In this paper, we study the system of third-order difference equations
\begin{equation*}
x_{n+1}=a+\frac{a_{1}}{y_{n}}+\frac{a_{2}}{y_{n-1}}+\frac{a_{3}}{y_{n-2}}%
,\quad y_{n+1}=b+\frac{b_{1}}{x_{n}}+\frac{b_{2}}{x_{n-1}}+\frac{b_{3}}{%
x_{n-2}},\quad n\in \mathbb{N}_{0},
\end{equation*}%
where the parameters $a$, $a_{i}$, $b$, $b_{i}$, $i=1,2,3$, and the initial
values $x_{-j}$, $y_{-j}$, $j=0,1,2$, are positive real numbers. We first
prove a general convergence theorem. By applying this convergence theorem to
the system, we show that positive equilibrium is a global attractor. We also
study the local asymptotic stability of the equilibrium and show that it is
globally asymptotically stable. Finally, we study the invariant set of
solutions.
Boundedness equilibrium point system of difference equations.
Birincil Dil | İngilizce |
---|---|
Konular | Uygulamalı Matematik (Diğer) |
Bölüm | Makaleler |
Yazarlar | |
Erken Görünüm Tarihi | 23 Eylül 2024 |
Yayımlanma Tarihi | |
Gönderilme Tarihi | 29 Temmuz 2024 |
Kabul Tarihi | 10 Eylül 2024 |
Yayımlandığı Sayı | Yıl 2024 Cilt: 6 Sayı: 2 |