Araştırma Makalesi
BibTex RIS Kaynak Göster

Antioxidant Activities and Chemical Composition of Essential Oil of Rhizomes of Zingiber officinale (Ginger) and Curcuma longa L.(Turmeric)

Yıl 2022, Cilt: 9 Sayı: 2, 137 - 148, 15.06.2022
https://doi.org/10.21448/ijsm.993906

Öz

This study aimed to determine the essential oil volatile components of ginger and turmeric rhizomes, as well as to determine the total antioxidant capacity of essential oil samples according to the CUPric Reducing Antioxidant Capacity (CUPRAC), ferric reducing antioxidant potential (FRAP) method and free radical scavenging activities of oil samples and standards such as BHA, BHT, and Trolox were determined using a DPPH method. Essential oil analysis of volatile components was also performed on a Shimadzu GCMS-QP2010 SE (Japan) model with Support Rx-5Sil MS capillary column (30 m x 0.25 mm, film thickness 0.25 μm). Antioxidant capacities of essential oils were evaluated according to the CUPRAC method in millimole Trolox/gram -oil equivalent. GC-MS analysis of ginger showed the presence of 5 major peaks identified as Curcumene (13.46%), Zingiberene (33.92%), α-Farnesene (8.07%), β-Bisabolene (6.39%), and β-Sesquiphellandrene (15.92 %), respectively. GC-MS analysis of Turmeric showed the presence of 3 major peaks identified as Ar-Turmerone (29.24%), α-Turmerone (22.8 %), and β-Turmerone (18.84%). CUPRAC values of calculated antioxidant capacities of essential oil samples were determined as 1.97 ± 0.102 mmolTR/g-oil for Zingiber officinale R. and 3.40 ± 0.071 mmol TR/g-oil for Curcuma longa L. The scavenging effect of turmeric, ginger and standards on the DPPH radical decreased in the order of Trolox>BHA>BHT>Turmeric>Ginger which were 95.25 ± 0.05%, 62.57 ± 0.34%, 61.6 ± 0.3%, 51.45 ± 0.59%, and 50.26 ± 0.09%, at the concentration of 150µg/mL, respectively. Additionally, it revealed that essential oils of turmeric and ginger exhibited effective ferric reducing power.

