Araştırma Makalesi
BibTex RIS Kaynak Göster

Fonksiyonel Kalça Kalibrasyon Hareketlerinin Serebral Palsili Çocuklarda Yürüyüş Analizinin Kinematik Verilerine Etkileri

Yıl 2021, Cilt: 6 Sayı: 3, 109 - 114, 30.09.2021

Öz

Amaç: Fonksiyonel kalça kalibrasyon hareketlerinin yürüyüş analizinde kalça eklem merkezi üzerine etkilerini inceleyen çalışmalar bulunsa da bu kalibrasyon hareketlerinin kliniğe yansımaları incelenmemiştir. Bu çalışmanın amacı üç farklı fonksiyonel kalibrasyon hareketi (Fleksiyon/Ekstansiyon-Abduksiyon/Adduksiyon-Sirkümdüksiyon (FAC), Modifiye Star Hareketi (Mstar) ve Kontralateral Taraf Modifiye Star Hareketi (CsMstar)) ile elde edilen kalça eklem merkezlerinin yürüyüş analizi kinematik sonuçlara etkilerinin incelenmesidir.
Gereç ve Yöntem: Çalışmaya 23 serebral palsili (10 kız, 13 erkek, ortalama yaş: 15.57 ±7.55 yıl) katılımcı dâhil edildi. Üç farklı kalibrasyon hareketi yapılarak yürüyüş analizinde kalça eklem merkezi fonksiyonel metot ile belirlendi. Üç boyutlu yürüyüş analizi yapılarak alt ekstremitelerin kinematik verileri elde edildi. Fonksiyonel kalça eklem merkezlerinin kinematik sonuçlar üzerine etkileri Yürüyüş Profil Skoru (GPS) ve pik kinematik değerler kullanılarak değerlendirildi. Ayrıca, kinematik verilerin dalga formlarının kök ortalama kare farkı (RMS) ve ortalama farkı incelendi.
Bulgular: FAC kalibrasyon hareketi ile elde edilen GPS değeri, Mstar ve CsMstar’a göre istatistiki olarak farklılık gösterdi (p<0,001). Ortalama GPS değerleri arasındaki fark FAC ile Mstar arasında 0,34o, FAC ile CsMstar arasında ise 0,29o idi. FAC ile Mstar arasındaki pik kinematik değerleri farkı en fazla diz ekleminde sagittal planda (1,95o), FAC ile CsMstar arasında ise kalça ekleminin sagittal planında (1,87o) olduğu saptandı. Kalça ve diz ekleminin kinematik dalga formunun RMS farkları 3o’nin altında bulundu.
Sonuç: Yürüyüş analizinde üç farklı kalibrasyon hareketleri kullanılarak elde edilen kalça eklem merkezleri, kinematik parametrelere klinik açıdan etki etmemişlerdir. Serebral palsili çocukların yürüyüş analizi için fonksiyonel kalça eklem merkezinin belirlenmesinde üç hareketten biri kullanılabilir.

