Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, , 30 - 40, 22.07.2024
https://doi.org/10.54286/ikjm.1433913

Öz

Kaynakça

  • S.Mac Lane, Extensions and Obstructures for Rings, Illinois J.Math., 121 , (1958), 316-345.
  • Z. Arvasi, U. Ege, Anihilators, Multipliers and Crossed Modules, Applied Categorical Structures, (2003), 11:487-506.
  • B.Mitchell, Rings with several objects, Advances inMathematics, 8(1), (1972), 1-161.
  • B.Mitchell, Some applications of module theory to functor categories, Bull. Amer.Math. Soc., (1978), 84, 867-885.
  • B.Mitchell, Separable algebroids,Mem. Amer.Math. Soc., (1985), 57, 333, 96 pp.
  • S.M. Amgott, Separable categories, Journal of Pure and Applied Algebra, (1986), 40, 1-14.
  • G.H. Mosa, Higher dimensional algebroids and crossed complexes, PhD Thesis, University College of NorthWales, Bangor, (1986).
  • O. Avcıoglu, I.I. Akça, Coproduct of Crossed A-Modules of R-algebroids, Topological Algebra and its Applications, (2017), 5, 37-48.
  • O. Avcıoglu, I.I. Akça, Free modules and crossed modules of R-algebroids, Turkish Journal of Mathematics, (2018), 42: 2863-2875.
  • O. Avcıoglu, I.I. Akça, On generators of Peiffer ideal of a pre-R-algebroid in a precrossed module and applications, NTMSCI 5, No. 4, (2017), 148-155.
  • O. Avcıoglu, I.I. Akça, On Pullback and Induced Crossed Modules of R-Algebroids, Commun. Fac.Sci.Univ.Ank.Series A1, Vol 66, 2, (2017), 225-242.
  • I.I. Akca, O. Avcıoglu, Equivalence between (pre) cat 1-R-algebroids and (pre) crossed modules of Ralgebroids, Bull.Math. Soc. Sci.Math. Roumanie Teme (110) No-3, (2022), 267-288.
  • U. Ege Arslan, S. Hurmetli, Bimultiplications and Annihilators of CrossedModules in Associative Algebras, Journal of New Theory, 2021.
  • U. Ege Arslan, On the Actions of Associative Algebras, Innovative Research in Natural Science and Mathematics, ISBN:978-625-6507-13-5, 1-15.
  • J. Doncel, A. Grandje´an, M. Vale, On the homology of commutative algebras. Journal of Pure and Applied Algebra, (1992), 79(2):131–157.
  • A. Grandje´an, M. Vale, 2-m´odulos cruzados en la cohomolog´ıa de Andr´e-Quillen. Real Academia de Ciencias Exactas, F´ısicas y Naturales deMadrid, 1986.
  • I.I. Akca , K. Emir, J.F.Martins, Pointed homotopy of 2-crossed module maps of commutative algebras, Homology Homotopy Appl. 18(1):99–128, 2016.
  • I.I. Akça, K. Emir, J.F.Martins, Two-fold homotopy of 2-crossed module maps of commutative algebras. Commun. Algebra 47(1), (2019), 289–311
  • I.I. Akça, O. Avcıoglu, Homotopies of crossed complex morphisms of associative R-algebras. Georgian Math. J. 28(2), (2021), 163–172.
  • U.E. Arslan, I.I. Akca, G.O. Irmak, O. Avcıoglu, Fibrations of 2-crossed modules.MathematicalMethods in the Applied Sciences, (2018), 42(16), 5293-5304.
  • I.I. Akça, S. Pak, Pseudo simplicial groups and crossed modules, Turk J.Math., 34, (2010), 475-487.

Bimultipliers of R-algebroids

Yıl 2024, , 30 - 40, 22.07.2024
https://doi.org/10.54286/ikjm.1433913

Öz

Group action is determined bythe automorphism group and algebra action is defined by the multiplication algebra. In the study we generalize the multiplication algebra
by defining multipliers of an R-algebroid M. Firstly, the set of bimultipliers on an R-algebroid is introduced, it is denoted by Bim(M), then it is proved that this set is an R-algebroid,
it is called multiplication R-algebroid. Using this Bim(M), for an R-algebroid morphism A → Bim(M) it is shown that this morphism gives an R-algebroid action. Then we examine
some of the properties associated with this action.