Kaynakça

  • Abuja, P.M., & Albertini, R. (2001). Methods for monitoring oxidative stress, lipid peroxidation and oxidation resistance of lipoproteins. Clin. Chim. Acta., 306(1-2), 1-17. https://doi.org/10.1016/S0009-8981(01)00393-X.
  • Adams, R.P. (2007). Identification of essential oil components by gas chromatography/mass spectrometry (Vol. 456). Carol Stream, IL: Allured publishing corporation.
  • Ammon, H.P., & Wahl, M.A. (1991). Pharmacology of Curcuma longa. Planta Medica, 57(01), 1-7.
  • Apak, R., Güclü, K., Özyürek, M., & Celik, S.E. (2008). Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay. Microchim. Acta., 160(4), 413-419. https://doi.org/10.1007/s00604-007-0777-0
  • Babushok, V.I., Linstrom, P.J., & Zenkevich, I.G. (2011). Retention indices for frequently reported compounds of plant essential oils. J. Phys. Chem. Ref. Data., 40(4), 043101. https://doi.org/10.1063/1.3653552
  • Bagchi, A. (2012). Extraction of curcumin. IOSR J. En. Env. Sci. Toxicology. Food Tech., 1, 1-16. https://doi.org/10.9790/2402-0130116
  • Berker, K.I., Güçlü, K., Tor, I., & Apak, R. (2007). Comparative evaluation of Fe(III) reducing power-based antioxidant capacity assays in the presence of phenanthroline, batho-phenanthroline, tripyridyltriazine (FRAP), and ferricyanide reagents. Talanta, 72(3), 1157–1165. https://doi.org/10.1016/j.talanta.2007.01.019
  • Bilia, A.R., Guccione, C., Isacchi, B., Righeschi, C., Firenzuoli, F., & Bergonzi, M.C. (2014). Essential oils loaded in nanosystems: a developing strategy for a successful therapeutic approach. Evid. based Complement Altern. Med., 2014. http://dx.doi.org/10.1155/2014/651593
  • Blois, M.S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181(4617), 1199-1200.
  • Çelik, S.E., Asfoor, A., Senol, O., & Apak, R. (2019). Screening method for argan oil adulteration with vegetable oils: An online hplc assay with postcolumn detection utilizing chemometric multidata analysis. J. Agric. Food Chem., 67(29), 8279-8289. https://doi.org/10.1021/acs.jafc.9b03001
  • Çelik, S.E., Özyürek, M., Güçlü, K., & Apak, R. (2010). Solvent effects on the antioxidant capacity of lipophilic and hydrophilic antioxidants measured by CUPRAC, ABTS/persulphate and FRAP methods. Talanta, 81(4 5), 1300 1309. https://doi.org/10.1016/j.talanta.2010.02.025
  • de Cássia Da Silveira e Sá, R., Andrade, L.N., & De Sousa, D.P. (2015). Sesquiterpenes from essential oils and anti inflammatory activity. Nat. Prod. Commun., 10(10), https://doi.org/10.1177/1934578X1501001033
  • El-Ghorab, A.H., Nauman, M., Anjum, F.M., Hussain, S., & Nadeem, M. (2010). A comparative study on chemical composition and antioxidant activity of ginger (Zingiber officinale) and cumin (Cuminum cyminum). J. Agric. Food Chem., 58(14), 8231-8237.
  • Erdoğan, Ü., & Erbaş, S. (2021). Phytochemical Profile and Antioxidant Activities of Zingiber officinale (Ginger) and Curcuma longa L.(Turmeric) Rhizomes. Bilgesci., 5(special issue), 1-6. https://doi.org/10.30516/bilgesci.991202
  • Erdoğan, Ü., & Gökçe, E.H. (2021). Fig seed oil‐loaded nanostructured lipid carriers: Evaluation of the protective effects against oxidation. J. Food Process. Preserv., 45(10), e15835.
  • Erdoğan, Ü., Yilmazer, M., & Erbaş, S. (2020). Hydrodistillation of Nigella sativa seed and analysis of Thymoquinone with HPLC and GC-MS. Bilgesci., 4(1), 27-30. https://doi.org/10.30516/bilgesci.688845
  • Eroğlu, İ., Gökçe, E.H., Tsapis, N., Tanrıverdi, S.T., Gökçe, G., Fattal, E., & Özer, Ö. (2015). Evaluation of characteristics and in vitro antioxidant properties of RSV loaded hyaluronic acid–DPPC microparticles as a wound healing system. Colloids Surf. B., 126, 50-57. https://doi.org/10.1016/j.colsurfb.2014.12.006
  • Gopalan, B., Goto, M., Kodama, A., & Hirose, T. (2000). Supercritical carbon dioxide extraction of turmeric (Curcuma longa). J. Agric. Food Chem., 48(6), 2189-2192.
  • Gülçin, İ., Elias, R., Gepdiremen, A., & Boyer, L. (2006). Antioxidant activity of lignans from fringe tree (Chionanthus virginicus L.). Eur. Food Res. Technol., 223(6), 759-767. https://doi.org/10.1007/s00217-006-0265-5
  • Halliwell, B. (1996). Antioxidants in human health and disease. Annu. Rev. Nutr., 16(1), 33-50.
  • Huei-Chen, H., Tong-Rong, J., & Sheau-Farn, Y. (1992). Inhibitory effect of curcumin, an anti-inflammatory agent, on vascular smooth muscle cell proliferation. Eur. J. Pharmacol., 221(2-3), 381-384. https://doi.org/10.1016/0014-2999(92)90727-L