Kaynakça

  • Stagni R, Leardini A, Cappozzo A, Grazia Benedetti M, Cappello A. Effects of hip joint centre mislocation on gait analysis results. J Biomech. 2000;33(11):1479-87.
  • Kainz H, Carty CP, Modenese L, Boyd RN, Lloyd DG. Estimation of the hip joint centre in human motion analysis: a systematic review. Clin Biomech (Bristol, Avon). 2015;30(4):319-29.
  • Ehrig RM, Taylor WR, Duda GN, Heller MO. A survey of formal methods for determining the centre of rotation of ball joints. J Biomech. 2006;39(15):2798-809.
  • Fiorentino NM, Atkins PR, Kutschke MJ, Foreman KB, Anderson AE. In-vivo quantification of dynamic hip joint center errors and soft tissue artifact. Gait Posture. 2016;50:246-51.
  • Heller MO, Kratzenstein S, Ehrig RM, Wassilew G, Duda GN, Taylor WR. The weighted optimal common shape technique improves identification of the hip joint center of rotation in vivo. J Orthop Res. 2011;29(10):1470-5.
  • Begon M, Monnet T, Lacouture P. Effects of movement for estimating the hip joint centre. Gait Posture. 2007;25(3):353-9.
  • McGibbon CA, Fowler J, Chase S, Steeves K, Landry J, Mohamed A. Evaluation of Anatomical and Functional Hip Joint Center Methods: The Effects of Activity Type, Gender, and Proximal Reference Segment. J Biomech Eng. 2016;138(1).
  • Sangeux M, Pillet H, Skalli W. Which method of hip joint centre localisation should be used in gait analysis? Gait Posture. 2014;40(1):20- 5.
  • Piazza SJ, Erdemir A, Okita N, Cavanagh PR. Assessment of the functional method of hip joint center location subject to reduced range of hip motion. J Biomech. 2004;37(3):349-56.
  • Peters A, Baker R, Morris ME, Sangeux M. A comparison of hip joint centre localisation techniques with 3-DUS for clinical gait analysis in children with cerebral palsy. Gait Posture. 2012;36(2):282-6.
  • Assi A, Sauret C, Massaad A, Bakouny Z, Pillet H, Skalli W, et al. Validation of hip joint center localization methods during gait analysis using 3D EOS imaging in typically developing and cerebral palsy children. Gait Posture. 2016;48:30-5.
  • Leboeuf F, Reay J, Jones R, Sangeux M. The effect on conventional gait model kinematics and kinetics of hip joint centre equations in adult healthy gait. J Biomech. 2019;87:167-71.
  • Kiernan D, Malone A, O'Brien T, Simms CK. The clinical impact of hip joint centre regression equation error on kinematics and kinetics during paediatric gait. Gait Posture. 2015;41(1):175-9.
  • Miller EJ, Kaufman KR. Verification of an improved hip joint center prediction method. Gait Posture. 2018;59:174-6.
  • Palisano R, Rosenbaum P, Walter S, Russell D, Wood E, Galuppi B. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol. 1997;39(4):214- 23.
  • Davis RB, Ounpuu S, Tyburski D, Gage JR. A Gait Analysis Data-Collection and Reduction Technique. Hum Movement Sci. 1991;10(5):575-87.
  • Kratzenstein S, Kornaropoulos EI, Ehrig RM, Heller MO, Popplau BM, Taylor WR. Effective marker placement for functional identification of the centre of rotation at the hip. Gait Posture. 2012;36(3):482-6.
  • Taylor WR, Ehrig RM, Duda GN, Schell H, Seebeck P, Heller MO. On the influence of soft tissue coverage in the determination of bone kinematics using skin markers. J Orthop Res. 2005;23(4):726-34.
  • Camomilla V, Cereatti A, Vannozzi G, Cappozzo A. An optimized protocol for hip joint centre determination using the functional method. J. Biomech. 2006;39(6):1096-106.
  • Baker R, McGinley JL, Schwartz MH, Beynon S, Rozumalski A, Graham HK, et al. The gait profile score and movement analysis profile. Gait Posture. 2009;30(3):265-9.
  • Baker R, McGinley JL, Schwartz M, Thomason P, Rodda J, Graham HK. The minimal clinically important difference for the Gait Profile Score. Gait Posture. 2012;35(4):612-5.
  • Kainz H, Carty CP, Maine S, Walsh HPJ, Lloyd DG, Modenese L. Effects of hip joint centre mislocation on gait kinematics of children with cerebral palsy calculated using patient-specific direct and inverse kinematic models. Gait Posture. 2017;57:154-60.
  • McGinley JL, Baker R, Wolfe R, Morris ME. The reliability of three-dimensional kinematic gait measurements: A systematic review. Gait Posture. 2009;29(3):360-9.

The Effects of Functional Hip Calibration Movements on the Kinematic Data of Gait Analysis in Children with Cerebral Palsy

Yıl 2021, Cilt: 6 Sayı: 3, 109 - 114, 30.09.2021

Öz

Objective: Although there are studies investigating the effects of functional hip calibration movements on the hip joint centre in gait analysis, the clinical reflections of these calibration movements have not been examined. The aim of the present study is to examine the effects of hip joint centres obtained with three different functional calibration movements (Flexion/ Extension-Abduction/Adduction-Circumduction (FAC), Modified Star Motion (Mstar) and Contra Lateral Side Modified Star Motion (CsMstar)) on kinematic outcomes.
Material and Method: Twenty-three participants with cerebral palsy (10 female, 13 male, mean age: 15.57 ±7.55 years) were included in the study. The hip joint centre was determined by using the functional method in gait analysis by performing three different calibration movements. Kinematic data of the lower extremities were obtained via three-dimensional gait analysis. The effects of functional hip joint centres on kinematic results were evaluated by using the Gait Profile Score (GPS) and peak kinematic values. In addition, the root mean square difference (RMS) and the mean difference of the kinematic waveforms were investigated.
Results: GPS value, obtained with FAC calibration movement, was statistically different from Mstar and CsMstar (p<0.001). The difference between the mean GPS values is 0.34o between FAC and Mstar, and 0.29o between the FAC and CsMstar. The difference in peak kinematic values between FAC and Mstar was found to be highest in the sagittal plane (1.95o) in the knee joint, and between the FAC and CsMstar in the sagittal plane of the hip joint (1.87o). The RMS differences of the kinematic waveform of the hip and knee joint were found below 3o.
Conclusion: Hip joint centres obtained by using three different calibration movements in gait analysis did not alter the kinematic parameters clinically. One of the three movements can be used to determine the functional hip joint centre for gait analysis of children with cerebral palsy.

