Hiperkolesterolemi ve Antikoagülan İlaç Kullanımının Farklı Yüzey Özelliklerine Sahip Titanyum Yüzeylerin Islanabilirliğine Etkisi: Hayvan Deneyi
Yıl 2024,
Cilt: 3 Sayı: 1, 18 - 29, 01.03.2024
Deniz Çağlar
,
Onur Güven
,
Erhan Fıratlı
Öz
Amaç: Kanın implant yüzeyini ıslatabilmesi, kanın ve titanyumun yüzey özelliklerine bağlıdır. Statin ve antikoagülan ilaç kullanımı ve kandaki lipit seviyesi, kanın viskozitesine etki edebilmektedir. Bu durum ıslanılabilirliği negatif yönde etkileyebilir. Bu çalışmanın amacı varfarin ve statinin farklı yüzey özelliklerine sahip titanyum disklerin ıslanılabilirliğine olan etkisinin incelenmesidir.
Gereç ve Yöntemler: 9 adet Yeni Zelanda tavşanı sağlıklı dönem, hiperkolesterolemik dönem, statin kullanımı dönemi ve antikoagülan kullanımı dönemine sokulmuştur. Her dönem sonunda hayvanlardan kan alınıp makine yüzeyli, RBM (Resorbable blast media) ve SLA (Sand blasted – large grit – acid etched) yüzeyli titanyum disklerin üzerine damlatılmıştır. Titanyum disk yüzeyi ve kan damlası arasındaki temas açısı ölçülüp gruplar arasında karşılaştırılmıştır.
Bulgular: Hiperkolesterolemik dönemde SLA ve Makine grubu arasında ve RBM ve SLA grubu arasında istatistiksel olarak anlamlı farklılık bulunmuştur. Statin döneminde SLA ve Makine grubu arasında ve RBM ve SLA grubu arasında istatistiksel olarak anlamlı farklılık görülmüştür. Antikoagülan dönemde Makine ve SLA grubu arasında ve RBM ve SLA grubu arasında anlamlı farklılık görülmüştür. Dönem bazında bakıldığında sadece makine yüzeyi grubunda sağlıklı ve hiperkolesterolemik dönem arasında, hiperkolesterolemik ve statin dönemi arasında ve statin ve antikoagülan dönemi arasında istatistiksel olarak anlamlı farklılık görülmüştür.
Sonuç: SLA yüzeyli titanyum diskler her dönemde RBM ve Makine yüzeylilere göre anlamlı düzeyde daha hidrofiliktir. En yüksek temas açısı ortalamaları Hiperkolesterolemik dönemde görülmüştür. Bu çalışmanın farklı yüzey özellikli titanyum diskler kullanılarak yapılması hiperkolesterolemik hastalarda en uygun yüzey özelliğinin bulunmasına yardımcı olacaktır.
Kaynakça
- Akın, F., Ayça, B., Köse, N., Şahin, I., Akin, M. N., Canbek, T. D., & Güngör, Ö. (2013). Effect of Atorvastatin on Hematologic Parameters in Patients With Hypercholesterolemia. Angiology, 64(8), 621–625.
https://doi.org/10.1177/0003319713479154
- Albrektsson, T., & Wennerberg, A. (2004). Oral implant surfaces: Part 2--review focusing on clinical knowledge of different surfaces. Int J Prosthodont., 17(5), 544–564.
- Albrektsson, T., & Wennerberg, A. (2005). The impact of oral implants-past and future, 1966-2042. J Can Dent Assoc, 71(5), 327.
- Albrektsson, T., & Wennerberg, A. (2019). On osseointegration in relation to implant surfaces. Clinical Implant Dentistry and Related Research, 21, 4–7.
