Biosynthesis of ZnO nanoparticles using Laurus nobilis leaf extract and investigation of antiproliferative and antibacterial activity potential
Yıl 2023,
Cilt: 10 Sayı: 3, 414 - 424, 27.08.2023
Firdevs Mert Sivri
,
Ebru Önem
,
Senem Akkoç
,
Cennet Çırrık
,
Aleyna Ezer
Öz
Nanotechnology has recently emerged as an essential field of study in modern materials science. The green synthesis of nanoparticles using plant extracts is of great interest because it is cost-effective, eco-friendly, and suitable for large-scale production. The study highlights the synthesis of ZnO nanoparticles (ZnO NPs) using Laurus nobilis (L. nobilis) leaf extract and their characterization and biological activities for potential applications in the biomedical field. ZnO NPs were synthesized using Laurus nobilis leaf extract. The synthesized ZnO NPs were characterized by UV-Vis spectroscopy, TEM, XRD, and FT-IR. According to TEM and XRD diffraction analysis, with a mean particle size of 16 ± 5 nm, it was found that the synthesized ZnO NPs contain a hexagonal wurtzite structure. ZnO NPs have antibacterial activity against Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli). The antiproliferative activity of ZnO NPs was tested against the human colon cancer cell line and mouse normal fibroblast cell line using MTT assay in vitro. The results show that the prepared nanoparticles had antiproliferative in screened incubation time and concentrations.
Destekleyen Kurum
Suleyman Demirel University
Proje Numarası
TSG-2021-8458 and TLP-2022-8777
Teşekkür
We would like to thank the Suleyman Demirel University Research Fund (TSG-2021-8458 and TLP-2022-8777) for financial support.
Kaynakça
- Agarwal, H., Venkat Kumar, S., & Rajeshkumar, S. (2017). A review on green synthesis of zinc oxide nanoparticles – An eco-friendly approach. Resource-Efficient Technologies, 3(4), 406–413. https://doi.org/10.1016/j.reffit.2017.03.002
- Akbar, S., Haleem, K.S., Tauseef, I., Rehman, W., Ali, N., & Hasan, M. (2017). Raphanus sativus Mediated Synthesis, Characterization and Biological Evaluation of Zinc Oxide Nanoparticles. Nanoscience and Nanotechnology Letters, 9(12), 2005–2012. https://doi.org/10.1166/nnl.2017.2550
- Alejo-Armijo, A., Altarejos, J., & Salido, S. (2017). Phytochemicals and biological activities of laurel tree (Laurus nobilis). Natural Product Communications, 12(5), 1934578X1701200519.
- Al-Kordy, H.M.H., Sabry, S.A., & Mabrouk, M.E.M. (2021). Statistical optimization of experimental parameters for extracellular synthesis of zinc oxide nanoparticles by a novel haloalaliphilic Alkalibacillus sp.W7. Scientific Reports, 11(1), 10924. https://doi.org/10.1038/s41598-021-90408-y
- Anand, G.T., Renuka, D., Ramesh, R., Anandaraj, L., Sundaram, S.J., Ramalingam, G., Magdalane, C.M., Bashir, A., Maaza, M., & Kaviyarasu, K. (2019). Green synthesis of ZnO nanoparticle using Prunus dulcis (Almond Gum) for antimicrobial and supercapacitor applications. Surfaces and Interfaces, 17, 100376.
- Bhattacharya, S., & Samanta, S.K. (2016). Soft-Nanocomposites of Nanoparticles and Nanocarbons with Supramolecular and Polymer Gels and Their Applications. Chemical Reviews, 116(19), 11967–12028. https://doi.org/10.1021/acs.chemrev.6b00221
- Debela, D.T., Muzazu, S.G., Heraro, K.D., Ndalama, M.T., Mesele, B.W., Haile, D.C., Kitui, S.K., & Manyazewal, T. (2021). New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Medicine, 9, 205031212110343. https://doi.org/10.1177/20503121211034366
- Diallo, A., Ngom, B.D., Park, E., & Maaza, M. (2015). Green synthesis of ZnO nanoparticles by Aspalathus linearis: Structural & optical properties. Journal of Alloys and Compounds, 646, 425–430. https://doi.org/10.1016/j.jallcom.2015.05.242
- Dobrucka, R., & Długaszewska, J. (2016). Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi Journal of Biological Sciences, 23(4), 517–523. https://doi.org/10.1016/j.sjbs.2015.05.016
- Dönmez, S. (2021). Green synthesis and characterization of zinc oxide nanoparticles by using rhododendron ponticum L. leaf extract. Journal, 4(1), 54–57.
