Research Article
BibTex RIS Cite

Evaluation of phenolic profile, antioxidant and anticholinesterase effects of Fuscoporia torulosa

Year 2019, Volume: 6 Issue: 1, 79 - 89, 16.03.2019
https://doi.org/10.21448/ijsm.496327

Abstract

In this study, we investigated antioxidant and anticholinesterase activities of the hexane, chloroform, acetone, methanol and water extracts of F. torulosa mushroom with total phenolic contents. Also, HPLC-DAD was used to identify phenolic profile of F. torulosa. The acetone and methanol extracts of F. torulosa with the highest total phenolic contents showed the highest antioxidant activity in all assays except metal chelating assay. Furthermore, antioxidant activities of the acetone and methanol extract were found to be higher than α-tocopherol and BHA used as standards in DPPH, ABTS+ and CUPRAC assays. When F. torulosa hexane extract (41.34±1.50 %) showed moderate AChE inhibitory activity, the acetone (40.78±0.30 %) and methanol (45.39±0.65 %) extracts of F. torulosa indicated moderate BChE inhibitory activity. Major phenolic compounds were identified as trans-2-hydroxy cinnamic acid (10.05 µg/g), gallic acid (5.01 µg/g) and p-coumaric acid (3.04 µg/g). These results suggest that F. torulosa mushroom could be used as a valuable natural antioxidant source for pharmaceutical industry.