- Banyai, S., Banyai, M., Falger, J., Jansen, M., Alt, E., Derfler, K., & Koppensteiner, R. (2001). Atorvastatin improves blood rheology in patients with familial hypercholesterolemia (FH) on long-term LDL apheresis treatment. Atherosclerosis, 159(2), 513–519. https://doi.org/10.1016/S0021-9150(01)00532-9
- Buser, D., Broggini, N., Wieland, M., Schenk, R. K., Denzer, A. J., Cochran, D. L., Hoffmann, B., Lussi, A., & Steinemann, S. G. (2004). Enhanced Bone Apposition to a Chemically Modified SLA Titanium Surface. Journal of Dental Research, 83(7), 529–533. https://doi.org/10.1177/154405910408300704
- Chao, T. C., Arjmandi-Tash, O., Das, D. B., & Starov, V. M. (2015). Spreading of blood drops over dry porous substrate: Complete wetting case. Journal of Colloid and Interface Science, 446, 218–225. https://doi.org/https://doi.org/10.1016/j.jcis.2015.01.054
- Chen H, Muros-Cobos JL, & Amirfazli A. (2018). Contact angle measurement with a smartphone. Rev Sci Instrum., 89(3). https://doi.org/10.1063/1.5022370
- Choukroun, J., Khoury, G., Khoury, F., Russe, P., Testori, T., Komiyama, Y., Sammartino, G., Palacci, P., Tunali, M., & Choukroun, E. (2014). Two Neglected Biologic Risk Factors in Bone Grafting and Implantology: High Low-Density Lipoprotein Cholesterol and Low Serum Vitamin D. Journal of Oral Implantology, 40(1), 110–114. https://doi.org/10.1563/AAID-JOI-D-13-00062
- Coelho, P. G., Jimbo, R., Tovar, N., & Bonfante, E. A. (2015). Osseointegration: hierarchical designing encompassing the macrometer, micrometer, and nanometer length scales. Dental Materials : Official Publication of the Academy of Dental Materials, 31(1), 37–52. https://doi.org/10.1016/j.dental.2014.10.007
- Das, S., Datta, A., Bagchi, C., Chakraborty, S., Mitra, A., & Tripathi, S. K. (2016). A comparative study of lipid-lowering effects of guggul and atorvastatin monotherapy in comparison to their combination in high cholesterol diet-induced hyperlipidemia in rabbits. Journal of Dietary Supplements, 13(5), 495–504. https://doi.org/10.3109/19390211.2015.1118654
- Destiana, D., & Timan, I. (2018). The relationship between hypercholesterolemia as a risk factor for stroke and blood viscosity measured using Digital Microcapillary®. Journal of Physics: Conference Series, 1073, 42045. https://doi.org/10.1088/1742-6596/1073/4/042045
- Duske, K., Koban, I., Kindel, E., Schröder, K., Nebe, B., Holtfreter, B., Jablonowski, L., Weltmann, K. D., & Kocher, T. (2012). Atmospheric plasma enhances wettability and cell spreading on dental implant metals. Journal of Clinical Periodontology, 39(4), 400–407. https://doi.org/https://doi.org/10.1111/j.1600-051X.2012.01853.x
- Empen, K., Geiss, H.-C., Lehrke, M., Otto, C., Schwandt, P., & Parhofer, K. G. (2003). Effect of atorvastatin on lipid parameters, LDL subtype distribution, hemorrheological parameters and adhesion molecule concentrations in patients with hypertriglyceridemia. Nutrition, Metabolism and Cardiovascular Diseases, 13(2), 87–92. https://doi.org/10.1016/S0939-4753(03)80023-6
- Fan, J., Chen, Y., Yan, H., Niimi, M., Wang, Y., & Liang, J. (2018). Principles and applications of rabbit models for atherosclerosis research. In Journal of Atherosclerosis and Thrombosis (Vol. 25, Issue 3, pp. 213–220). Japan Atherosclerosis Society. https://doi.org/10.5551/jat.RV17018
- Fan, J., Kitajima, S., Watanabe, T., Xu, J., Zhang, J., Liu, E., & Chen, Y. E. (2015). Rabbit models for the study of human atherosclerosis: From pathophysiological mechanisms to translational medicine. Pharmacology & Therapeutics, 146, 104–119. https://doi.org/https://doi.org/10.1016/j.pharmthera.2014.09.009
- Gittens, R. A., Olivares-Navarrete, R., Cheng, A., Anderson, D. M., McLachlan, T., Stephan, I., Geis-Gerstorfer, J., Sandhage, K. H., Fedorov, A. G., & Rupp, F. (2013). The roles of titanium surface micro/nanotopography and wettability on the differential response of human osteoblast lineage cells. Acta Biomaterialia, 9(4), 6268–6277.