- Ghimire, R.R., Parajuli, A., Gupta, S.K., & Rai, K.B. (2022). Synthesis of ZnO Nanoparticles by Chemical Method and its Structural and Optical Characterization. BIBECHANA, 19(1–2), 90–96. https://doi.org/10.3126/bibechana.v19i1-2.46396
- Gudkov, S.V., Burmistrov, D.E., Serov, D.A., Rebezov, M.B., Semenova, A.A., & Lisitsyn, A.B. (2021). A Mini Review of Antibacterial Properties of ZnO Nanoparticles. Frontiers in Physics, 9, 641481. https://doi.org/10.3389/fphy.2021.641481
- Hammad, T.M., Salem, J.K., & Harrison, R.G. (2010). The influence of annealing temperature on the structure, morphologies and optical properties of ZnO nanoparticles. Superlattices and Microstructures, 47(2), 335–340. https://doi.org/10.1016/j.spmi.2009.11.007
- Hoda, N., Budama Akpolat, L., Mert Si̇Vri̇, F., & Kurtuluş, D. (2021). Biosynthesis of Bimetallic Ag-Au (core-shell) Nanoparticles Using Aqueous Extract of Bay Leaves (Laurus nobilis L.). Journal of the Turkish Chemical Society Section A: Chemistry, 8(4), 1035–1044. https://doi.org/10.18596/jotcsa.885558
- Jadoun, S., Arif, R., Jangid, N.K., & Meena, R.K. (2021). Green synthesis of nanoparticles using plant extracts: A review. Environmental Chemistry Letters, 19(1), 355–374. https://doi.org/10.1007/s10311-020-01074-x
- Karnan, T., & Selvakumar, S.A.S. (2016). Biosynthesis of ZnO nanoparticles using rambutan (Nephelium lappaceum L.) peel extract and their photocatalytic activity on methyl orange dye. Journal of Molecular Structure, 1125, 358 365. https://doi.org/10.1016/j.molstruc.2016.07.029
- Kaurinovic, B., Popovic, M., & Vlaisavljevic, S. (2010). In Vitro and in Vivo Effects of Laurus nobilis L. Leaf Extracts. Molecules, 15(5), 3378 3390. https://doi.org/10.3390/molecules15053378
- Khorsand Zak, A., Razali, Abd Majid, W.H.B., & Darroudi, M. (2011). Synthesis and characterization of a narrow size distribution of zinc oxide nanoparticles. International Journal of Nanomedicine, 1399. https://doi.org/10.2147/IJN.S19693
- Lim, S.T., Jeong, H. jeong, Kim, D.W., Lim, S.T., Sohn, M.H., Lee, J.K., Jeong, J., & Lee, C.-M. (2012). Optical imaging to trace near infrared fluorescent zinc oxide nanoparticles following oral exposure. International Journal of Nanomedicine, 3203. https://doi.org/10.2147/IJN.S32828
- Link, S., & El-Sayed, M.A. (1999). Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles. The Journal of Physical Chemistry B, 103(21), 4212–4217. https://doi.org/10.1021/jp984796o
- Mondal, J., Panigrahi, A., & Khuda-Bukhsh, A. (2014). Conventional chemotherapy: Problems and scope for combined therapies with certain herbal products and dietary supplements. Austin J Mol Cell Biol, 1(1), 1–10.
