caprolactone (PCL)/poly (vinyl chloride)(PVC) blends in various solvents. European polymer journal, 1998. 34(1): p. 91-94.
  • Nilgün, A., Synthesis and Characterization of Poly vinyl chloride–graft–ethylene glycol Graft Copolymers by “Click” Chemistry. Hacettepe Journal of Biology and Chemistry, 2017. 45(1): p. 35-42.
  • Pekdemir, M.E., et al., Investigation of structure, mechanical, and shape memory behavior of thermally activated poly (ε-caprolactone): azide-functionalized poly (vinyl chloride) binary polymer blend films. The European Physical Journal Plus, 2021. 136: p. 1-14.
  • Zhang, Y., et al., Synthesis, characterization, and applications of ZnO nanowires. J Nanomater 2012: 1–22. 2012.
  • Joshi, A.S., et al., Influence of GO and rGO on the structural and optical properties of ZnO photoelectrodes for energy harvesting applications. Materials Science and Engineering: B, 2024. 299: p. 116938.
  • Kumar, V., et al., Rare earth doped zinc oxide nanophosphor powder: a future material for solid state lighting and solar cells. Acs Photonics, 2017. 4(11): p. 2613-2637.
  • Aydın, H., F. Yakuphanoglu, and C. Aydın, Al-doped ZnO as a multifunctional nanomaterial: Structural, morphological, optical and low-temperature gas sensing properties. Journal of Alloys and Compounds, 2019. 773: p. 802-811.
  • Shoeb, M., et al., Investigating the size-dependent structural, optical, dielectric, and photocatalytic properties of benign-synthesized ZnO nanoparticles. Journal of Physics and Chemistry of Solids, 2024. 184: p. 111707.
  • Narayanan, N. and N. Deepak, Realizing luminescent downshifting in ZnO thin films by Ce doping with enhancement of photocatalytic activity. Solid State Sciences, 2018. 78: p. 144-155.
  • Jayswal, S. and R.S. Moirangthem. Thermal decomposition route to synthesize ZnO nanoparticles for photocatalytic application. in AIP Conference Proceedings. 2018. AIP Publishing.
  • Meng, B., et al., Transparent and ductile poly (lactic acid)/poly (butyl acrylate)(PBA) blends: structure and properties. European Polymer Journal, 2012. 48(1): p. 127-135.
  • Karnan, C., et al., Supramolecular assembly of morpholin-4-ium hydroxy (diphenyl) acetate—structural, spectral and nonlinear optical analyses. Journal of Molecular Structure, 2022. 1250: p. 131719.
  • Bhavani, K., et al., Growth, spectral, optical, and third harmonic generation studies of p-Hydroxyacetanilide (PHA) crystals. Optical Materials, 2024. 148: p. 114924.
  • Asif, M., et al., High energy ion irradiation effect on electrical and optical properties of polymers. Radiation Physics and Chemistry, 2022. 192: p. 109931.
  • Chapi, S. and H. Devendrappa, Influence of cobalt (II) chloride catalysed on the thermal and optical characterization of PEO based solid polymer electrolytes. Journal of Research Updates in Polymer Science, 2014. 3(4): p. 205.

ZnO Katkılı PCL+PVC-N3 Polimerlerinin Yapısal ve Optiksel Özellikleri

Yıl 2024, Cilt: 10 Sayı: 1, 174 - 189, 30.06.2024
https://doi.org/10.29132/ijpas.1454669

Öz

Bu çalışmada poly (-caprolactone) (PCL) ile Poli(vinil klorür) (PVC-N3) blendleri üretilmiş olup, ZnO yarıiletken ilavesi ile oluşan kompozit araştırılmıştır. Öncelikle PCL ve PVC-N3 uygun bir çözelti içerisinde homojenizatör yardımıyla uzun süre ka-rıştırılarak elde edilmiştir. Ayrı bir yerde aynı çözücü ile karıştırılan ZnO hazırlanan blende eklenerek, değişen ZnO oranına göre polimer karışımında meydana gelen fark-lılıklar incelenmiştir. %5, %10, %15 oranlarında ZnO yarıiletkeni eklenmiştir. Hazır-lanan numunelerin yapısal sonuçları XRD ve SEM analizleri ile incelenmiştir. ZnO katkılı kompozitlerinin optik özellikleri UV-VIS spektrometresi ile karakterize edil-miştir. Numunelerin XRD (X-ışını Difraksiyonu) spektrumlarında hekzagonal wurtzite yapılı ZnO’in varlığını göstermiştir. SEM (Taramalı Elektron Mikroskopu) analizle-rinde ise yapıda kümelenmenin artması görülmüş olup; polimer blendinin katkıyla yüzey pürüzlülüğünü değiştirdiğini göstermektedir. Buna ilaveten; PCL+PVC-N3 karı-şımının ZnO ile optiksel etkileşimi UV-Vis spektroskopisi kullanılarak incelenmiştir. UV-Vis ölçümleri kullanılarak numunelerdeki yasak enerji aralıklarındaki değişmeler çeşitli uygulamalar için iyileştirme gösterecek şekilde belirlenmiştir. ZnO-PCL+PVC-N3 kompositlerinin optik enerji bant aralıkları artan katkı içeriğiyle değişiklik gösterdiği görülmüştür.

