Araştırma Makalesi
BibTex RIS Kaynak Göster

Öğretmen Adaylarının Çoklu Gösterimleri Kullanma Becerilerinin Analizi

Yıl 2012, Cilt: 11 Sayı: 1, 239 - 250, 26.06.2012

Öz

Bu çalışmanın amacı, sınıf öğretmen adaylarının sözel, tablo, şekilsel gösterimler ve grafikler arasında geçiş yapabilme becerilerini tespit etmektir. Çalışma kapsamında veri toplamak amacıyla tablo, sözel ifadeler ve şekilsel gösterimler ile grafiksel gösterim arasındaki geçişe odaklanan ve üç bölümden oluşan açıklamalı bir başarı testi geliştirilmiş ve 76 sınıf öğretmen adayı uygulanmıştır. Testten elde edilen veriler frekans ve yüzdelerle ifade edilmiş ve ayrıca adayların yaptıkları açıklamalar betimsel analiz yöntemiyle analiz edilmiştir. Çalışma sonucunda, sözel ifadeden grafiğe geçiş, adayların en başarılı oldukları alan şekilsel gösterimden grafiği geçiş ise en az başarılı oldukları alan olarak ortaya çıkmıştır. Ayrıca adayların verilen grafikler arasından uygun grafiği belirleme konusunda, grafik oluşturmaya göre çok daha başarılı oldukları bununla birlikte verdikleri cevapları bilimsel nitelikte açıklayamadıkları belirlenmiştir.