Kaynakça

  • Stagni R, Leardini A, Cappozzo A, Grazia Benedetti M, Cappello A. Effects of hip joint centre mislocation on gait analysis results. J Biomech. 2000;33(11):1479-87.
  • Kainz H, Carty CP, Modenese L, Boyd RN, Lloyd DG. Estimation of the hip joint centre in human motion analysis: a systematic review. Clin Biomech (Bristol, Avon). 2015;30(4):319-29.
  • Ehrig RM, Taylor WR, Duda GN, Heller MO. A survey of formal methods for determining the centre of rotation of ball joints. J Biomech. 2006;39(15):2798-809.
  • Fiorentino NM, Atkins PR, Kutschke MJ, Foreman KB, Anderson AE. In-vivo quantification of dynamic hip joint center errors and soft tissue artifact. Gait Posture. 2016;50:246-51.
  • Heller MO, Kratzenstein S, Ehrig RM, Wassilew G, Duda GN, Taylor WR. The weighted optimal common shape technique improves identification of the hip joint center of rotation in vivo. J Orthop Res. 2011;29(10):1470-5.
  • Begon M, Monnet T, Lacouture P. Effects of movement for estimating the hip joint centre. Gait Posture. 2007;25(3):353-9.
  • McGibbon CA, Fowler J, Chase S, Steeves K, Landry J, Mohamed A. Evaluation of Anatomical and Functional Hip Joint Center Methods: The Effects of Activity Type, Gender, and Proximal Reference Segment. J Biomech Eng. 2016;138(1).
  • Sangeux M, Pillet H, Skalli W. Which method of hip joint centre localisation should be used in gait analysis? Gait Posture. 2014;40(1):20- 5.
  • Piazza SJ, Erdemir A, Okita N, Cavanagh PR. Assessment of the functional method of hip joint center location subject to reduced range of hip motion. J Biomech. 2004;37(3):349-56.
  • Peters A, Baker R, Morris ME, Sangeux M. A comparison of hip joint centre localisation techniques with 3-DUS for clinical gait analysis in children with cerebral palsy. Gait Posture. 2012;36(2):282-6.
  • Assi A, Sauret C, Massaad A, Bakouny Z, Pillet H, Skalli W, et al. Validation of hip joint center localization methods during gait analysis using 3D EOS imaging in typically developing and cerebral palsy children. Gait Posture. 2016;48:30-5.
  • Leboeuf F, Reay J, Jones R, Sangeux M. The effect on conventional gait model kinematics and kinetics of hip joint centre equations in adult healthy gait. J Biomech. 2019;87:167-71.
  • Kiernan D, Malone A, O'Brien T, Simms CK. The clinical impact of hip joint centre regression equation error on kinematics and kinetics during paediatric gait. Gait Posture. 2015;41(1):175-9.
  • Miller EJ, Kaufman KR. Verification of an improved hip joint center prediction method. Gait Posture. 2018;59:174-6.
  • Palisano R, Rosenbaum P, Walter S, Russell D, Wood E, Galuppi B. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol. 1997;39(4):214- 23.
  • Davis RB, Ounpuu S, Tyburski D, Gage JR. A Gait Analysis Data-Collection and Reduction Technique. Hum Movement Sci. 1991;10(5):575-87.
  • Kratzenstein S, Kornaropoulos EI, Ehrig RM, Heller MO, Popplau BM, Taylor WR. Effective marker placement for functional identification of the centre of rotation at the hip. Gait Posture. 2012;36(3):482-6.
  • Taylor WR, Ehrig RM, Duda GN, Schell H, Seebeck P, Heller MO. On the influence of soft tissue coverage in the determination of bone kinematics using skin markers. J Orthop Res. 2005;23(4):726-34.
  • Camomilla V, Cereatti A, Vannozzi G, Cappozzo A. An optimized protocol for hip joint centre determination using the functional method. J. Biomech. 2006;39(6):1096-106.
  • Baker R, McGinley JL, Schwartz MH, Beynon S, Rozumalski A, Graham HK, et al. The gait profile score and movement analysis profile. Gait Posture. 2009;30(3):265-9.
  • Baker R, McGinley JL, Schwartz M, Thomason P, Rodda J, Graham HK. The minimal clinically important difference for the Gait Profile Score. Gait Posture. 2012;35(4):612-5.
  • Kainz H, Carty CP, Maine S, Walsh HPJ, Lloyd DG, Modenese L. Effects of hip joint centre mislocation on gait kinematics of children with cerebral palsy calculated using patient-specific direct and inverse kinematic models. Gait Posture. 2017;57:154-60.
  • McGinley JL, Baker R, Wolfe R, Morris ME. The reliability of three-dimensional kinematic gait measurements: A systematic review. Gait Posture. 2009;29(3):360-9.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sağlık Kurumları Yönetimi
Bölüm Araştırma Makaleleri
Yazarlar

