In this paper, we show that the following systems of nonlinear difference equations
x_{n+1}=((x_{n}y_{n}+a)/(x_{n}+y_{n})),y_{n+1}=((y_{n}z_{n}+a)/(y_{n}+z_{n})),z_{n+1}=((z_{n}x_{n}+a)/(z_{n}+x_{n})) for n∈ℕ₀
where a∈[0,∞) and the initial values x₀, y₀, z₀ are real numbers, can be solved in explicit form. Also, we investigate the asymptotic behavior of the solutions by using these formulae and give some numerical examples which verify our theoretical result.
Asymptotic behavior explicit solution nonlinear difference equation system
Birincil Dil | İngilizce |
---|---|
Konular | Matematik |
Bölüm | Kabul edilmiş makaleler |
Yazarlar | |
Yayımlanma Tarihi | 30 Temmuz 2020 |
Kabul Tarihi | 28 Temmuz 2020 |
Yayımlandığı Sayı | Yıl 2020 Cilt: 2 Sayı: 1 |