Kaynakça

  • Malimabe, M., et al., Influence of ZnO: Ce3+/Eu3+ doped and co-doped nanopowders on the properties of poly (ε-caprolactone) nanocomposites. Journal of Luminescence, 2022. 251: p. 119134.
  • Haider, T.P., et al., Plastics of the future? The impact of biodegradable polymers on the environment and on society. Angewandte Chemie International Edition, 2019. 58(1): p. 50-62.
  • Forster, P.L., et al., Highly luminescent polycaprolactone films doped with diaquatris (thenoyltrifluoroacetonate) europium (III) complex. Journal of Luminescence, 2015. 167: p. 85-90.
  • Çetinkaya, S., et al., Characterization of Al/n-ZnO/p-Si/Al structure with low-cost solution-grown ZnO layer. Philosophical magazine letters, 2013. 93(9): p. 550-559.
  • Ramírez-Agudelo, R., et al., Hybrid nanofibers based on poly-caprolactone/gelatin/hydroxyapatite nanoparticles-loaded Doxycycline: Effective anti-tumoral and antibacterial activity. Materials Science and Engineering: C, 2018. 83: p. 25-34.
  • Akbaş, A., M.E. Taygun, and S. Küçükbayrak, Fabrication and characterization of PCL/ZnO-NP nanocomposite for wound dressing applications. Eurasian Journal of Biological and Chemical Sciences, 2018. 1(2): p. 54-58.
  • Barbanti, S.H., C.A.C. Zavaglia, and E.A.d.R. Duek, Effect of salt leaching on PCL and PLGA (50/50) resorbable scaffolds. Materials Research, 2008. 11: p. 75-80.
  • Ebersole, G.C., et al., Development of novel electrospun absorbable polycaprolactone (PCL) scaffolds for hernia repair applications. Surgical endoscopy, 2012. 26: p. 2717-2728.
  • Zhang, Y. and R.-x. Zhuo, Synthesis and in vitro drug release behavior of amphiphilic triblock copolymer nanoparticles based on poly (ethylene glycol) and polycaprolactone. Biomaterials, 2005. 26(33): p. 6736-6742.
  • Jia, W.J., et al., Preparation of biodegradable polycaprolactone/poly (ethylene glycol)/polycaprolactone (PCEC) nanoparticles. Drug delivery, 2008. 15(7): p. 409-416.
  • Abdelrazek, E., et al., Spectroscopic studies and thermal properties of PCL/PMMA biopolymer blend. Egyptian Journal of basic and applied sciences, 2016. 3(1): p. 10-15.
  • Ananchenko, D., et al. Luminescence of sapphire single crystals irradiated with high-power ion beams. in Journal of Physics: Conference Series. 2018. IOP Publishing.
  • Mallakpour, S. and N. Nouruzi, Evaluation of Zno-vitamin B1 nanoparticles on bioactivity and physiochemical properties of the polycaprolactone-based nanocomposites. Polymer-Plastics Technology and Engineering, 2018. 57(1): p. 46-58.
  • Campos, A.d. and S.M.M. Franchetti, Biotreatment effects in films and blends of PVC/PCL previously treated with heat. Brazilian Archives of Biology and Technology, 2005. 48: p. 235-243.
  • Nathan, A.A., A. Onoja, and A. Amah, Influence of PVA, PVP on crystal and optical properties of europium doped strontium aluminate nanoparticles. Amer. J. Eng. Res, 2015. 4(4).
  • Yousif, E., et al., Enhancement of the photo-chemical properties and efficacy of the mixing technique in the preparation of Schiff base-Cu (II)/poly (vinyl chloride) compounds. Emergent Materials, 2019. 2: p. 505-512.
  • Wang, X., et al., Crystalline morphology of electrospun poly (ε-caprolactone)(PCL) nanofibers. Industrial & Engineering Chemistry Research, 2013. 52(13): p. 4939-4949.
  • Mochane, M.J., et al., Morphology and properties of electrospun PCL and its composites for medical applications: A mini review. Applied Sciences, 2019. 9(11): p. 2205.
  • Pitt, C.G., T.A. Marks, and A. Schindler, Biodegradable drug delivery systems based on aliphatic polyesters: application to contraceptives and narcotic antagonists. 1980: Academic Press: New York.
  • Xu, Q., et al., Generation of microcellular biodegradable polycaprolactone foams in supercritical carbon dioxide. Journal of Applied Polymer Science, 2004. 94(2): p. 593-597.
  • Abdelghany, A., M. Meikhail, and N. Asker, Synthesis and structural-biological correlation of PVC\PVAc polymer blends. Journal of Materials Research and Technology, 2019. 8(5): p. 3908-3916.
  • Liu, W., et al., Design and structural study of a triple-shape memory PCL/PVC blend. Polymer, 2016. 104: p. 115-122.
  • Haruna, H., et al., Characterization, thermal and electrical properties of aminated PVC/oxidized MWCNT composites doped with nanographite. Journal of Thermal Analysis and Calorimetry, 2020. 139: p. 3887-3895.
  • Mareau, V.H. and R.E. Prud'Homme, Growth rates and morphologies of miscible PCL/PVC blend thin and thick films. Macromolecules, 2003. 36(3): p. 675-684.
  • Kia, H.G., et al., Shape memory polymer containing composite materials. 2016, Google Patents.
  • Thornton, J., Environmental impacts of polyvinyl chloride (PVC) building materials. Washington, DC: Healthy Building Network, 2002.