References

  • [1] Kumar, A. (2009) Antioxidant effect of Adiantum capillus veneris Linn on human lymphocyte: An in vitro study. J. Cell Tissue Res., 9, 1899-1902.
  • [2] Cakmak, Y.S., Zengin, G., Eskin, B., Yıldırım, K., Topal, M., Aydın, G.H., Unlu, E., Baydemir, M., & Erten, K. (2017). Medicago rigidula (L.) ALL.’nın antioksidan ve enzim inhibisyon aktiviteleri ve fenolik bileşiminin incelenmesi. Marmara Pharm. J., 21/3, 522-529.
  • [3] Loganayaki, N., Siddhuraju, P., & Manian, S. (2013). Antioxidant activity and free radical scavenging capacity of phenolic extracts from Helicteres isora L. and Ceiba pentandra L. Food Sci. Technol., 50(4), 687-695.
  • [4] Özkay, Y., Yurttaş, L., Mohsen, U.A., Sever, B., Hussein, W., Öztürk, Ö., Sağlık, B.N., Acar, U., Erdoğan, Ö.N., Pekbağ, A., & Kaplancıklı, Z.A. (2014). Study on thiazolyl-hydrazone derivatives as acetylcholinesterase inhibitors. Marmara Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi, 4(1), 38-42.
  • [5] Giacobini, E. (2004). Cholinesterase inhibitors: New roles and therapeutic alternatives. Pharmacol. Res., 5, 433-440.
  • [6] Asadipour, A., Alipour, M., Jafari, M., Khoobi, M., Emami, S., Nadri, H., Sakhteman, A., Moradi, A., Sheibani, V., Moghadam, F.H., Shafiee, A., & Foroumadi, A. (2013). Novel coumarin-3-carboxamides bearing N-benzylpiperidine moiety as potent acetylcholinesterase. Eur. J. Med. Chem., 70, 623-630.
  • [7] Vina, J., Lloret, A., Giraldo, E., Badia, M.C., & Alonso, M.D. (2011). Antioxidant pathways in Alzheimer’s disease: Possibilities of intervention. Curr. Pharm. Des., 17(35), 3861-3864.
  • [8] Gutzmann, H., & Hadler, D. (1998). Sustained efficacy and safety of idebenone in the treatment of Alzheimer’s disease: Update on a 2-year double-blind multicenter study. J. Neural. Transm. Suppl., 54, 301-310.
  • [9] Zhang, M., Cui, S.W., Chueng, P.C., & Wang, K.Q. (2006). Polysaccharides from mushrooms: A review on their isolation process, structural characteristics and antitumor activity. Trends Food Sci. Tech., 18, 4-19.
  • [10] Rout, S., & Banerjee, R. (2007). Free radical scavenging, anti-glycation and tyrosinase inhibition properties of a polysaccharide fraction isolated from the rind from Punica granatum. Bioresource Technol., 98, 3159-3163.
  • [11] Moradali, M.F., Mostafavi, H., Ghods, S., & Hedjaroude, G.A. (2007). Immunomodulating and anticancer agents in the realm of macromycetes fungi (Macrofungi). Int.l Immunopharmacol., 7, 701-724.
  • [12] Huang, Q.L., Jin, Y., Zhang, L.N., Cheung, C.K., & Kennedy, J.F. (2007). Structure, molecular size and antitumor activities of polysaccharides from Poria cocos mycelia produced in fermenter. Carbohyd. Polym., 70, 324-333.
  • [13] Gern, R.M.M., Wisbeck, E., Rampinelli, J.R., Ninow, J.L., & Furlan, S.A. (2008). Alternative medium for production of Pleurotus ostreatus biomass and potential antitumor polysaccharides. Bioresource Technol., 99, 76-82.
  • [14] Tong, H., Xia, N., Feng, K., Sun, G., Gao, X., Sun, L., Jiang, R., Tian, D., & Sun, X. (2009). Structural characterization and in vitro antitumor activity of a novel polysaccharide isolated from the fruiting bodies of Pleurotus ostreatus. Bioresource Technol., 100, 1682-1686.
  • [15] Öztürk, M., Tel-Cayan, G., Muhammad, A., Terzioglu, P., & Duru, M.E. (2015). Mushrooms: a source of exciting bioactive compounds, Atta-ur-Rahman (editör), Studies in Natural Product Chemistry, vol. 45. Elsevier, Amsterdam, Netherlands, pp. 363-456.
  • [16] Lindequist, U., Niedermeyer, T.H.J., & Julich, W. (2005). The pharmacological potential of mushrooms. Evid-Based Compl. Alt. 2(3), 285-299.
  • [17] Slinkard K., & Singleton V.L. (1977). Total phenol analyses: Automation and comparison with manual methods. Am. J. Enol. Viticult., 28, 49-55.
  • [18] Tel-Çayan, G., Öztürk, M., Duru, M. E., Rehman, M., Adhikari, A., Türkoglu, A., & Choudhary, M. I. (2015). Phytochemical investigation, antioxidant and anticholinesterase activities of Ganoderma adspersum. Ind. Crops Prod., 76, 749-754.
  • [19] Tel, G., Apaydın, M., Duru, M.E., & Öztürk, M. (2012). Antioxidant and cholinesterase ınhibition activities of three Tricholoma species with total phenolic and flavonoid contents: The edible mushrooms from Anatolia. Food Anal. Method., 5, 495-504.
  • [20] Ellman, G.L., Courtney, K.D., Andres, V., & Featherston, R.M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 7, 88-95.
  • [21] Zhang, N., Chen, H., Zhang, Y., Xing, L., Li, S., Wang, X., & Sun, Z. (2015). Chemical composition and antioxidant properties of five edible Hymenomycetes mushrooms. Int. J. Food Sci. Tech., 50, 465-471.
  • [22] Szychowski, K.A., Rybczyńska-Tkaczyk, K., Tobiasz, J., Yelnytska-Stawasz, V., Pomianek, T., & Gmiński, J. (2018). Biological and anticancer properties of Inonotus obliquus extracts. Process Biochem., 73, 180-187.
  • [23] Seephonkai, P., Samchai, S., Thongsom, A., Sunaart, S., Kiemsanmuang, B., & Chakuton, B. (2011). DPPH radical scavenging activity and total phenolics of Phellinus mushroom extracts collected from northeast of Thailand. Chin. J. Nat. Medicines, 9(6), 0441-0445.
  • [24] Sova, M. (2012). Antioxidant and antimicrobial activities of cinnamic acid derivatives. Mini-Rev. Med. Chem., 12, 749-767.
  • [25] Fernandes, F.H.A, & Salgado, H.R.N. (2016). Gallic Acid: Review of the methods of determination and quantification. Crit. Rev. Anal. Chem., 46(3), 257-265.
  • [26] Pei, K., Ou, J., Huanga, J., & Oua, S. (2016). p-Coumaric acid and its conjugates: dietary sources, pharmacokinetic properties and biological activities. J. Sci. Food Agr., 96, 2952-2962.
  • [27] Kim, M.Y., Seguin, P., Ahn, J.K., Kim, J.J., Chun, S.C., Kim, E.H., Seo, S.H., Kang, E.Y., Kim, S.L., Park, Y.J, Ro, H.M., & Chung, I.M. (2008). Phenolic compound concentration and antioxidant activities of edible and medicinal mushrooms from Korea. J. Agric. Food Chem., 56, 7265-7270.
  • [28] Bal, C., Akgul, H., Sevindik, M., Akata, I., & Yumrutas, O. (2017). Determination of the anti-oxidative activities of six mushrooms. Fresen. Environ. Bull., 26, 6246-6252.
  • [29] Khadhri, A., Aouadhi, C., & Aschi-Smiti, S. (2011). Screening of bioactive compounds of medicinal mushrooms collected on Tunisian Territory. Int. J. Med. Mushrooms, 19(2), 127-135.
  • [30] Kovacs, B., Zomborszki, Z.P., Orban-Gyapai, O., Csupor-Loffler, B., Liktor-Busa, E., Lazar, A., Papp, V., Urban, E., Hohmann, J., & Vanyolos, A. (2017). Investigation of antimicrobial, antioxidant, and xanthine oxidase--ınhibitory activities of Phellinus (Agaricomycetes) mushroom species native to Central Europe. Int. J. Med. Mushrooms, 19(5), 387-394.