- Mundekkad, D., & Cho, W.C. (2022). Nanoparticles in Clinical Translation for Cancer Therapy. International Journal of Molecular Sciences, 23(3), 1685. https://doi.org/10.3390/ijms23031685
- Nagaraju, G., Udayabhanu, Shivaraj, Prashanth, S.A., Shastri, M., Yathish, K.V., Anupama, C., & Rangappa, D. (2017). Electrochemical heavy metal detection, photocatalytic, photoluminescence, biodiesel production and antibacterial activities of Ag–ZnO nanomaterial. Materials Research Bulletin, 94, 54 63. https://doi.org/10.1016/j.materresbull.2017.05.043
- Rai, M., Yadav, A., & Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27(1), 76 83. https://doi.org/10.1016/j.biotechadv.2008.09.002
- Rajabi, H.R., Naghiha, R., Kheirizadeh, M., Sadatfaraji, H., Mirzaei, A., & Alvand, Z.M. (2017). Microwave assisted extraction as an efficient approach for biosynthesis of zinc oxide nanoparticles: Synthesis, characterization, and biological properties. Materials Science and Engineering: C, 78, 1109–1118. https://doi.org/10.1016/j.msec.2017.03.090
- Rajeshkumar, S., Kumar, S.V., Ramaiah, A., Agarwal, H., Lakshmi, T., & Roopan, S.M. (2018). Biosynthesis of zinc oxide nanoparticles usingMangifera indica leaves and evaluation of their antioxidant and cytotoxic properties in lung cancer (A549) cells. Enzyme and Microbial Technology, 117, 91–95. https://doi.org/10.1016/j.enzmictec.2018.06.009
- Sadiq, H., Sher, F., Sehar, S., Lima, E.C., Zhang, S., Iqbal, H.M.N., Zafar, F., & Nuhanović, M. (2021). Green synthesis of ZnO nanoparticles from Syzygium Cumini leaves extract with robust photocatalysis applications. Journal of Molecular Liquids, 335, 116567. https://doi.org/10.1016/j.molliq.2021.116567
- Senthilkumar, K., Senthilkumar, O., Yamauchi, K., Sato, M., Morito, S., Ohba, T., Nakamura, M., & Fujita, Y. (2009). Preparation of ZnO nanoparticles for bio-imaging applications. Physica Status Solidi (b), 246(4), 885–888. https://doi.org/10.1002/pssb.200880606
- Sharma, A., Singh, J., & Kumar, S. (2012). Bay leaves. In Handbook of herbs and spices (pp. 73–85). Elsevier.
- Sharma, D.K., Shukla, S., Sharma, K.K., & Kumar, V. (2022). A review on ZnO: Fundamental properties and applications. Materials Today: Proceedings, 49, 3028–3035. https://doi.org/10.1016/j.matpr.2020.10.238
- Sharma, D., Rajput, J., Kaith, B.S., Kaur, M., & Sharma, S. (2010). Synthesis of ZnO nanoparticles and study of their antibacterial and antifungal properties. Thin Solid Films, 519(3), 1224–1229. https://doi.org/10.1016/j.tsf.2010.08.073
- Siegel, R.L., Miller, K.D., Goding Sauer, A., Fedewa, S.A., Butterly, L.F., Anderson, J.C., Cercek, A., Smith, R.A., & Jemal, A. (2020). Colorectal cancer statistics, 2020. CA: A Cancer Journal for Clinicians, 70(3), 145–164. https://doi.org/10.3322/caac.21601
- Song, Y., & Yang, J. (2016). Preparation and in-vitro cytotoxicity of zinc oxide nanoparticles against osteoarthritic chondrocytes. Tropical Journal of Pharmaceutical Research, 15(11), 2321. https://doi.org/10.4314/tjpr.v15i11.4
- Turner, R.J. (2017). Metal-based antimicrobial strategies. Microbial Biotechnology, 10(5), 1062–1065. https://doi.org/10.1111/1751-7915.12785
- Upadhyaya, H., Shome, S., Sarma, R., Tewari, S., Bhattacharya, M.K., & Panda, S.K. (2018). Green synthesis, characterization and antibacterial activity of ZnO nanoparticles. American Journal of Plant Sciences, 9(6), 1279–1291.
- Vidya, C., Hiremath, S., Chandraprabha, M., Antonyraj, M., Gopal, I.V., Jain, A., & Bansal, K. (2013). Green synthesis of ZnO nanoparticles by Calotropis gigantea. Int J Curr Eng Technol, 1(1), 118–120.
- Wirunchit, S., Gansa, P., & Koetniyom, W. (2021). Synthesis of ZnO nanoparticles by Ball-milling process for biological applications. Materials Today: Proceedings, 47, 3554–3559. https://doi.org/10.1016/j.matpr.2021.03.559
- Yamamoto, O. (2001). Influence of particle size on the antibacterial activity of zinc oxide. International Journal of Inorganic Materials, 3(7), 643–646. https://doi.org/10.1016/S1466-6049(01)00197-0
- Yuan, Q., Hein, S., & Misra, R. (2010). New generation of chitosan-encapsulated ZnO quantum dots loaded with drug: Synthesis, characterization and in vitro drug delivery response. Acta Biomaterialia, 6(7), 2732–2739.