Kaynakça

  • S.Mac Lane, Extensions and Obstructures for Rings, Illinois J.Math., 121 , (1958), 316-345.
  • Z. Arvasi, U. Ege, Anihilators, Multipliers and Crossed Modules, Applied Categorical Structures, (2003), 11:487-506.
  • B.Mitchell, Rings with several objects, Advances inMathematics, 8(1), (1972), 1-161.
  • B.Mitchell, Some applications of module theory to functor categories, Bull. Amer.Math. Soc., (1978), 84, 867-885.
  • B.Mitchell, Separable algebroids,Mem. Amer.Math. Soc., (1985), 57, 333, 96 pp.
  • S.M. Amgott, Separable categories, Journal of Pure and Applied Algebra, (1986), 40, 1-14.
  • G.H. Mosa, Higher dimensional algebroids and crossed complexes, PhD Thesis, University College of NorthWales, Bangor, (1986).
  • O. Avcıoglu, I.I. Akça, Coproduct of Crossed A-Modules of R-algebroids, Topological Algebra and its Applications, (2017), 5, 37-48.
  • O. Avcıoglu, I.I. Akça, Free modules and crossed modules of R-algebroids, Turkish Journal of Mathematics, (2018), 42: 2863-2875.
  • O. Avcıoglu, I.I. Akça, On generators of Peiffer ideal of a pre-R-algebroid in a precrossed module and applications, NTMSCI 5, No. 4, (2017), 148-155.
  • O. Avcıoglu, I.I. Akça, On Pullback and Induced Crossed Modules of R-Algebroids, Commun. Fac.Sci.Univ.Ank.Series A1, Vol 66, 2, (2017), 225-242.
  • I.I. Akca, O. Avcıoglu, Equivalence between (pre) cat 1-R-algebroids and (pre) crossed modules of Ralgebroids, Bull.Math. Soc. Sci.Math. Roumanie Teme (110) No-3, (2022), 267-288.
  • U. Ege Arslan, S. Hurmetli, Bimultiplications and Annihilators of CrossedModules in Associative Algebras, Journal of New Theory, 2021.
  • U. Ege Arslan, On the Actions of Associative Algebras, Innovative Research in Natural Science and Mathematics, ISBN:978-625-6507-13-5, 1-15.
  • J. Doncel, A. Grandje´an, M. Vale, On the homology of commutative algebras. Journal of Pure and Applied Algebra, (1992), 79(2):131–157.
  • A. Grandje´an, M. Vale, 2-m´odulos cruzados en la cohomolog´ıa de Andr´e-Quillen. Real Academia de Ciencias Exactas, F´ısicas y Naturales deMadrid, 1986.
  • I.I. Akca , K. Emir, J.F.Martins, Pointed homotopy of 2-crossed module maps of commutative algebras, Homology Homotopy Appl. 18(1):99–128, 2016.
  • I.I. Akça, K. Emir, J.F.Martins, Two-fold homotopy of 2-crossed module maps of commutative algebras. Commun. Algebra 47(1), (2019), 289–311
  • I.I. Akça, O. Avcıoglu, Homotopies of crossed complex morphisms of associative R-algebras. Georgian Math. J. 28(2), (2021), 163–172.
  • U.E. Arslan, I.I. Akca, G.O. Irmak, O. Avcıoglu, Fibrations of 2-crossed modules.MathematicalMethods in the Applied Sciences, (2018), 42(16), 5293-5304.
  • I.I. Akça, S. Pak, Pseudo simplicial groups and crossed modules, Turk J.Math., 34, (2010), 475-487.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kategori Teorisi, K Teorisi, Homolojik Cebir
Bölüm Makaleler
Yazarlar

Gizem Kahrıman

Erken Görünüm Tarihi 16 Mayıs 2024
Yayımlanma Tarihi 22 Temmuz 2024
Gönderilme Tarihi 13 Şubat 2024
Kabul Tarihi 2 Mart 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Kahrıman, G. (2024). Bimultipliers of R-algebroids. Ikonion Journal of Mathematics, 6(1), 30-40. https://doi.org/10.54286/ikjm.1433913
AMA Kahrıman G. Bimultipliers of R-algebroids. ikjm. Temmuz 2024;6(1):30-40. doi:10.54286/ikjm.1433913
Chicago Kahrıman, Gizem. “Bimultipliers of R-Algebroids”. Ikonion Journal of Mathematics 6, sy. 1 (Temmuz 2024): 30-40. https://doi.org/10.54286/ikjm.1433913.
EndNote Kahrıman G (01 Temmuz 2024) Bimultipliers of R-algebroids. Ikonion Journal of Mathematics 6 1 30–40.
IEEE G. Kahrıman, “Bimultipliers of R-algebroids”, ikjm, c. 6, sy. 1, ss. 30–40, 2024, doi: 10.54286/ikjm.1433913.
ISNAD Kahrıman, Gizem. “Bimultipliers of R-Algebroids”. Ikonion Journal of Mathematics 6/1 (Temmuz 2024), 30-40. https://doi.org/10.54286/ikjm.1433913.
JAMA Kahrıman G. Bimultipliers of R-algebroids. ikjm. 2024;6:30–40.
MLA Kahrıman, Gizem. “Bimultipliers of R-Algebroids”. Ikonion Journal of Mathematics, c. 6, sy. 1, 2024, ss. 30-40, doi:10.54286/ikjm.1433913.
Vancouver Kahrıman G. Bimultipliers of R-algebroids. ikjm. 2024;6(1):30-4.