Evaluation of phenolic profile, antioxidant and anticholinesterase effects of Fuscoporia torulosa

Year 2019, Volume: 6 Issue: 1, 79 - 89, 16.03.2019
https://doi.org/10.21448/ijsm.496327

Abstract

In this study, we investigated antioxidant and anticholinesterase activities of the hexane, chloroform, acetone, methanol and water extracts of F. torulosa mushroom with total phenolic contents. Also, HPLC-DAD was used to identify phenolic profile of F. torulosa. The acetone and methanol extracts of F. torulosa with the highest total phenolic contents showed the highest antioxidant activity in all assays except metal chelating assay. Furthermore, antioxidant activities of the acetone and methanol extract were found to be higher than α-tocopherol and BHA used as standards in DPPH•, ABTS•+ and CUPRAC assays. When F. torulosa hexane extract (41.34±1.50 %) showed moderate AChE inhibitory activity, the acetone (40.78±0.30 %) and methanol (45.39±0.65 %) extracts of F. torulosa indicated moderate BChE inhibitory activity. Major phenolic compounds were identified as trans-2-hydroxy cinnamic acid (10.05 µg/g), gallic acid (5.01 µg/g) and p-coumaric acid (3.04 µg/g). These results suggest that F. torulosa mushroom could be used as a valuable natural antioxidant source for pharmaceutical industry.

