Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of a Novel Approach in Free Cooling Degree Hour Calculations for Muğla Province

Yıl 2024, Cilt: 10 Sayı: 2, 352 - 366, 31.12.2024
https://doi.org/10.29132/ijpas.1474617

Öz

In order to reduce cooling energy without compromising comfort conditions, insula-tion applications on external walls, columns, and beams, as well as the use of double glazing in windows, play a significant role. Another effective method in reducing cooling energy is the implementation of free cooling systems. In this system, cooling systems achieve energy savings by bypassing the fresh air taken from outside directly into the indoor space without passing through cooling coils. The implementation of this system requires the examination of reliable outdoor air temperature distributions throughout the cooling season during the project planning phase. In this study, various analyses were conducted using five different computer programs. According to the analysis results, the operation times of free cooling systems and the Free Cooling Degree Hour Value (FCDHV) to meet cooling loads were determined for every hour of each month for the province of Muğla. The estimated highest seasonal FCDHV for Muğla was found to be 11810.7, with the highest hourly FCDHV being 177.5 occur-ring between 05:30-06:30, and the highest 24-hour FCDHV being 2209 in September. When these data were converted to percentage values, it was determined that a 70.6% energy savings were achieved from free cooling systems.

Kaynakça

  • Asan, H. (2000). Investigation of wall’s optimum insulation position from maximum time lag and minimum decrement factor point of view. Energy Build, 32(2), 197–203.
  • Asan, H. and Sancaktar, Y. S. (1998). Effects of Wall’s thermophysical properties on time lag and decrement factor. Energy Build, 28(2), 159–166.
  • Asan, H. (1998). Effects of wall’s insulation thickness and position on time lag and decrement factor. Energy Build, 28(3), 299–305.
  • Raj, V. A. A. and Velraj, R. (2010). Review on free cooling of buildings using phase change materials. Renewable and Sustainable Energy Reviews, 14(9).
  • Li, B., Wild, P. and Rowe, A. (2020). Free cooling potential of air economizer in residential houses in Canada. Build Environ, 167.
  • Zeinelabdein, R., Omer, S. and Gan, G. (2018). Critical review of latent heat storage systems for free cooling in buildings. Renewable and Sustainable Energy Reviews, 82.
  • Liu, J., Su, L., Dong, K. and Liu, X. (2022). Critical temperature of free cooling using indirect opening cooling tower in data centres: a review. International Journal of Ambient Energy, 43(1).
  • Medved, S. and Arkar, C. (2008). Correlation between the local climate and the free-cooling potential of latent heat storage. Energy Build, 40(4).
  • Kim, J. H. and Kang, C. (2024). A novel design for film-cooling: Cooling holes with inlet groove. International Journal of Thermal Sciences, 195.
  • Osterman, E., Butala, V. and Stritih, U. (2015). PCM thermal storage system for ‘free’ heating and cooling of buildings. Energy Build, 106.
  • Xie, X., Luo, Z., Grimmond, S., and Blunn, L. (2023). Use of wind pressure coefficients to simulate natural ventilation and building energy for isolated and surrounded buildings. Build Environ, 230.
  • Ghiaus, C. and Allard, F. (2006). Potential for free-cooling by ventilation. Solar Energy, 80(4), 402–413.
  • Ertürk, M. (2021). İç Ortam Sıcaklığının Isıtma ve Soğutma Derece Saat Değerlerine Etkisinin Sakarya için Araştırılması. Mühendislik Bilimleri ve Tasarım Dergisi, 9(2), 599–605.
  • Lyu, W., Li, X., Shi, W., Wang, B., and Huang, X. (2021). A general method to evaluate the applicability of natural energy for building cooling and heating: Revised degree hours. Energy Build, 250.
  • Güğül, G. N. (2018). Free Cooling Potential of Turkey for Datacenters. Avrupa Bilim ve Teknoloji Dergisi, 0(14), 17–22.
  • Gözcü, O. and Erden, H. S. (2019). Energy and economic assessment of major free cooling retrofits for data centers in Turkey. Turkish Journal of Electrical Engineering and Computer Sciences, 27(3), 2097–2212.
  • Işık, E. and Inallı, M. (2018). Artificial neural networks and adaptive neuro-fuzzy inference systems approaches to forecast the meteorological data for HVAC: The case of cities for Turkey. Energy, 154, 7–16.
  • Işık E., İnallı M., (2011). İklim Sistemlerinin Projelendirmesini Etkileyen Meteorolojik Verilerin Akıllı Sistemlerle Tahmini ve Örnek Uygulama, Ulusal İklimlendirme Kongresi ve Fuarı (İKLİM 2011), Erturk, M., Oktay, Z., Coskun, C.,. Kilic, G. A, and Dasdemir, A. (2015). A new approach to calculation of energy demand and amount of emission according to different indoor temperature. International Journal of Global Warming, 7(3), 395–408.
  • H. Bulut, O. Buyukalaca, T. Y.-P. of 5th International, and undefined 2002, “Determination and application of the data used in energy estimation methods for Istanbul,” eng.harran.edu.trH Bulut, O Buyukalaca, T Yilmaz Proceedings of 5th International HVAC&R Technology Symposium, 2002•eng.harran.edu.tr, Accessed: Jul. 01, 2024. [Online]. Available: http://eng.harran.edu.tr/~hbulut/TTMD2002_English.pdf
  • Işık, E., İnallı, M., and Celik, E. (2019). ANN and ANFIS Approaches to Calculate the Heating and Cooling Degree Day Values: The Case of Provinces in Turkey. Arab J Sci Eng, 44(9), 7581–7597.
  • Coskun, C., Ertürk, M., Oktay, Z. and Hepbasli, A. (2014). A new approach to determine the outdoor temperature distributions for building energy calculations. Energy Convers Manag, 78, 165–172.
  • Büyükalaca, O., Bulut, H., Yılmaz, T., (2001), “Analysis of variable-base heating and cooling degree-days for Turkey, Applied Energy, 269–283.
  • Anestopoulou, C., Efthymiou, C., Kokkonis, D. and Santamouris, M. (2017). On the development, testing and performance evaluation of energy efficient coatings for buildings. International Journal of Low-Carbon Technologies, 12(3).
  • Aktacir, M. A., (2012). Performance evaluation of different air-side economizer control methods for energy efficient building, Journal of Thermal Science and Technology 32: 2 (2012) 19-30.
  • Yaşar, E. and Ertürk, M. (2023). Investigation of A Different Method In Free Heating Degree Hours Calculations for Aydın Province. Electronic Letters on Science and Engineering, 19(1), 17-28.
  • Aktacir, M. A., Büyükalaca, O. and Yılmaz, T. (2010). A case study for influence of building thermal insulation on cooling load and air-conditioning system in the hot and humid regions. Appl Energy, 87, 599–607.
  • Letherman, K. M. and Al-Azawi, M. M. J. (1986). Predictions of the heating and cooling energy requirements in buildings using the degree hours method. Build Environ, 21(3–4), 171–176.

