This study aims to determine the anti-aging effects of Achillea phrygia, an endemic plant, by evaluating its sun protection factor (SPF) level, antioxidant activity, total phenolic content, extracellular matrix-degrading enzymes (ECM) inhibition, genotoxic/anti-genotoxic, and cytotoxic activities. The SPF level was assessed using an in vitro quantitative method, while antioxidant capacity was determined through DPPH, β-carotene, and hydroxyl-radical (H2O2) scavenging assays. The total phenolic content was quantitatively conducted using the Folin Ciocalteu reagent. The inhibition of ECM-degrading enzymes was determined using matrix metalloproteinase-1 (MMP-1), hyaluronidase, and elastase enzymes. Genotoxic/anti-genotoxic properties were assessed using the AMES Salmonella/microsome assay, and cytotoxicity effects were assessed through the MTT assay. The results indicated that A. phrygia showed moderate SPF activity (SPF = 4.013) and exhibited IC50 values of 0.183 ± 0.03, 0.079 ± 0.51, and 1.18 ± 0.35 mg/mL for DPPH, β-carotene, and hydroxyl-radicals, respectively. The total phenolic content was measured to be 23.56 ± 1.42 mg GAE/g dry extract. Furthermore, the extract demonstrated inhibition of MMP-1 (47.98%) and elastase (39.2%) activities. Importantly, it did not induce DNA damage and showed antigenotoxic activity ranging from 10% to 65.6%. The cytotoxicity assay revealed an IC50 value of 42.41±4.05 µg/mL. These findings suggest that A. phrygia could be utilized as a cosmetic ingredient in skincare products due to its ability to protect against UV radiation, exhibit antioxidant properties, prevent extracellular matrix degradation, and inhibit DNA damage.
Achillea phrygia Skin-care Antioxidant Enzyme inhibition Anti-genotoxicity
This study aims to determine the anti-aging effects of Achillea phrygia, an endemic plant, by evaluating its sun protection factor (SPF) level, antioxidant activity, total phenolic content, extracellular matrix-degrading enzymes (ECM) inhibition, genotoxic/anti-genotoxic, and cytotoxic activities. The SPF level was assessed using an in vitro quantitative method, while antioxidant capacity was determined through DPPH, β-carotene, and hydroxyl-radical (H2O2) scavenging assays. The total phenolic content was quantitatively conducted using the Folin Ciocalteu reagent. The inhibition of ECM-degrading enzymes was determined using matrix metalloproteinase-1 (MMP-1), hyaluronidase, and elastase enzymes. Genotoxic/anti-genotoxic properties were assessed using the AMES Salmonella/microsome assay, and cytotoxicity effects were assessed through the MTT assay. The results indicated that A. phrygia showed moderate SPF activity (SPF = 4.013) and exhibited IC50 values of 0.183 ± 0.03, 0.079 ± 0.51, and 1.18 ± 0.35 mg/mL for DPPH, β-carotene, and hydroxyl-radicals, respectively. The total phenolic content was measured to be 23.56 ± 1.42 mg GAE/g dry extract. Furthermore, the extract demonstrated inhibition of MMP-1 (47.98%) and elastase (39.2%) activities. Importantly, it did not induce DNA damage and showed antigenotoxic activity ranging from 10% to 65.6%. The cytotoxicity assay revealed an IC50 value of 42.41±4.05 µg/mL. These findings suggest that A. phrygia could be utilized as a cosmetic ingredient in skincare products due to its ability to protect against UV radiation, exhibit antioxidant properties, prevent extracellular matrix degradation, and inhibit DNA damage.
Achillea phrygia Skin-care Antioxidant Enzyme inhibition Anti-genotoxicity
Birincil Dil | İngilizce |
---|---|
Konular | Temel Farmakoloji |
Bölüm | Makaleler |
Yazarlar | |
Erken Görünüm Tarihi | 8 Ekim 2024 |
Yayımlanma Tarihi | 3 Kasım 2024 |
Gönderilme Tarihi | 7 Aralık 2023 |
Kabul Tarihi | 21 Mayıs 2024 |
Yayımlandığı Sayı | Yıl 2024 Cilt: 11 Sayı: 4 |