References

  • [1] Kumar, A. (2009) Antioxidant effect of Adiantum capillus veneris Linn on human lymphocyte: An in vitro study. J. Cell Tissue Res., 9, 1899-1902.
  • [2] Cakmak, Y.S., Zengin, G., Eskin, B., Yıldırım, K., Topal, M., Aydın, G.H., Unlu, E., Baydemir, M., & Erten, K. (2017). Medicago rigidula (L.) ALL.’nın antioksidan ve enzim inhibisyon aktiviteleri ve fenolik bileşiminin incelenmesi. Marmara Pharm. J., 21/3, 522-529.
  • [3] Loganayaki, N., Siddhuraju, P., & Manian, S. (2013). Antioxidant activity and free radical scavenging capacity of phenolic extracts from Helicteres isora L. and Ceiba pentandra L. Food Sci. Technol., 50(4), 687-695.
  • [4] Özkay, Y., Yurttaş, L., Mohsen, U.A., Sever, B., Hussein, W., Öztürk, Ö., Sağlık, B.N., Acar, U., Erdoğan, Ö.N., Pekbağ, A., & Kaplancıklı, Z.A. (2014). Study on thiazolyl-hydrazone derivatives as acetylcholinesterase inhibitors. Marmara Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi, 4(1), 38-42.
  • [5] Giacobini, E. (2004). Cholinesterase inhibitors: New roles and therapeutic alternatives. Pharmacol. Res., 5, 433-440.
  • [6] Asadipour, A., Alipour, M., Jafari, M., Khoobi, M., Emami, S., Nadri, H., Sakhteman, A., Moradi, A., Sheibani, V., Moghadam, F.H., Shafiee, A., & Foroumadi, A. (2013). Novel coumarin-3-carboxamides bearing N-benzylpiperidine moiety as potent acetylcholinesterase. Eur. J. Med. Chem., 70, 623-630.
  • [7] Vina, J., Lloret, A., Giraldo, E., Badia, M.C., & Alonso, M.D. (2011). Antioxidant pathways in Alzheimer’s disease: Possibilities of intervention. Curr. Pharm. Des., 17(35), 3861-3864.
  • [8] Gutzmann, H., & Hadler, D. (1998). Sustained efficacy and safety of idebenone in the treatment of Alzheimer’s disease: Update on a 2-year double-blind multicenter study. J. Neural. Transm. Suppl., 54, 301-310.
  • [9] Zhang, M., Cui, S.W., Chueng, P.C., & Wang, K.Q. (2006). Polysaccharides from mushrooms: A review on their isolation process, structural characteristics and antitumor activity. Trends Food Sci. Tech., 18, 4-19.
  • [10] Rout, S., & Banerjee, R. (2007). Free radical scavenging, anti-glycation and tyrosinase inhibition properties of a polysaccharide fraction isolated from the rind from Punica granatum. Bioresource Technol., 98, 3159-3163.
  • [11] Moradali, M.F., Mostafavi, H., Ghods, S., & Hedjaroude, G.A. (2007). Immunomodulating and anticancer agents in the realm of macromycetes fungi (Macrofungi). Int.l Immunopharmacol., 7, 701-724.
  • [12] Huang, Q.L., Jin, Y., Zhang, L.N., Cheung, C.K., & Kennedy, J.F. (2007). Structure, molecular size and antitumor activities of polysaccharides from Poria cocos mycelia produced in fermenter. Carbohyd. Polym., 70, 324-333.
  • [13] Gern, R.M.M., Wisbeck, E., Rampinelli, J.R., Ninow, J.L., & Furlan, S.A. (2008). Alternative medium for production of Pleurotus ostreatus biomass and potential antitumor polysaccharides. Bioresource Technol., 99, 76-82.
  • [14] Tong, H., Xia, N., Feng, K., Sun, G., Gao, X., Sun, L., Jiang, R., Tian, D., & Sun, X. (2009). Structural characterization and in vitro antitumor activity of a novel polysaccharide isolated from the fruiting bodies of Pleurotus ostreatus. Bioresource Technol., 100, 1682-1686.
  • [15] Öztürk, M., Tel-Cayan, G., Muhammad, A., Terzioglu, P., & Duru, M.E. (2015). Mushrooms: a source of exciting bioactive compounds, Atta-ur-Rahman (editör), Studies in Natural Product Chemistry, vol. 45. Elsevier, Amsterdam, Netherlands, pp. 363-456.
  • [16] Lindequist, U., Niedermeyer, T.H.J., & Julich, W. (2005). The pharmacological potential of mushrooms. Evid-Based Compl. Alt. 2(3), 285-299.