Muğla İli Serbest Soğutma Derece Saati Hesaplamalarında Yeni Bir Yaklaşımın İncelenmesi

Yıl 2024, Cilt: 10 Sayı: 2, 352 - 366, 31.12.2024
https://doi.org/10.29132/ijpas.1474617

Öz

Binalardaki enerji talebi genellikle kış mevsimi boyunca odaların ısıtılması yaz mevsimi boyunca ise odaların soğutulması için kullanılmaktadır. Konfor koşullarını etkilemeden soğutma enerjisinin azaltılması amacıyla, dış duvarlar, kolonlar ve kirişlerde yalıtım uygulamaları ile pencerelerde çift cam kullanımı önemli bir rol oynamaktadır. Soğutma enerjisinin azaltılmasında etkili bir diğer yöntem de serbest soğutma sistemleridir. Bu sistemde, soğutma sistemleri dışarıdan alınan taze havayı soğutma bataryalarına bypass ederek doğrudan iç mekana ileterek enerji tasarrufu sağlamaktadır. Bu sistem, projenin planlama aşamasında soğutma sezonu boyunca güvenilir dış hava sıcaklık dağılımlarının incelenmesini gerektirmektedir. Bu çalışmada, beş farklı bilgisayar programı kullanılarak çeşitli analizler yapılmıştır. Analiz sonuçlarına göre, Muğla ili için her ayın her saatinde ve belirli saat aralıklarında serbest soğutma sistemlerinin çalışma süreleri ve soğutma yüklerini karşılayacak Serbest Soğutma Derece Saat Değeri (SSDSD) literatüre kazan-dırılmıştır. Muğla ili için tahmin edilen en yüksek sezonluk SSDSD'nin 11810.7 olduğu, saatlik en yüksek SSDSD'nin 177.5 olduğu ve saat 05.30-06.30 arasında gerçekleştiği, en yüksek 24 saatlik SSDSD'nin eylül ayında ve 2209 olarak belir-lenmiştir. Elde edilen bu veriler yüzdelik hesaba vurulunca, serbest soğutma sistem-lerinden %70.6 oranında bir enerji tasarrufu sağlandığı tespit edilmiştir.