  • Nikam, P.N. and V.D. Deshpande, Dielectric behavior of plasticized PVC/alumina nanocomposites influenced with DC biasing field. Materials Today: Proceedings, 2018. 5(1): p. 2254-2262.
  • Miliute-Plepiene, J., A. Fråne, and A.M. Almasi, Overview of polyvinyl chloride (PVC) waste management practices in the Nordic countries. Cleaner Engineering and Technology, 2021. 4: p. 100246.
  • Habashy, M.M., et al., Performance of PVC/SiO 2 nanocomposites under thermal ageing. Applied Nanoscience, 2021. 11: p. 2143-2151.
  • Moulay, S., Chemical modification of poly (vinyl chloride)—Still on the run. Progress in Polymer Science, 2010. 35(3): p. 303-331.
  • Braun, D., Poly (vinyl chloride) on the way from the 19th century to the 21st century. Journal of Polymer Science Part A: Polymer Chemistry, 2004. 42(3): p. 578-586.
  • Ouerghui, A., et al., Chemical modifications of poly (vinyl chloride) to poly (vinyl azide) and “clicked” triazole bearing groups for application in metal cation extraction. Reactive and Functional Polymers, 2016. 100: p. 191-197.
  • Zhang, T., et al., Polymer composites based on polyvinyl chloride nanofibers and polypropylene films for terahertz photonics. Optical Materials Express, 2020. 10(10): p. 2456-2469.
  • Ranjan, N., et al., On polyvinyl chloride-polypropylene composite matrix for 4D applications: Flowability, mechanical, thermal and morphological characterizations. Journal of Thermoplastic Composite Materials, 2023. 36(4): p. 1401-1421.
  • Al-Muntaser, A., et al., Fabrication and characterizations of nanocomposite flexible films of ZnO and polyvinyl chloride/poly (N-vinyl carbazole) polymers for dielectric capacitors. Arabian Journal of Chemistry, 2023. 16(10): p. 105171.
  • Pingping, Z., Y. Haiyang, and W. Shiqiang, Viscosity behavior of poly-ϵ-caprolactone (PCL)/poly (vinyl chloride)(PVC) blends in various solvents. European polymer journal, 1998. 34(1): p. 91-94.
  • Nilgün, A., Synthesis and Characterization of Poly vinyl chloride–graft–ethylene glycol Graft Copolymers by “Click” Chemistry. Hacettepe Journal of Biology and Chemistry, 2017. 45(1): p. 35-42.
  • Pekdemir, M.E., et al., Investigation of structure, mechanical, and shape memory behavior of thermally activated poly (ε-caprolactone): azide-functionalized poly (vinyl chloride) binary polymer blend films. The European Physical Journal Plus, 2021. 136: p. 1-14.
  • Zhang, Y., et al., Synthesis, characterization, and applications of ZnO nanowires. J Nanomater 2012: 1–22. 2012.
  • Joshi, A.S., et al., Influence of GO and rGO on the structural and optical properties of ZnO photoelectrodes for energy harvesting applications. Materials Science and Engineering: B, 2024. 299: p. 116938.
  • Kumar, V., et al., Rare earth doped zinc oxide nanophosphor powder: a future material for solid state lighting and solar cells. Acs Photonics, 2017. 4(11): p. 2613-2637.
  • Aydın, H., F. Yakuphanoglu, and C. Aydın, Al-doped ZnO as a multifunctional nanomaterial: Structural, morphological, optical and low-temperature gas sensing properties. Journal of Alloys and Compounds, 2019. 773: p. 802-811.
  • Shoeb, M., et al., Investigating the size-dependent structural, optical, dielectric, and photocatalytic properties of benign-synthesized ZnO nanoparticles. Journal of Physics and Chemistry of Solids, 2024. 184: p. 111707.
  • Narayanan, N. and N. Deepak, Realizing luminescent downshifting in ZnO thin films by Ce doping with enhancement of photocatalytic activity. Solid State Sciences, 2018. 78: p. 144-155.
  • Jayswal, S. and R.S. Moirangthem. Thermal decomposition route to synthesize ZnO nanoparticles for photocatalytic application. in AIP Conference Proceedings. 2018. AIP Publishing.
  • Meng, B., et al., Transparent and ductile poly (lactic acid)/poly (butyl acrylate)(PBA) blends: structure and properties. European Polymer Journal, 2012. 48(1): p. 127-135.
  • Karnan, C., et al., Supramolecular assembly of morpholin-4-ium hydroxy (diphenyl) acetate—structural, spectral and nonlinear optical analyses. Journal of Molecular Structure, 2022. 1250: p. 131719.
  • Bhavani, K., et al., Growth, spectral, optical, and third harmonic generation studies of p-Hydroxyacetanilide (PHA) crystals. Optical Materials, 2024. 148: p. 114924.
  • Asif, M., et al., High energy ion irradiation effect on electrical and optical properties of polymers. Radiation Physics and Chemistry, 2022. 192: p. 109931.
  • Chapi, S. and H. Devendrappa, Influence of cobalt (II) chloride catalysed on the thermal and optical characterization of PEO based solid polymer electrolytes. Journal of Research Updates in Polymer Science, 2014. 3(4): p. 205.
Toplam 50 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Atomik, Moleküler ve Optik Fizik (Diğer)
Bölüm Makaleler
Yazarlar