  • [17] Slinkard K., & Singleton V.L. (1977). Total phenol analyses: Automation and comparison with manual methods. Am. J. Enol. Viticult., 28, 49-55.
  • [18] Tel-Çayan, G., Öztürk, M., Duru, M. E., Rehman, M., Adhikari, A., Türkoglu, A., & Choudhary, M. I. (2015). Phytochemical investigation, antioxidant and anticholinesterase activities of Ganoderma adspersum. Ind. Crops Prod., 76, 749-754.
  • [19] Tel, G., Apaydın, M., Duru, M.E., & Öztürk, M. (2012). Antioxidant and cholinesterase ınhibition activities of three Tricholoma species with total phenolic and flavonoid contents: The edible mushrooms from Anatolia. Food Anal. Method., 5, 495-504.
  • [20] Ellman, G.L., Courtney, K.D., Andres, V., & Featherston, R.M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 7, 88-95.
  • [21] Zhang, N., Chen, H., Zhang, Y., Xing, L., Li, S., Wang, X., & Sun, Z. (2015). Chemical composition and antioxidant properties of five edible Hymenomycetes mushrooms. Int. J. Food Sci. Tech., 50, 465-471.
  • [22] Szychowski, K.A., Rybczyńska-Tkaczyk, K., Tobiasz, J., Yelnytska-Stawasz, V., Pomianek, T., & Gmiński, J. (2018). Biological and anticancer properties of Inonotus obliquus extracts. Process Biochem., 73, 180-187.
  • [23] Seephonkai, P., Samchai, S., Thongsom, A., Sunaart, S., Kiemsanmuang, B., & Chakuton, B. (2011). DPPH radical scavenging activity and total phenolics of Phellinus mushroom extracts collected from northeast of Thailand. Chin. J. Nat. Medicines, 9(6), 0441-0445.
  • [24] Sova, M. (2012). Antioxidant and antimicrobial activities of cinnamic acid derivatives. Mini-Rev. Med. Chem., 12, 749-767.
  • [25] Fernandes, F.H.A, & Salgado, H.R.N. (2016). Gallic Acid: Review of the methods of determination and quantification. Crit. Rev. Anal. Chem., 46(3), 257-265.
  • [26] Pei, K., Ou, J., Huanga, J., & Oua, S. (2016). p-Coumaric acid and its conjugates: dietary sources, pharmacokinetic properties and biological activities. J. Sci. Food Agr., 96, 2952-2962.
  • [27] Kim, M.Y., Seguin, P., Ahn, J.K., Kim, J.J., Chun, S.C., Kim, E.H., Seo, S.H., Kang, E.Y., Kim, S.L., Park, Y.J, Ro, H.M., & Chung, I.M. (2008). Phenolic compound concentration and antioxidant activities of edible and medicinal mushrooms from Korea. J. Agric. Food Chem., 56, 7265-7270.
  • [28] Bal, C., Akgul, H., Sevindik, M., Akata, I., & Yumrutas, O. (2017). Determination of the anti-oxidative activities of six mushrooms. Fresen. Environ. Bull., 26, 6246-6252.
  • [29] Khadhri, A., Aouadhi, C., & Aschi-Smiti, S. (2011). Screening of bioactive compounds of medicinal mushrooms collected on Tunisian Territory. Int. J. Med. Mushrooms, 19(2), 127-135.
  • [30] Kovacs, B., Zomborszki, Z.P., Orban-Gyapai, O., Csupor-Loffler, B., Liktor-Busa, E., Lazar, A., Papp, V., Urban, E., Hohmann, J., & Vanyolos, A. (2017). Investigation of antimicrobial, antioxidant, and xanthine oxidase--ınhibitory activities of Phellinus (Agaricomycetes) mushroom species native to Central Europe. Int. J. Med. Mushrooms, 19(5), 387-394.
There are 30 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Articles
Authors

Mehmet Emin Duru 0000-0001-7252-4880

Gülsen Tel-çayan 0000-0002-1916-7391

Ebru Deveci This is me 0000-0003-0913-9095

Publication Date March 16, 2019
Submission Date December 12, 2018
Published in Issue Year 2019 Volume: 6 Issue: 1

Cite

APA Duru, M. E., Tel-çayan, G., & Deveci, E. (2019). Evaluation of phenolic profile, antioxidant and anticholinesterase effects of Fuscoporia torulosa. International Journal of Secondary Metabolite, 6(1), 79-89. https://doi.org/10.21448/ijsm.496327
International Journal of Secondary Metabolite

e-ISSN: 2148-6905