Kaynakça

  • Asan, H. (2000). Investigation of wall’s optimum insulation position from maximum time lag and minimum decrement factor point of view. Energy Build, 32(2), 197–203.
  • Asan, H. and Sancaktar, Y. S. (1998). Effects of Wall’s thermophysical properties on time lag and decrement factor. Energy Build, 28(2), 159–166.
  • Asan, H. (1998). Effects of wall’s insulation thickness and position on time lag and decrement factor. Energy Build, 28(3), 299–305.
  • Raj, V. A. A. and Velraj, R. (2010). Review on free cooling of buildings using phase change materials. Renewable and Sustainable Energy Reviews, 14(9).
  • Li, B., Wild, P. and Rowe, A. (2020). Free cooling potential of air economizer in residential houses in Canada. Build Environ, 167.
  • Zeinelabdein, R., Omer, S. and Gan, G. (2018). Critical review of latent heat storage systems for free cooling in buildings. Renewable and Sustainable Energy Reviews, 82.
  • Liu, J., Su, L., Dong, K. and Liu, X. (2022). Critical temperature of free cooling using indirect opening cooling tower in data centres: a review. International Journal of Ambient Energy, 43(1).
  • Medved, S. and Arkar, C. (2008). Correlation between the local climate and the free-cooling potential of latent heat storage. Energy Build, 40(4).
  • Kim, J. H. and Kang, C. (2024). A novel design for film-cooling: Cooling holes with inlet groove. International Journal of Thermal Sciences, 195.
  • Osterman, E., Butala, V. and Stritih, U. (2015). PCM thermal storage system for ‘free’ heating and cooling of buildings. Energy Build, 106.
  • Xie, X., Luo, Z., Grimmond, S., and Blunn, L. (2023). Use of wind pressure coefficients to simulate natural ventilation and building energy for isolated and surrounded buildings. Build Environ, 230.
  • Ghiaus, C. and Allard, F. (2006). Potential for free-cooling by ventilation. Solar Energy, 80(4), 402–413.
  • Ertürk, M. (2021). İç Ortam Sıcaklığının Isıtma ve Soğutma Derece Saat Değerlerine Etkisinin Sakarya için Araştırılması. Mühendislik Bilimleri ve Tasarım Dergisi, 9(2), 599–605.
  • Lyu, W., Li, X., Shi, W., Wang, B., and Huang, X. (2021). A general method to evaluate the applicability of natural energy for building cooling and heating: Revised degree hours. Energy Build, 250.
  • Güğül, G. N. (2018). Free Cooling Potential of Turkey for Datacenters. Avrupa Bilim ve Teknoloji Dergisi, 0(14), 17–22.
  • Gözcü, O. and Erden, H. S. (2019). Energy and economic assessment of major free cooling retrofits for data centers in Turkey. Turkish Journal of Electrical Engineering and Computer Sciences, 27(3), 2097–2212.
  • Işık, E. and Inallı, M. (2018). Artificial neural networks and adaptive neuro-fuzzy inference systems approaches to forecast the meteorological data for HVAC: The case of cities for Turkey. Energy, 154, 7–16.
  • Işık E., İnallı M., (2011). İklim Sistemlerinin Projelendirmesini Etkileyen Meteorolojik Verilerin Akıllı Sistemlerle Tahmini ve Örnek Uygulama, Ulusal İklimlendirme Kongresi ve Fuarı (İKLİM 2011), Erturk, M., Oktay, Z., Coskun, C.,. Kilic, G. A, and Dasdemir, A. (2015). A new approach to calculation of energy demand and amount of emission according to different indoor temperature. International Journal of Global Warming, 7(3), 395–408.
  • H. Bulut, O. Buyukalaca, T. Y.-P. of 5th International, and undefined 2002, “Determination and application of the data used in energy estimation methods for Istanbul,” eng.harran.edu.trH Bulut, O Buyukalaca, T Yilmaz Proceedings of 5th International HVAC&R Technology Symposium, 2002•eng.harran.edu.tr, Accessed: Jul. 01, 2024. [Online]. Available: http://eng.harran.edu.tr/~hbulut/TTMD2002_English.pdf
  • Işık, E., İnallı, M., and Celik, E. (2019). ANN and ANFIS Approaches to Calculate the Heating and Cooling Degree Day Values: The Case of Provinces in Turkey. Arab J Sci Eng, 44(9), 7581–7597.
  • Coskun, C., Ertürk, M., Oktay, Z. and Hepbasli, A. (2014). A new approach to determine the outdoor temperature distributions for building energy calculations. Energy Convers Manag, 78, 165–172.
  • Büyükalaca, O., Bulut, H., Yılmaz, T., (2001), “Analysis of variable-base heating and cooling degree-days for Turkey, Applied Energy, 269–283.
  • Anestopoulou, C., Efthymiou, C., Kokkonis, D. and Santamouris, M. (2017). On the development, testing and performance evaluation of energy efficient coatings for buildings. International Journal of Low-Carbon Technologies, 12(3).
  • Aktacir, M. A., (2012). Performance evaluation of different air-side economizer control methods for energy efficient building, Journal of Thermal Science and Technology 32: 2 (2012) 19-30.
  • Yaşar, E. and Ertürk, M. (2023). Investigation of A Different Method In Free Heating Degree Hours Calculations for Aydın Province. Electronic Letters on Science and Engineering, 19(1), 17-28.
  • Aktacir, M. A., Büyükalaca, O. and Yılmaz, T. (2010). A case study for influence of building thermal insulation on cooling load and air-conditioning system in the hot and humid regions. Appl Energy, 87, 599–607.
  • Letherman, K. M. and Al-Azawi, M. M. J. (1986). Predictions of the heating and cooling energy requirements in buildings using the degree hours method. Build Environ, 21(3–4), 171–176.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Enerji Üretimi, Dönüşüm ve Depolama (Kimyasal ve Elektiksel hariç)
Bölüm Makaleler
Yazarlar