- Hanawa, T. (2011). A comprehensive review of techniques for biofunctionalization of titanium. In Journal of Periodontal and Implant Science (Vol. 41, Issue 6, pp. 263–272). https://doi.org/10.5051/jpis.2011.41.6.263
Ho, C.-H. (2004). White blood cell and platelet count could affect whole blood viscosity. J Chin Med Assoc., 67(8), 394–397.
- Jung, Y. H., Han, S. W., & Park, J. H. (2023). The Impact of Prior Antithrombotic Use on Blood Viscosity in Cardioembolic Stroke with Non-Valvular Atrial Fibrillation. Journal of Clinical Medicine, 12(3). https://doi.org/10.3390/jcm12030887
- Kim, H., Choi, S.-H., Ryu, J.-J., Koh, S.-Y., Park, J.-H., & Lee, I.-S. (2008). The biocompatibility of SLA-treated titanium implants. Biomedical Materials, 3(2), 25011. https://doi.org/10.1088/1748-6041/3/2/025011
- Kim, J. B., Song, W. H., Park, J. S., Youn, T.-J., Park, Y. H., Kim, S.-J., Ahn, S. G., Doh, J.-H., Cho, Y.-H., & Kim, J. W. (2021). A randomized, open-label, parallel, multi-center Phase IV study to compare the efficacy and safety of atorvastatin 10 and 20 mg in high-risk Asian patients with hypercholesterolemia. PLOS ONE, 16(1), e0245481-. https://doi.org/10.1371/journal.pone.0245481
- Koca, R. B., Güven, O., Çelik, M. S., & Fıratlı, E. (2020). Wetting properties of blood lipid fractions on different titanium surfaces. International Journal of Implant Dentistry, 6(1), 16. https://doi.org/10.1186/s40729-020-00213-x
- Kopf, B. S., Ruch, S., Berner, S., Spencer, N. D., & Maniura‐Weber, K. (2015). The role of nanostructures and hydrophilicity in osseointegration: In‐vitro protein‐adsorption and blood‐interaction studies. Journal of Biomedical Materials Research Part A, 103(8), 2661–2672.
- Krause, A., Cowles, E. A., & Gronowicz, G. (2000). Integrin‐mediated signaling in osteoblasts on titanium implant materials. Journal of Biomedical Materials Research, 52(4), 738–747.
- Krieger, M. (1998). The “best” of cholesterols, the “worst” of cholesterols: A tale of two receptors. Proceedings of the National Academy of Sciences, 95(8), 4077–4080. https://doi.org/10.1073/pnas.95.8.4077
- Lee, C.-H., Jung, K.-H., Cho, D. J., & Jeong, S.-K. (2019). Effect of warfarin versus aspirin on blood viscosity in cardioembolic stroke with atrial fibrillation: a prospective clinical trial. BMC Neurology, 19(1), 82. https://doi.org/10.1186/s12883-019-1315-5
- Li, R., Shi, T., Xing, E., & Qu, H. (2021). Atorvastatin calcium tablets on inflammatory factors, hemorheology and renal function damage indexes in patients with diabetic nephropathy. Pakistan Journal of Medical Sciences, 37(5). https://doi.org/10.12669/pjms.37.5.4045
- Mavrogenis, A. F., Dimitriou, R., Parvizi, J., & Babis, G. C. (2009). Biology of implant osseointegration. Journal of Musculoskeletal & Neuronal Interactions, 9(2), 61–71.