Kaynakça

  • Ateş, S. (2001). The Effect of Computer Applications on Line-Graphings Skills of Tenth Grade Students Having Different Cognitive Developmental Levels. (Unpublished Doctoral Dissertation) Lexington: The Graduate School of Kentucky
  • Bektasli, B. (2006). The relationships between spatial ability, logical thinking, mathematics performance and kinematics graph interpretation skills of 12th grade physics students. Master’s thesis. The Ohio State University, Ohio. UMI Number: 3226336.
  • Bell, A. & Janvier, C. (1981). The Interpretation of Graphs Representing Situations. For theLearning of Mathematics, 2(1), 34-42.
  • Berg, C.A. & Philips, D.G. (1994). An Investigation of the Relationship Between Logical Thinking Structures and the Ability to Construct and Interpret Line Graphs. Journal of Research in Science Teaching, 31(4), 323-344.
  • Brasell, H.M. & Rowe, M.B. (1993). Graphing Skills Among High School Physics Students. School Science and Mathematics, 93, 62-70.
  • Brasell, H.M. (1990). Graphs, Graphing, and Graphers. In M.R. Rowe (Ed), What research says to the science teacher (pp.69-85). Washington, DC: National Science Teacher Association.
  • Clement , J. (1989). The Concept of Varietion and Misconceptions in Cartesian Graphing. Focus on Learning Problems in Mathematics, 11(2), 77-87.
  • Çelik, D. & Baki, A. (2007). “Öğretmen Adaylarının Cebirde Çoklu Gösterimlerden Yararlanma Durumları Üzerine Bir Çalışma”. Paper presented at the 7th International Educational Technology Conference, Near East University, North Cyprus.
  • Demirci, N. ve Uyanık, F.(2009). Onuncu Sınıf Öğrencilerinin Grafik Anlama ve Yorumlamaları İle Kinematik Başarıları Arasındaki İlişki. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi (EFMED), http://www.nef.balikesir.edu.tr/~dergi/makaleler/yayinda/7/EFMED_FZE124.pdf adresinden 20 Ocak 2010 tarihinde indirilmiştir. 3(2), 22-51. [Online]:
  • Driscoll, M. (1999). Fostering algebraic thinking: A guide for teachers, grades 6-10, Portsmouth, NH: Heinemann.
  • Duval R. (1993). Registres de représentation sémiotique et fonctionnement cognitif de la pensée. Annales de Didactique et de Sciences Cognitives- IREM de Strasbourg, 5, 37–65.
  • Duval R. (1995). Sémiosis et pensée humaine. Registres sémiotiques et apprentissages intellectuels. Peter Lang, Berne.
  • Even, R. (1998). Factors Involved in Linking Representations of Functions. Journal of Mathematical Behavior, 17(1), 105-121.
  • Fennema, E. & Loef, M. (1992). Teachers’ Knowledge and Its Impact. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 147–164). New York: Macmillan.
  • Hadjidemetriou, C., & Williams, J.S. (2002). Children’s Graphical Conceptions. Research in Mathematics Education, 4,69-87.
  • Hiebert, J. & Carpenter, T.(1992). Learning and teaching with understanding. In D.A. Grouws(Ed.), Handbook of research on mathematics teaching and learning(pp. 65–97). New York: Macmillan.
  • Hitt, F., (1998), Difficulties in the Articulation of Different Representations Linked to the Concept of Function. Journal of Mathematical Behavior, 17(1), 123-134.
  • Keller, B. A., & Hirsch, C. R., (1998). Student Preferences for Representations of Functions. International Journal of Mathematical Education in Science and Technology, 29( 1), 1-17.
  • Leake, S.A. (1996). Charaterizing precalculus students’ levels of understanding of functions. (Unpublished Doctoral Dissertation)The University of Texas at Austin.
  • Leinhardt, G., Zaslavsky, O. & Stein, M.K. (1990). Functions, Graphs and Graphing: Tasks, Learning and Teaching, Review of Educational Research, 60( 1), 1-64.
  • Lloyd, G.M. & Wilson, M.(1998). Supporting Innovation: The Impact of a Teacher’s Conception of Function on His Implementatiin of a Reform Curriculum. Journal for Research in Mathematics Education, 29(3), 248- 274.
  • McDermott, C.L., Rosenquist, L.M. & Van Zee, H.E. (1987). Some Difficulties in Connecting Graphs and Physics: Example from Kinematics. American Journal of Physics, 55, 503-513.
  • McGowan, M. & Tall, D., (2001). Flexible Thinking, Consistency, and Stability of Responses:A Study of Divergence. http://www.warwick.ac.uk/staff/David.Tall/drafts/dot2001-mcgowen-tall-draft.pdf. Retrieved on 7-February 2005, at URL:
  • MEB, (2009). İlkoğretim Matematik Dersi 1–5. Sınıflar Öğretim Programı. Ankara.
  • Özgun-Koca, S. A. (2008). Öğrencilerin grafik okuma, yorumlama ve oluşturma hakkındaki kavram yanılgıları. M.F. Özmantar, E. Bingölbali, H. Akkoç, (Eds), Matematiksel Kavram Yanılgıları ve Çözüm Önerileri (s.61-89), Pegem Akedemi, Ankara.
  • Özgun-Koca, S. A. (2001). The graphing skills of students in mathematics and science education. [Online]: Retrieved on 25-July 2009, at URL: http://www.gpoaccess.gov/eric/200211/ed464804.pdf.
  • Padilla, J. M., McKenzie, L.D. & Shaw,L.E. (1986). An Examination of Line Graphing Ability of Students in Grades Seven Through Twelve. School Science and Mathematics, 86, 20-16.
  • Piez, C.M. & Voxman, M.H. (1997). Multiple Representations-Using Different Perspectives to Form a Clearer Picture, Mathematics Teachers, 90(2), 164-166.
  • Schultz,J.E. & Waters,M.(2000). Why representations?. Mathematics Teachers, 93(6), 448-453.
  • Shulman, L.S. (1986). Those Who Understand: Knowledge Growth in Teaching. Educational Researcher, 15(2), 4-14.
  • Stein, M. K., Baxter, J. A., & Leinhardt, G. (1990). Subject-Matter Knowledge and Elementary Instruction: A Case from Functions and Graphing. American Educational Research Journal,27(4), 639-663.

The Analysis of Teacher Candidates\' Translating Skills in Multiple Representations

Yıl 2012, Cilt: 11 Sayı: 1, 239 - 250, 26.06.2012

Öz

The aim of this study is to determine translating skills of teacher candidates between verbal, table,
physical context and graphical representations. The sample of this study was 76 primary teacher candidates. An
achievement test focusing on the multiple representations was devised. The candidates were asked to explain their
answers for the whole test. The results of the study indicated that while the translation from verbal to graphical is the
field in which the teacher candidates were the most successful, the translation from physical context to graphical was
the field they were least successful. The candidates were more successful at determining the right graph among others
than they were at constructing a graph. Also, they couldn’t give scientific explanations for their answers.