Hüseyin Salih Aktay 0009-0005-8431-9813

Mustafa Ertürk 0000-0002-0517-6940

Erken Görünüm Tarihi 30 Aralık 2024
Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 27 Nisan 2024
Kabul Tarihi 27 Kasım 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 10 Sayı: 2

Kaynak Göster

APA Aktay, H. S., & Ertürk, M. (2024). Investigation of a Novel Approach in Free Cooling Degree Hour Calculations for Muğla Province. International Journal of Pure and Applied Sciences, 10(2), 352-366. https://doi.org/10.29132/ijpas.1474617
AMA Aktay HS, Ertürk M. Investigation of a Novel Approach in Free Cooling Degree Hour Calculations for Muğla Province. International Journal of Pure and Applied Sciences. Aralık 2024;10(2):352-366. doi:10.29132/ijpas.1474617
Chicago Aktay, Hüseyin Salih, ve Mustafa Ertürk. “Investigation of a Novel Approach in Free Cooling Degree Hour Calculations for Muğla Province”. International Journal of Pure and Applied Sciences 10, sy. 2 (Aralık 2024): 352-66. https://doi.org/10.29132/ijpas.1474617.
EndNote Aktay HS, Ertürk M (01 Aralık 2024) Investigation of a Novel Approach in Free Cooling Degree Hour Calculations for Muğla Province. International Journal of Pure and Applied Sciences 10 2 352–366.
IEEE H. S. Aktay ve M. Ertürk, “Investigation of a Novel Approach in Free Cooling Degree Hour Calculations for Muğla Province”, International Journal of Pure and Applied Sciences, c. 10, sy. 2, ss. 352–366, 2024, doi: 10.29132/ijpas.1474617.
ISNAD Aktay, Hüseyin Salih - Ertürk, Mustafa. “Investigation of a Novel Approach in Free Cooling Degree Hour Calculations for Muğla Province”. International Journal of Pure and Applied Sciences 10/2 (Aralık 2024), 352-366. https://doi.org/10.29132/ijpas.1474617.
JAMA Aktay HS, Ertürk M. Investigation of a Novel Approach in Free Cooling Degree Hour Calculations for Muğla Province. International Journal of Pure and Applied Sciences. 2024;10:352–366.
MLA Aktay, Hüseyin Salih ve Mustafa Ertürk. “Investigation of a Novel Approach in Free Cooling Degree Hour Calculations for Muğla Province”. International Journal of Pure and Applied Sciences, c. 10, sy. 2, 2024, ss. 352-66, doi:10.29132/ijpas.1474617.
Vancouver Aktay HS, Ertürk M. Investigation of a Novel Approach in Free Cooling Degree Hour Calculations for Muğla Province. International Journal of Pure and Applied Sciences. 2024;10(2):352-66.

154501544915448154471544615445