  • Koch, C., Reichling, J., Schneele, J., & Schnitzler, P. (2008). Inhibitory effect of essential oils against herpes simplex virus type 2. Phytomedicine, 15(1 2), 71 78. https://doi.org/10.1016/j.phymed.2007.09.003
  • Kuttan, R., Bhanumathy, P., Nirmala, K., & George, M.C. (1985). Potential anticancer activity of turmeric (Curcuma longa). Cancer letters, 29(2), 197-202. https://doi.org/10.1016/0304-3835(85)90159-4
  • Marliyana, S.D., Wibowo, F.R., Wartono, M.W., & Munasah, G. (2019, September). Evaluation of antibacterial activity of sesquiterpene Ar-Turmerone from Curcuma soloensis Val. rhizomes. In IOP Conference Series: Materials Science and Engineering (Vol. 578, No. 1, p. 012060). IOP Publishing. https://doi.org/10.1088/1757-899X/578/1/012060
  • Martín-Cordero, C., López-Lázaro, M., Gálvez, M., & Jesús Ayuso, M. (2003). Curcumin as a DNA topoisomerase II poison. J. Enzyme Inhib. Med. Chem., 18(6), 505-509. https://doi.org/10.1080/14756360310001613085
  • Molyneux, P. (2004). The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J. Sci. Technol., 26(2), 211-219.
  • Moujir, L., Callies, O., Sousa, P., Sharopov, F., & Seca, A.M. (2020). Applications of sesquiterpene lactones: a review of some potential success cases. Applied Sciences, 10(9), 3001.
  • Mushtaq, Z., Tahir Nadeem, M., Arshad, M.U., Saeed, F., Ahmed, M.H., Bader Ul Ain, H., ... & Hussain, S. (2019). Exploring the biochemical and antioxidant potential of ginger (Adric) and turmeric (Haldi). Int. J. Food Prop., 22(1), 1642 1651. https://doi.org/10.1080/10942912.2019.1666138
  • Naksuriya, O., Okonogi, S., Schiffelers, R.M., & Hennink, W.E. (2014). Curcumin nanoformulations: a review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials, 35(10), 3365 3383. https://doi.org/10.1016/j.biomaterials.2013.12.090
  • Nelson, K.M., Dahlin, J.L., Bisson, J., Graham, J., Pauli, G.F., & Walters, M.A. (2017). The essential medicinal chemistry of curcumin: miniperspective. J. Med. Chem., 60(5), 1620-1637. https://doi.org/10.1021/acs.jmedchem.6b00975
  • Oyaizu, M. (1986). Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. J. Nutr., 44(6), 307-315.
  • Özyürek, M., Güçlü, K., Tütem, E., Başkan, K.S., Erçağ, E., Çelik, S.E., ... & Apak, R. (2011). A comprehensive review of CUPRAC methodology. Anal. methods, 3(11), 2439-2453. https://doi.org/10.1039/c1ay05320e
  • Pino, J.A., Marbot, R., Rosado, A., & Batista, A. (2004). Chemical composition of the essential oil of Zingiber officinale Roscoe L. from Cuba. J. Essent. Oil Res., 16(3), 186-188. : https://doi.org/10.1080/10412905.2004.9698692
  • Pulido-Moran, M., Moreno-Fernandez, J., Ramirez-Tortosa, C., & Ramirez-Tortosa, M. (2016). Curcumin and health. Molecules, 21(3), 264. doi:10.3390/molecules21030264
  • Sachin, V.K.S., Garg, M.K., Kalra, A., Bhardwaj, S., Attkan, A.K., Panghal, A., & Kumar, D. (2020). Efficacy of microwave heating parameters on physical properties of extracted oil from turmeric (Curcuma longa L.). Curr. J. Appl. Sci. Technol., 39(25), 126-36.
  • Sasidharan, I., & Menon, A.N. (2010). Comparative chemical composition and antimicrobial activity fresh & dry ginger oils (Zingiber officinale Roscoe). Int. J. Curr. Pharm. Res., 2(4), 40-43.
  • Singh, G., Kapoor, I.P.S., Pandey, S.K., & Singh, O.P. (2003). Curcuma longa-chemical, antifungal and antibacterial investigation of rhizome oil. Indian perfumer, 47(2), 173-178. https://doi.org/10.1002/ffj.1373
  • Singh, G., Maurya, S., Catalan, C., & De Lampasona, M.P. (2005). Studies on essential oils, Part 42: chemical, antifungal, antioxidant and sprout suppressant studies on ginger essential oil and its oleoresin. Flavour Fragr. J., 20(1), 1-6.
  • Stoll, V.S., & Blanchard, J.S. (2009). Buffers: principles and practice. In Methods in enzymology (Vol. 463, pp. 43-56). Academic Press
  • Wichitnithad, W., Jongaroonngamsang, N., Pummangura, S., & Rojsitthisak, P. (2009). A simple isocratic HPLC method for the simultaneous determination of curcuminoids in commercial turmeric extracts. Phytochem. Anal., 20(4), 314 319. https://doi.org/10.1002/pca.1129
  • Zaeoung, S., Plubrukarn, A., & Keawpradub, N. (2005). Cytotoxic and free radical scavenging activities of Zingiberaceous rhizomes. Songklanakarin J. Sci. Technol., 27(4), 799-812.

