Group action is determined bythe automorphism group and algebra action is defined by the multiplication algebra. In the study we generalize the multiplication algebra
by defining multipliers of an R-algebroid M. Firstly, the set of bimultipliers on an R-algebroid is introduced, it is denoted by Bim(M), then it is proved that this set is an R-algebroid,
it is called multiplication R-algebroid. Using this Bim(M), for an R-algebroid morphism A → Bim(M) it is shown that this morphism gives an R-algebroid action. Then we examine
some of the properties associated with this action.
Birincil Dil | İngilizce |
---|---|
Konular | Kategori Teorisi, K Teorisi, Homolojik Cebir |
Bölüm | Makaleler |
Yazarlar | |
Erken Görünüm Tarihi | 16 Mayıs 2024 |
Yayımlanma Tarihi | 22 Temmuz 2024 |
Gönderilme Tarihi | 13 Şubat 2024 |
Kabul Tarihi | 2 Mart 2024 |
Yayımlandığı Sayı | Yıl 2024 |