Araştırma Makalesi
BibTex RIS Kaynak Göster

The Gershgorin Type Theorem on Localization of the Eigenvalues of Infinite Matrices and Zeros of Entire Functions

Yıl 2022, , 9 - 16, 23.09.2022
https://doi.org/10.54286/ikjm.1005765

Öz

The classical Gershgorin theorem on localization of the eigenvalues of finite matrices is extended to infinite Hille-Tamarkin matrices. Applications to finite order entire functions
are also discussed.

Kaynakça

  • Da Fonseca, C. M. On the location of the eigenvalues of Jacobi matrices. Appl. Math. Lett. 19 , no. 11, (2006) 1168-–1174.
  • Reference1\bibitem{Dewan} Dewan, K.K., Govil, N.K. On the location of the zeros of analytic functions. Int. J. Math. Math. Sci. 13(1), (1990) 67-–72.
  • Djordjevi\'c, S. V. and Kant\`un-Montiel, G. Localization and computation in an approximation of eigenvalues. Filomat 29 (2015), no. 1, 75–-81.
  • Dyakonov, K.M. Polynomials and entire functions: zeros and geometry of the unit ball. Math. Res. Lett. 7(4), (2000) 393-–404.
  • Esp\`inola-Rocha, J. A. Factorization of the scattering matrix and the location of the eigenvalues of the Manakov-Zakharov-Shabat system. Phys. Lett. A 372, no. 40, (2008) 6161-–6167.
  • Gil’, M.I. Invertibility and spectrum of Hille-Tamarkin matrices, Mathematische Nachrichten , 244, (2002), 1-11
  • Gil’, M.I.: Operator Functions and Localization of Spectra. Lectures Notes in Mathematics, vol. 1830, Springer, Berlin 2003.
  • Gil', M.I. Localization and Perturbation of Zeros of Entire Functions, Lecture Notes in Pure and Applied Mathematics, 258. CRC Press, Boca Raton, FL, 2010.
  • Grammont, L. and Largillier, A. Krylov method revisited with an application to the localization of eigenvalues. Numer. Funct. Anal. Optim. 27 (2006), no. 5-6, 583-–618.
  • Ioakimidis, N.I. A unified Riemann–-Hilbert approach to the analytical determination of zeros of sectionally analytic functions. J. Math. Anal. Appl. 129(1), (1988) 134–-141
  • Kato, T., Perturbation Theory for Linear Operators, Berlin: Springer-Verlag, 1980.
  • Kytmanov A.M. and Khodos O.V., On localization of zeros of an entire function of finite order of growth, Complex Anal. Oper. Theory 11 (2017) 393-–416.
Yıl 2022, , 9 - 16, 23.09.2022
https://doi.org/10.54286/ikjm.1005765

Öz

Kaynakça

  • Da Fonseca, C. M. On the location of the eigenvalues of Jacobi matrices. Appl. Math. Lett. 19 , no. 11, (2006) 1168-–1174.
  • Reference1\bibitem{Dewan} Dewan, K.K., Govil, N.K. On the location of the zeros of analytic functions. Int. J. Math. Math. Sci. 13(1), (1990) 67-–72.
  • Djordjevi\'c, S. V. and Kant\`un-Montiel, G. Localization and computation in an approximation of eigenvalues. Filomat 29 (2015), no. 1, 75–-81.
  • Dyakonov, K.M. Polynomials and entire functions: zeros and geometry of the unit ball. Math. Res. Lett. 7(4), (2000) 393-–404.
  • Esp\`inola-Rocha, J. A. Factorization of the scattering matrix and the location of the eigenvalues of the Manakov-Zakharov-Shabat system. Phys. Lett. A 372, no. 40, (2008) 6161-–6167.
  • Gil’, M.I. Invertibility and spectrum of Hille-Tamarkin matrices, Mathematische Nachrichten , 244, (2002), 1-11
  • Gil’, M.I.: Operator Functions and Localization of Spectra. Lectures Notes in Mathematics, vol. 1830, Springer, Berlin 2003.
  • Gil', M.I. Localization and Perturbation of Zeros of Entire Functions, Lecture Notes in Pure and Applied Mathematics, 258. CRC Press, Boca Raton, FL, 2010.
  • Grammont, L. and Largillier, A. Krylov method revisited with an application to the localization of eigenvalues. Numer. Funct. Anal. Optim. 27 (2006), no. 5-6, 583-–618.
  • Ioakimidis, N.I. A unified Riemann–-Hilbert approach to the analytical determination of zeros of sectionally analytic functions. J. Math. Anal. Appl. 129(1), (1988) 134–-141
  • Kato, T., Perturbation Theory for Linear Operators, Berlin: Springer-Verlag, 1980.
  • Kytmanov A.M. and Khodos O.V., On localization of zeros of an entire function of finite order of growth, Complex Anal. Oper. Theory 11 (2017) 393-–416.
Toplam 12 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

Michael Gil' 0000-0002-6404-9618

Yayımlanma Tarihi 23 Eylül 2022
Kabul Tarihi 3 Mart 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Gil’, M. (2022). The Gershgorin Type Theorem on Localization of the Eigenvalues of Infinite Matrices and Zeros of Entire Functions. Ikonion Journal of Mathematics, 4(1), 9-16. https://doi.org/10.54286/ikjm.1005765
AMA Gil’ M. The Gershgorin Type Theorem on Localization of the Eigenvalues of Infinite Matrices and Zeros of Entire Functions. ikjm. Eylül 2022;4(1):9-16. doi:10.54286/ikjm.1005765
Chicago Gil’, Michael. “The Gershgorin Type Theorem on Localization of the Eigenvalues of Infinite Matrices and Zeros of Entire Functions”. Ikonion Journal of Mathematics 4, sy. 1 (Eylül 2022): 9-16. https://doi.org/10.54286/ikjm.1005765.
EndNote Gil’ M (01 Eylül 2022) The Gershgorin Type Theorem on Localization of the Eigenvalues of Infinite Matrices and Zeros of Entire Functions. Ikonion Journal of Mathematics 4 1 9–16.
IEEE M. Gil’, “The Gershgorin Type Theorem on Localization of the Eigenvalues of Infinite Matrices and Zeros of Entire Functions”, ikjm, c. 4, sy. 1, ss. 9–16, 2022, doi: 10.54286/ikjm.1005765.
ISNAD Gil’, Michael. “The Gershgorin Type Theorem on Localization of the Eigenvalues of Infinite Matrices and Zeros of Entire Functions”. Ikonion Journal of Mathematics 4/1 (Eylül 2022), 9-16. https://doi.org/10.54286/ikjm.1005765.
JAMA Gil’ M. The Gershgorin Type Theorem on Localization of the Eigenvalues of Infinite Matrices and Zeros of Entire Functions. ikjm. 2022;4:9–16.
MLA Gil’, Michael. “The Gershgorin Type Theorem on Localization of the Eigenvalues of Infinite Matrices and Zeros of Entire Functions”. Ikonion Journal of Mathematics, c. 4, sy. 1, 2022, ss. 9-16, doi:10.54286/ikjm.1005765.
Vancouver Gil’ M. The Gershgorin Type Theorem on Localization of the Eigenvalues of Infinite Matrices and Zeros of Entire Functions. ikjm. 2022;4(1):9-16.