- Zabielska-Koczywąs, K., & Lechowski, R. (2017). The Use of Liposomes and Nanoparticles as Drug Delivery Systems to Improve Cancer Treatment in Dogs and Cats. Molecules, 22(12), 2167. https://doi.org/10.3390/molecules22122167
Biosynthesis of ZnO nanoparticles using Laurus nobilis leaf extract and investigation of antiproliferative and antibacterial activity potential
Yıl 2023,
Cilt: 10 Sayı: 3, 414 - 424, 27.08.2023
Firdevs Mert Sivri
,
Ebru Önem
,
Senem Akkoç
,
Cennet Çırrık
,
Aleyna Ezer
Öz
Nanotechnology has recently emerged as an essential field of study in modern materials science. The green synthesis of nanoparticles using plant extracts is of great interest because it is cost-effective, eco-friendly, and suitable for large-scale production. The study highlights the synthesis of ZnO nanoparticles (ZnO NPs) using Laurus nobilis (L. nobilis) leaf extract and their characterization and biological activities for potential applications in the biomedical field. ZnO NPs were synthesized using Laurus nobilis leaf extract. The synthesized ZnO NPs were characterized by UV-Vis spectroscopy, TEM, XRD, and FT-IR. According to TEM and XRD diffraction analysis, with a mean particle size of 16 ± 5 nm, it was found that the synthesized ZnO NPs contain a hexagonal wurtzite structure. ZnO NPs have antibacterial activity against Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli). The antiproliferative activity of ZnO NPs was tested against the human colon cancer cell line and mouse normal fibroblast cell line using MTT assay in vitro. The results show that the prepared nanoparticles had antiproliferative in screened incubation time and concentrations.
Proje Numarası
TSG-2021-8458 and TLP-2022-8777
Kaynakça
- Agarwal, H., Venkat Kumar, S., & Rajeshkumar, S. (2017). A review on green synthesis of zinc oxide nanoparticles – An eco-friendly approach. Resource-Efficient Technologies, 3(4), 406–413. https://doi.org/10.1016/j.reffit.2017.03.002
- Akbar, S., Haleem, K.S., Tauseef, I., Rehman, W., Ali, N., & Hasan, M. (2017). Raphanus sativus Mediated Synthesis, Characterization and Biological Evaluation of Zinc Oxide Nanoparticles. Nanoscience and Nanotechnology Letters, 9(12), 2005–2012. https://doi.org/10.1166/nnl.2017.2550
- Alejo-Armijo, A., Altarejos, J., & Salido, S. (2017). Phytochemicals and biological activities of laurel tree (Laurus nobilis). Natural Product Communications, 12(5), 1934578X1701200519.
- Al-Kordy, H.M.H., Sabry, S.A., & Mabrouk, M.E.M. (2021). Statistical optimization of experimental parameters for extracellular synthesis of zinc oxide nanoparticles by a novel haloalaliphilic Alkalibacillus sp.W7. Scientific Reports, 11(1), 10924. https://doi.org/10.1038/s41598-021-90408-y
- Anand, G.T., Renuka, D., Ramesh, R., Anandaraj, L., Sundaram, S.J., Ramalingam, G., Magdalane, C.M., Bashir, A., Maaza, M., & Kaviyarasu, K. (2019). Green synthesis of ZnO nanoparticle using Prunus dulcis (Almond Gum) for antimicrobial and supercapacitor applications. Surfaces and Interfaces, 17, 100376.
- Bhattacharya, S., & Samanta, S.K. (2016). Soft-Nanocomposites of Nanoparticles and Nanocarbons with Supramolecular and Polymer Gels and Their Applications. Chemical Reviews, 116(19), 11967–12028. https://doi.org/10.1021/acs.chemrev.6b00221
- Debela, D.T., Muzazu, S.G., Heraro, K.D., Ndalama, M.T., Mesele, B.W., Haile, D.C., Kitui, S.K., & Manyazewal, T. (2021). New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Medicine, 9, 205031212110343. https://doi.org/10.1177/20503121211034366
- Diallo, A., Ngom, B.D., Park, E., & Maaza, M. (2015). Green synthesis of ZnO nanoparticles by Aspalathus linearis: Structural & optical properties. Journal of Alloys and Compounds, 646, 425–430. https://doi.org/10.1016/j.jallcom.2015.05.242
- Dobrucka, R., & Długaszewska, J. (2016). Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi Journal of Biological Sciences, 23(4), 517–523. https://doi.org/10.1016/j.sjbs.2015.05.016
- Dönmez, S. (2021). Green synthesis and characterization of zinc oxide nanoparticles by using rhododendron ponticum L. leaf extract. Journal, 4(1), 54–57.