Orhan Öztürk 0000-0003-1924-1413

İlkşan Demirbüken

Mine Gülden Polat

Sebastian Wolf Bu kişi benim

Yayımlanma Tarihi 30 Eylül 2021
Gönderilme Tarihi 7 Temmuz 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 6 Sayı: 3

Kaynak Göster

APA Öztürk, O., Demirbüken, İ., Polat, M. G., Wolf, S. (2021). The Effects of Functional Hip Calibration Movements on the Kinematic Data of Gait Analysis in Children with Cerebral Palsy. İzmir Katip Çelebi Üniversitesi Sağlık Bilimleri Fakültesi Dergisi, 6(3), 109-114.
AMA Öztürk O, Demirbüken İ, Polat MG, Wolf S. The Effects of Functional Hip Calibration Movements on the Kinematic Data of Gait Analysis in Children with Cerebral Palsy. İKÇÜSBFD. Eylül 2021;6(3):109-114.
Chicago Öztürk, Orhan, İlkşan Demirbüken, Mine Gülden Polat, ve Sebastian Wolf. “The Effects of Functional Hip Calibration Movements on the Kinematic Data of Gait Analysis in Children With Cerebral Palsy”. İzmir Katip Çelebi Üniversitesi Sağlık Bilimleri Fakültesi Dergisi 6, sy. 3 (Eylül 2021): 109-14.
EndNote Öztürk O, Demirbüken İ, Polat MG, Wolf S (01 Eylül 2021) The Effects of Functional Hip Calibration Movements on the Kinematic Data of Gait Analysis in Children with Cerebral Palsy. İzmir Katip Çelebi Üniversitesi Sağlık Bilimleri Fakültesi Dergisi 6 3 109–114.
IEEE O. Öztürk, İ. Demirbüken, M. G. Polat, ve S. Wolf, “The Effects of Functional Hip Calibration Movements on the Kinematic Data of Gait Analysis in Children with Cerebral Palsy”, İKÇÜSBFD, c. 6, sy. 3, ss. 109–114, 2021.
ISNAD Öztürk, Orhan vd. “The Effects of Functional Hip Calibration Movements on the Kinematic Data of Gait Analysis in Children With Cerebral Palsy”. İzmir Katip Çelebi Üniversitesi Sağlık Bilimleri Fakültesi Dergisi 6/3 (Eylül 2021), 109-114.
JAMA Öztürk O, Demirbüken İ, Polat MG, Wolf S. The Effects of Functional Hip Calibration Movements on the Kinematic Data of Gait Analysis in Children with Cerebral Palsy. İKÇÜSBFD. 2021;6:109–114.
MLA Öztürk, Orhan vd. “The Effects of Functional Hip Calibration Movements on the Kinematic Data of Gait Analysis in Children With Cerebral Palsy”. İzmir Katip Çelebi Üniversitesi Sağlık Bilimleri Fakültesi Dergisi, c. 6, sy. 3, 2021, ss. 109-14.
Vancouver Öztürk O, Demirbüken İ, Polat MG, Wolf S. The Effects of Functional Hip Calibration Movements on the Kinematic Data of Gait Analysis in Children with Cerebral Palsy. İKÇÜSBFD. 2021;6(3):109-14.