Antioxidant Activities and Chemical Composition of Essential Oil of Rhizomes of Zingiber officinale (Ginger) and Curcuma longa L.(Turmeric)

Yıl 2022, Cilt: 9 Sayı: 2, 137 - 148, 15.06.2022
https://doi.org/10.21448/ijsm.993906

Öz

This study aimed to determine the essential oil volatile components of ginger and turmeric rhizomes, as well as to determine the total antioxidant capacity of essential oil samples according to the CUPric Reducing Antioxidant Capacity (CUPRAC), ferric reducing antioxidant potential (FRAP) method and free radical scavenging activities of oil samples and standards such as BHA, BHT, and Trolox were determined using a DPPH method. Essential oil analysis of volatile components was also performed on a Shimadzu GCMS-QP2010 SE (Japan) model with Support Rx-5Sil MS capillary column (30 m x 0.25 mm, film thickness 0.25 μm). Antioxidant capacities of essential oils were evaluated according to the CUPRAC method in millimole Trolox/gram -oil equivalent. GC-MS analysis of ginger showed the presence of 5 major peaks identified as Curcumene (13.46%), Zingiberene (33.92%), α-Farnesene (8.07%), β-Bisabolene (6.39%), and β-Sesquiphellandrene (15.92 %), respectively. GC-MS analysis of Turmeric showed the presence of 3 major peaks identified as Ar-Turmerone (29.24%), α-Turmerone (22.8 %), and β-Turmerone (18.84%). CUPRAC values of calculated antioxidant capacities of essential oil samples were determined as 1.97 ± 0.102 mmolTR/g-oil for Zingiber officinale R. and 3.40 ± 0.071 mmol TR/g-oil for Curcuma longa L. The scavenging effect of turmeric, ginger and standards on the DPPH radical decreased in the order of Trolox>BHA>BHT>Turmeric>Ginger which were 95.25 ± 0.05%, 62.57 ± 0.34%, 61.6 ± 0.3%, 51.45 ± 0.59%, and 50.26 ± 0.09%, at the concentration of 150µg/mL, respectively. Additionally, it revealed that essential oils of turmeric and ginger exhibited effective ferric reducing power.