Handan Aydın 0000-0002-0141-9773

Erken Görünüm Tarihi 28 Haziran 2024
Yayımlanma Tarihi 30 Haziran 2024
Gönderilme Tarihi 18 Mart 2024
Kabul Tarihi 26 Mayıs 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 10 Sayı: 1

Kaynak Göster

APA Aydın, H. (2024). ZnO Katkılı PCL+PVC-N3 Polimerlerinin Yapısal ve Optiksel Özellikleri. International Journal of Pure and Applied Sciences, 10(1), 174-189. https://doi.org/10.29132/ijpas.1454669
AMA Aydın H. ZnO Katkılı PCL+PVC-N3 Polimerlerinin Yapısal ve Optiksel Özellikleri. International Journal of Pure and Applied Sciences. Haziran 2024;10(1):174-189. doi:10.29132/ijpas.1454669
Chicago Aydın, Handan. “ZnO Katkılı PCL+PVC-N3 Polimerlerinin Yapısal Ve Optiksel Özellikleri”. International Journal of Pure and Applied Sciences 10, sy. 1 (Haziran 2024): 174-89. https://doi.org/10.29132/ijpas.1454669.
EndNote Aydın H (01 Haziran 2024) ZnO Katkılı PCL+PVC-N3 Polimerlerinin Yapısal ve Optiksel Özellikleri. International Journal of Pure and Applied Sciences 10 1 174–189.
IEEE H. Aydın, “ZnO Katkılı PCL+PVC-N3 Polimerlerinin Yapısal ve Optiksel Özellikleri”, International Journal of Pure and Applied Sciences, c. 10, sy. 1, ss. 174–189, 2024, doi: 10.29132/ijpas.1454669.
ISNAD Aydın, Handan. “ZnO Katkılı PCL+PVC-N3 Polimerlerinin Yapısal Ve Optiksel Özellikleri”. International Journal of Pure and Applied Sciences 10/1 (Haziran 2024), 174-189. https://doi.org/10.29132/ijpas.1454669.
JAMA Aydın H. ZnO Katkılı PCL+PVC-N3 Polimerlerinin Yapısal ve Optiksel Özellikleri. International Journal of Pure and Applied Sciences. 2024;10:174–189.
MLA Aydın, Handan. “ZnO Katkılı PCL+PVC-N3 Polimerlerinin Yapısal Ve Optiksel Özellikleri”. International Journal of Pure and Applied Sciences, c. 10, sy. 1, 2024, ss. 174-89, doi:10.29132/ijpas.1454669.
Vancouver Aydın H. ZnO Katkılı PCL+PVC-N3 Polimerlerinin Yapısal ve Optiksel Özellikleri. International Journal of Pure and Applied Sciences. 2024;10(1):174-89.

154501544915448154471544615445