- Ghimire, R.R., Parajuli, A., Gupta, S.K., & Rai, K.B. (2022). Synthesis of ZnO Nanoparticles by Chemical Method and its Structural and Optical Characterization. BIBECHANA, 19(1–2), 90–96. https://doi.org/10.3126/bibechana.v19i1-2.46396
- Gudkov, S.V., Burmistrov, D.E., Serov, D.A., Rebezov, M.B., Semenova, A.A., & Lisitsyn, A.B. (2021). A Mini Review of Antibacterial Properties of ZnO Nanoparticles. Frontiers in Physics, 9, 641481. https://doi.org/10.3389/fphy.2021.641481
- Hammad, T.M., Salem, J.K., & Harrison, R.G. (2010). The influence of annealing temperature on the structure, morphologies and optical properties of ZnO nanoparticles. Superlattices and Microstructures, 47(2), 335–340. https://doi.org/10.1016/j.spmi.2009.11.007
- Hoda, N., Budama Akpolat, L., Mert Si̇Vri̇, F., & Kurtuluş, D. (2021). Biosynthesis of Bimetallic Ag-Au (core-shell) Nanoparticles Using Aqueous Extract of Bay Leaves (Laurus nobilis L.). Journal of the Turkish Chemical Society Section A: Chemistry, 8(4), 1035–1044. https://doi.org/10.18596/jotcsa.885558
- Jadoun, S., Arif, R., Jangid, N.K., & Meena, R.K. (2021). Green synthesis of nanoparticles using plant extracts: A review. Environmental Chemistry Letters, 19(1), 355–374. https://doi.org/10.1007/s10311-020-01074-x
- Karnan, T., & Selvakumar, S.A.S. (2016). Biosynthesis of ZnO nanoparticles using rambutan (Nephelium lappaceum L.) peel extract and their photocatalytic activity on methyl orange dye. Journal of Molecular Structure, 1125, 358 365. https://doi.org/10.1016/j.molstruc.2016.07.029
- Kaurinovic, B., Popovic, M., & Vlaisavljevic, S. (2010). In Vitro and in Vivo Effects of Laurus nobilis L. Leaf Extracts. Molecules, 15(5), 3378 3390. https://doi.org/10.3390/molecules15053378
- Khorsand Zak, A., Razali, Abd Majid, W.H.B., & Darroudi, M. (2011). Synthesis and characterization of a narrow size distribution of zinc oxide nanoparticles. International Journal of Nanomedicine, 1399. https://doi.org/10.2147/IJN.S19693
- Lim, S.T., Jeong, H. jeong, Kim, D.W., Lim, S.T., Sohn, M.H., Lee, J.K., Jeong, J., & Lee, C.-M. (2012). Optical imaging to trace near infrared fluorescent zinc oxide nanoparticles following oral exposure. International Journal of Nanomedicine, 3203. https://doi.org/10.2147/IJN.S32828
- Link, S., & El-Sayed, M.A. (1999). Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles. The Journal of Physical Chemistry B, 103(21), 4212–4217. https://doi.org/10.1021/jp984796o
- Mondal, J., Panigrahi, A., & Khuda-Bukhsh, A. (2014). Conventional chemotherapy: Problems and scope for combined therapies with certain herbal products and dietary supplements. Austin J Mol Cell Biol, 1(1), 1–10.