Kaynakça

  • Abuja, P.M., & Albertini, R. (2001). Methods for monitoring oxidative stress, lipid peroxidation and oxidation resistance of lipoproteins. Clin. Chim. Acta., 306(1-2), 1-17. https://doi.org/10.1016/S0009-8981(01)00393-X.
  • Adams, R.P. (2007). Identification of essential oil components by gas chromatography/mass spectrometry (Vol. 456). Carol Stream, IL: Allured publishing corporation.
  • Ammon, H.P., & Wahl, M.A. (1991). Pharmacology of Curcuma longa. Planta Medica, 57(01), 1-7.
  • Apak, R., Güclü, K., Özyürek, M., & Celik, S.E. (2008). Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay. Microchim. Acta., 160(4), 413-419. https://doi.org/10.1007/s00604-007-0777-0
  • Babushok, V.I., Linstrom, P.J., & Zenkevich, I.G. (2011). Retention indices for frequently reported compounds of plant essential oils. J. Phys. Chem. Ref. Data., 40(4), 043101. https://doi.org/10.1063/1.3653552
  • Bagchi, A. (2012). Extraction of curcumin. IOSR J. En. Env. Sci. Toxicology. Food Tech., 1, 1-16. https://doi.org/10.9790/2402-0130116
  • Berker, K.I., Güçlü, K., Tor, I., & Apak, R. (2007). Comparative evaluation of Fe(III) reducing power-based antioxidant capacity assays in the presence of phenanthroline, batho-phenanthroline, tripyridyltriazine (FRAP), and ferricyanide reagents. Talanta, 72(3), 1157–1165. https://doi.org/10.1016/j.talanta.2007.01.019
  • Bilia, A.R., Guccione, C., Isacchi, B., Righeschi, C., Firenzuoli, F., & Bergonzi, M.C. (2014). Essential oils loaded in nanosystems: a developing strategy for a successful therapeutic approach. Evid. based Complement Altern. Med., 2014. http://dx.doi.org/10.1155/2014/651593
  • Blois, M.S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181(4617), 1199-1200.
  • Çelik, S.E., Asfoor, A., Senol, O., & Apak, R. (2019). Screening method for argan oil adulteration with vegetable oils: An online hplc assay with postcolumn detection utilizing chemometric multidata analysis. J. Agric. Food Chem., 67(29), 8279-8289. https://doi.org/10.1021/acs.jafc.9b03001
  • Çelik, S.E., Özyürek, M., Güçlü, K., & Apak, R. (2010). Solvent effects on the antioxidant capacity of lipophilic and hydrophilic antioxidants measured by CUPRAC, ABTS/persulphate and FRAP methods. Talanta, 81(4 5), 1300 1309. https://doi.org/10.1016/j.talanta.2010.02.025
  • de Cássia Da Silveira e Sá, R., Andrade, L.N., & De Sousa, D.P. (2015). Sesquiterpenes from essential oils and anti inflammatory activity. Nat. Prod. Commun., 10(10), https://doi.org/10.1177/1934578X1501001033
  • El-Ghorab, A.H., Nauman, M., Anjum, F.M., Hussain, S., & Nadeem, M. (2010). A comparative study on chemical composition and antioxidant activity of ginger (Zingiber officinale) and cumin (Cuminum cyminum). J. Agric. Food Chem., 58(14), 8231-8237.
  • Erdoğan, Ü., & Erbaş, S. (2021). Phytochemical Profile and Antioxidant Activities of Zingiber officinale (Ginger) and Curcuma longa L.(Turmeric) Rhizomes. Bilgesci., 5(special issue), 1-6. https://doi.org/10.30516/bilgesci.991202
  • Erdoğan, Ü., & Gökçe, E.H. (2021). Fig seed oil‐loaded nanostructured lipid carriers: Evaluation of the protective effects against oxidation. J. Food Process. Preserv., 45(10), e15835.
  • Erdoğan, Ü., Yilmazer, M., & Erbaş, S. (2020). Hydrodistillation of Nigella sativa seed and analysis of Thymoquinone with HPLC and GC-MS. Bilgesci., 4(1), 27-30. https://doi.org/10.30516/bilgesci.688845
  • Eroğlu, İ., Gökçe, E.H., Tsapis, N., Tanrıverdi, S.T., Gökçe, G., Fattal, E., & Özer, Ö. (2015). Evaluation of characteristics and in vitro antioxidant properties of RSV loaded hyaluronic acid–DPPC microparticles as a wound healing system. Colloids Surf. B., 126, 50-57. https://doi.org/10.1016/j.colsurfb.2014.12.006
  • Gopalan, B., Goto, M., Kodama, A., & Hirose, T. (2000). Supercritical carbon dioxide extraction of turmeric (Curcuma longa). J. Agric. Food Chem., 48(6), 2189-2192.
  • Gülçin, İ., Elias, R., Gepdiremen, A., & Boyer, L. (2006). Antioxidant activity of lignans from fringe tree (Chionanthus virginicus L.). Eur. Food Res. Technol., 223(6), 759-767. https://doi.org/10.1007/s00217-006-0265-5
  • Halliwell, B. (1996). Antioxidants in human health and disease. Annu. Rev. Nutr., 16(1), 33-50.
  • Huei-Chen, H., Tong-Rong, J., & Sheau-Farn, Y. (1992). Inhibitory effect of curcumin, an anti-inflammatory agent, on vascular smooth muscle cell proliferation. Eur. J. Pharmacol., 221(2-3), 381-384. https://doi.org/10.1016/0014-2999(92)90727-L
  • Koch, C., Reichling, J., Schneele, J., & Schnitzler, P. (2008). Inhibitory effect of essential oils against herpes simplex virus type 2. Phytomedicine, 15(1 2), 71 78. https://doi.org/10.1016/j.phymed.2007.09.003