- Mei, S., Dong, F., & Rahman Khan, M. S. (2018). Effects of Biomineralization on Osseointegration of Pure Titanium Implants in the Mandible of Beagles. Journal of Oral and Maxillofacial Surgery, 76(10), 2104.e1-2104.e10. https://doi.org/10.1016/j.joms.2018.06.015
- Mellwig, K. (2003). Heparin‐induced extracorporeal low‐density lipoprotein precipitation. Therapeutic Apheresis and Dialysis, 7(3), 365–369.
- Olson, W. C., Smolkin, M. E., Farris, E. M., Fink, R. J., Czarkowski, A. R., Fink, J. H., Chianese-Bullock, K. A., & Slingluff, C. L. (2011). Shipping blood to a central laboratory in multicenter clinical trials: effect of ambient temperature on specimen temperature, and effects of temperature on mononuclear cell yield, viability and immunologic function. Journal of Translational Medicine, 9(1), 1–13.
- Park, J. H., Schwartz, Z., Olivares-Navarrete, R., Boyan, B. D., & Tannenbaum, R. (2011). Enhancement of surface wettability via the modification of microtextured titanium implant surfaces with polyelectrolytes. Langmuir, 27(10), 5976–5985.
- Rupp, F., Liang, L., Geis-Gerstorfer, J., Scheideler, L., & Hüttig, F. (2018). Surface characteristics of dental implants: A review. Dental Materials, 34(1), 40–57. https://doi.org/https://doi.org/10.1016/j.dental.2017.09.007
- Smith, S. A., Travers, R. J., & Morrissey, J. H. (2015). How it all starts: Initiation of the clotting cascade. Critical Reviews in Biochemistry and Molecular Biology, 50(4), 326–336.
- Spijker, H. T., Graaff, R., Boonstra, P. W., Busscher, H. J., & van Oeveren, W. (2003). On the influence of flow conditions and wettability on blood material interactions. Biomaterials, 24(26), 4717–4727.
- Stancu, C., & Sima, A. (2001). Statins: mechanism of action and effects. Journal of Cellular and Molecular Medicine, 5(4), 378–387. https://doi.org/https://doi.org/10.1111/j.1582-4934.2001.tb00172.x
- Taylor, J. M., & Fan, J. (1997). Transgenic rabbit models for the study of athelosclerosis. Front. Biosci., 2(4), 298–308.
- Tomaiuolo, G. (2014). Biomechanical properties of red blood cells in health and disease towards microfluidics. Biomicrofluidics, 17;8(5).
- Velasco-Ortega, E., Ortiz-Garcia, I., Jiménez-Guerra, A., Núñez-Márquez, E., Moreno-Muñoz, J., Rondón-Romero, J. L., Cabanillas-Balsera, D., Gil, J., Muñoz-Guzón, F., & Monsalve-Guil, L. (2021). Osseointegration of sandblasted and acid-etched implant surfaces. A histological and histomorphometric study in the rabbit. International Journal of Molecular Sciences, 22(16), 8507.
- Wennerberg, A., Svanborg, L. M., Berner, S., & Andersson, M. (2013). Spontaneously formed nanostructures on titanium surfaces. Clinical Oral Implants Research, 24(2), 203–209. https://doi.org/https://doi.org/10.1111/j.1600-0501.2012.02429.x
- Wiemer, J., Winkler, K., Baumstark, M., März, W., & Scherberich, J. E. (2002). Influence of low molecular weight heparin compared to conventional heparin for anticoagulation during haemodialysis on low density lipoprotein subclasses. Nephrology Dialysis Transplantation, 17(12), 2231–2238.
- Zivelin, A., Vijaya Mohan Rao, L., & Rapaport, S. I. (1993). Mechanism of the anticoagulant effect of warfarin as evaluated in rabbits by selective depression of individual: Procoagulant vitamin K-dependent clotting factors. Journal of Clinical Investigation, 92(5), 2131–2140. https://doi.org/10.1172/JCI116814