- Mundekkad, D., & Cho, W.C. (2022). Nanoparticles in Clinical Translation for Cancer Therapy. International Journal of Molecular Sciences, 23(3), 1685. https://doi.org/10.3390/ijms23031685
- Nagaraju, G., Udayabhanu, Shivaraj, Prashanth, S.A., Shastri, M., Yathish, K.V., Anupama, C., & Rangappa, D. (2017). Electrochemical heavy metal detection, photocatalytic, photoluminescence, biodiesel production and antibacterial activities of Ag–ZnO nanomaterial. Materials Research Bulletin, 94, 54 63. https://doi.org/10.1016/j.materresbull.2017.05.043
- Rai, M., Yadav, A., & Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27(1), 76 83. https://doi.org/10.1016/j.biotechadv.2008.09.002
- Rajabi, H.R., Naghiha, R., Kheirizadeh, M., Sadatfaraji, H., Mirzaei, A., & Alvand, Z.M. (2017). Microwave assisted extraction as an efficient approach for biosynthesis of zinc oxide nanoparticles: Synthesis, characterization, and biological properties. Materials Science and Engineering: C, 78, 1109–1118. https://doi.org/10.1016/j.msec.2017.03.090
- Rajeshkumar, S., Kumar, S.V., Ramaiah, A., Agarwal, H., Lakshmi, T., & Roopan, S.M. (2018). Biosynthesis of zinc oxide nanoparticles usingMangifera indica leaves and evaluation of their antioxidant and cytotoxic properties in lung cancer (A549) cells. Enzyme and Microbial Technology, 117, 91–95. https://doi.org/10.1016/j.enzmictec.2018.06.009
- Sadiq, H., Sher, F., Sehar, S., Lima, E.C., Zhang, S., Iqbal, H.M.N., Zafar, F., & Nuhanović, M. (2021). Green synthesis of ZnO nanoparticles from Syzygium Cumini leaves extract with robust photocatalysis applications. Journal of Molecular Liquids, 335, 116567. https://doi.org/10.1016/j.molliq.2021.116567
- Senthilkumar, K., Senthilkumar, O., Yamauchi, K., Sato, M., Morito, S., Ohba, T., Nakamura, M., & Fujita, Y. (2009). Preparation of ZnO nanoparticles for bio-imaging applications. Physica Status Solidi (b), 246(4), 885–888. https://doi.org/10.1002/pssb.200880606
- Sharma, A., Singh, J., & Kumar, S. (2012). Bay leaves. In Handbook of herbs and spices (pp. 73–85). Elsevier.
- Sharma, D.K., Shukla, S., Sharma, K.K., & Kumar, V. (2022). A review on ZnO: Fundamental properties and applications. Materials Today: Proceedings, 49, 3028–3035. https://doi.org/10.1016/j.matpr.2020.10.238
- Sharma, D., Rajput, J., Kaith, B.S., Kaur, M., & Sharma, S. (2010). Synthesis of ZnO nanoparticles and study of their antibacterial and antifungal properties. Thin Solid Films, 519(3), 1224–1229. https://doi.org/10.1016/j.tsf.2010.08.073
- Siegel, R.L., Miller, K.D., Goding Sauer, A., Fedewa, S.A., Butterly, L.F., Anderson, J.C., Cercek, A., Smith, R.A., & Jemal, A. (2020). Colorectal cancer statistics, 2020. CA: A Cancer Journal for Clinicians, 70(3), 145–164. https://doi.org/10.3322/caac.21601
- Song, Y., & Yang, J. (2016). Preparation and in-vitro cytotoxicity of zinc oxide nanoparticles against osteoarthritic chondrocytes. Tropical Journal of Pharmaceutical Research, 15(11), 2321. https://doi.org/10.4314/tjpr.v15i11.4
- Turner, R.J. (2017). Metal-based antimicrobial strategies. Microbial Biotechnology, 10(5), 1062–1065. https://doi.org/10.1111/1751-7915.12785
- Upadhyaya, H., Shome, S., Sarma, R., Tewari, S., Bhattacharya, M.K., & Panda, S.K. (2018). Green synthesis, characterization and antibacterial activity of ZnO nanoparticles. American Journal of Plant Sciences, 9(6), 1279–1291.
- Vidya, C., Hiremath, S., Chandraprabha, M., Antonyraj, M., Gopal, I.V., Jain, A., & Bansal, K. (2013). Green synthesis of ZnO nanoparticles by Calotropis gigantea. Int J Curr Eng Technol, 1(1), 118–120.
- Wirunchit, S., Gansa, P., & Koetniyom, W. (2021). Synthesis of ZnO nanoparticles by Ball-milling process for biological applications. Materials Today: Proceedings, 47, 3554–3559. https://doi.org/10.1016/j.matpr.2021.03.559
- Yamamoto, O. (2001). Influence of particle size on the antibacterial activity of zinc oxide. International Journal of Inorganic Materials, 3(7), 643–646. https://doi.org/10.1016/S1466-6049(01)00197-0
- Yuan, Q., Hein, S., & Misra, R. (2010). New generation of chitosan-encapsulated ZnO quantum dots loaded with drug: Synthesis, characterization and in vitro drug delivery response. Acta Biomaterialia, 6(7), 2732–2739.
- Zabielska-Koczywąs, K., & Lechowski, R. (2017). The Use of Liposomes and Nanoparticles as Drug Delivery Systems to Improve Cancer Treatment in Dogs and Cats. Molecules, 22(12), 2167. https://doi.org/10.3390/molecules22122167