  • Kuttan, R., Bhanumathy, P., Nirmala, K., & George, M.C. (1985). Potential anticancer activity of turmeric (Curcuma longa). Cancer letters, 29(2), 197-202. https://doi.org/10.1016/0304-3835(85)90159-4
  • Marliyana, S.D., Wibowo, F.R., Wartono, M.W., & Munasah, G. (2019, September). Evaluation of antibacterial activity of sesquiterpene Ar-Turmerone from Curcuma soloensis Val. rhizomes. In IOP Conference Series: Materials Science and Engineering (Vol. 578, No. 1, p. 012060). IOP Publishing. https://doi.org/10.1088/1757-899X/578/1/012060
  • Martín-Cordero, C., López-Lázaro, M., Gálvez, M., & Jesús Ayuso, M. (2003). Curcumin as a DNA topoisomerase II poison. J. Enzyme Inhib. Med. Chem., 18(6), 505-509. https://doi.org/10.1080/14756360310001613085
  • Molyneux, P. (2004). The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J. Sci. Technol., 26(2), 211-219.
  • Moujir, L., Callies, O., Sousa, P., Sharopov, F., & Seca, A.M. (2020). Applications of sesquiterpene lactones: a review of some potential success cases. Applied Sciences, 10(9), 3001.
  • Mushtaq, Z., Tahir Nadeem, M., Arshad, M.U., Saeed, F., Ahmed, M.H., Bader Ul Ain, H., ... & Hussain, S. (2019). Exploring the biochemical and antioxidant potential of ginger (Adric) and turmeric (Haldi). Int. J. Food Prop., 22(1), 1642 1651. https://doi.org/10.1080/10942912.2019.1666138
  • Naksuriya, O., Okonogi, S., Schiffelers, R.M., & Hennink, W.E. (2014). Curcumin nanoformulations: a review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials, 35(10), 3365 3383. https://doi.org/10.1016/j.biomaterials.2013.12.090
  • Nelson, K.M., Dahlin, J.L., Bisson, J., Graham, J., Pauli, G.F., & Walters, M.A. (2017). The essential medicinal chemistry of curcumin: miniperspective. J. Med. Chem., 60(5), 1620-1637. https://doi.org/10.1021/acs.jmedchem.6b00975
  • Oyaizu, M. (1986). Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. J. Nutr., 44(6), 307-315.
  • Özyürek, M., Güçlü, K., Tütem, E., Başkan, K.S., Erçağ, E., Çelik, S.E., ... & Apak, R. (2011). A comprehensive review of CUPRAC methodology. Anal. methods, 3(11), 2439-2453. https://doi.org/10.1039/c1ay05320e
  • Pino, J.A., Marbot, R., Rosado, A., & Batista, A. (2004). Chemical composition of the essential oil of Zingiber officinale Roscoe L. from Cuba. J. Essent. Oil Res., 16(3), 186-188. : https://doi.org/10.1080/10412905.2004.9698692
  • Pulido-Moran, M., Moreno-Fernandez, J., Ramirez-Tortosa, C., & Ramirez-Tortosa, M. (2016). Curcumin and health. Molecules, 21(3), 264. doi:10.3390/molecules21030264
  • Sachin, V.K.S., Garg, M.K., Kalra, A., Bhardwaj, S., Attkan, A.K., Panghal, A., & Kumar, D. (2020). Efficacy of microwave heating parameters on physical properties of extracted oil from turmeric (Curcuma longa L.). Curr. J. Appl. Sci. Technol., 39(25), 126-36.
  • Sasidharan, I., & Menon, A.N. (2010). Comparative chemical composition and antimicrobial activity fresh & dry ginger oils (Zingiber officinale Roscoe). Int. J. Curr. Pharm. Res., 2(4), 40-43.
  • Singh, G., Kapoor, I.P.S., Pandey, S.K., & Singh, O.P. (2003). Curcuma longa-chemical, antifungal and antibacterial investigation of rhizome oil. Indian perfumer, 47(2), 173-178. https://doi.org/10.1002/ffj.1373
  • Singh, G., Maurya, S., Catalan, C., & De Lampasona, M.P. (2005). Studies on essential oils, Part 42: chemical, antifungal, antioxidant and sprout suppressant studies on ginger essential oil and its oleoresin. Flavour Fragr. J., 20(1), 1-6.
  • Stoll, V.S., & Blanchard, J.S. (2009). Buffers: principles and practice. In Methods in enzymology (Vol. 463, pp. 43-56). Academic Press
  • Wichitnithad, W., Jongaroonngamsang, N., Pummangura, S., & Rojsitthisak, P. (2009). A simple isocratic HPLC method for the simultaneous determination of curcuminoids in commercial turmeric extracts. Phytochem. Anal., 20(4), 314 319. https://doi.org/10.1002/pca.1129
  • Zaeoung, S., Plubrukarn, A., & Keawpradub, N. (2005). Cytotoxic and free radical scavenging activities of Zingiberaceous rhizomes. Songklanakarin J. Sci. Technol., 27(4), 799-812.
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yapısal Biyoloji
Bölüm Makaleler
Yazarlar

Ümit Erdoğan 0000-0002-6627-4472

Erken Görünüm Tarihi 19 Mayıs 2022
Yayımlanma Tarihi 15 Haziran 2022
Gönderilme Tarihi 10 Eylül 2021
Yayımlandığı Sayı Yıl 2022 Cilt: 9 Sayı: 2

Kaynak Göster

APA Erdoğan, Ü. (2022). Antioxidant Activities and Chemical Composition of Essential Oil of Rhizomes of Zingiber officinale (Ginger) and Curcuma longa L.(Turmeric). International Journal of Secondary Metabolite, 9(2), 137-148. https://doi.org/10.21448/ijsm.993906
International Journal of Secondary Metabolite
e-ISSN: 2148-6905