Kaynakça

  • Ateş, S. (2001). The Effect of Computer Applications on Line-Graphings Skills of Tenth Grade Students Having Different Cognitive Developmental Levels. (Unpublished Doctoral Dissertation) Lexington: The Graduate School of Kentucky
  • Bektasli, B. (2006). The relationships between spatial ability, logical thinking, mathematics performance and kinematics graph interpretation skills of 12th grade physics students. Master’s thesis. The Ohio State University, Ohio. UMI Number: 3226336.
  • Bell, A. & Janvier, C. (1981). The Interpretation of Graphs Representing Situations. For theLearning of Mathematics, 2(1), 34-42.
  • Berg, C.A. & Philips, D.G. (1994). An Investigation of the Relationship Between Logical Thinking Structures and the Ability to Construct and Interpret Line Graphs. Journal of Research in Science Teaching, 31(4), 323-344.
  • Brasell, H.M. & Rowe, M.B. (1993). Graphing Skills Among High School Physics Students. School Science and Mathematics, 93, 62-70.
  • Brasell, H.M. (1990). Graphs, Graphing, and Graphers. In M.R. Rowe (Ed), What research says to the science teacher (pp.69-85). Washington, DC: National Science Teacher Association.
  • Clement , J. (1989). The Concept of Varietion and Misconceptions in Cartesian Graphing. Focus on Learning Problems in Mathematics, 11(2), 77-87.
  • Çelik, D. & Baki, A. (2007). “Öğretmen Adaylarının Cebirde Çoklu Gösterimlerden Yararlanma Durumları Üzerine Bir Çalışma”. Paper presented at the 7th International Educational Technology Conference, Near East University, North Cyprus.
  • Demirci, N. ve Uyanık, F.(2009). Onuncu Sınıf Öğrencilerinin Grafik Anlama ve Yorumlamaları İle Kinematik Başarıları Arasındaki İlişki. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi (EFMED), http://www.nef.balikesir.edu.tr/~dergi/makaleler/yayinda/7/EFMED_FZE124.pdf adresinden 20 Ocak 2010 tarihinde indirilmiştir. 3(2), 22-51. [Online]:
  • Driscoll, M. (1999). Fostering algebraic thinking: A guide for teachers, grades 6-10, Portsmouth, NH: Heinemann.
  • Duval R. (1993). Registres de représentation sémiotique et fonctionnement cognitif de la pensée. Annales de Didactique et de Sciences Cognitives- IREM de Strasbourg, 5, 37–65.
  • Duval R. (1995). Sémiosis et pensée humaine. Registres sémiotiques et apprentissages intellectuels. Peter Lang, Berne.
  • Even, R. (1998). Factors Involved in Linking Representations of Functions. Journal of Mathematical Behavior, 17(1), 105-121.
  • Fennema, E. & Loef, M. (1992). Teachers’ Knowledge and Its Impact. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 147–164). New York: Macmillan.
  • Hadjidemetriou, C., & Williams, J.S. (2002). Children’s Graphical Conceptions. Research in Mathematics Education, 4,69-87.
  • Hiebert, J. & Carpenter, T.(1992). Learning and teaching with understanding. In D.A. Grouws(Ed.), Handbook of research on mathematics teaching and learning(pp. 65–97). New York: Macmillan.
  • Hitt, F., (1998), Difficulties in the Articulation of Different Representations Linked to the Concept of Function. Journal of Mathematical Behavior, 17(1), 123-134.
  • Keller, B. A., & Hirsch, C. R., (1998). Student Preferences for Representations of Functions. International Journal of Mathematical Education in Science and Technology, 29( 1), 1-17.
  • Leake, S.A. (1996). Charaterizing precalculus students’ levels of understanding of functions. (Unpublished Doctoral Dissertation)The University of Texas at Austin.
  • Leinhardt, G., Zaslavsky, O. & Stein, M.K. (1990). Functions, Graphs and Graphing: Tasks, Learning and Teaching, Review of Educational Research, 60( 1), 1-64.
  • Lloyd, G.M. & Wilson, M.(1998). Supporting Innovation: The Impact of a Teacher’s Conception of Function on His Implementatiin of a Reform Curriculum. Journal for Research in Mathematics Education, 29(3), 248- 274.
  • McDermott, C.L., Rosenquist, L.M. & Van Zee, H.E. (1987). Some Difficulties in Connecting Graphs and Physics: Example from Kinematics. American Journal of Physics, 55, 503-513.
  • McGowan, M. & Tall, D., (2001). Flexible Thinking, Consistency, and Stability of Responses:A Study of Divergence. http://www.warwick.ac.uk/staff/David.Tall/drafts/dot2001-mcgowen-tall-draft.pdf. Retrieved on 7-February 2005, at URL:
  • MEB, (2009). İlkoğretim Matematik Dersi 1–5. Sınıflar Öğretim Programı. Ankara.
  • Özgun-Koca, S. A. (2008). Öğrencilerin grafik okuma, yorumlama ve oluşturma hakkındaki kavram yanılgıları. M.F. Özmantar, E. Bingölbali, H. Akkoç, (Eds), Matematiksel Kavram Yanılgıları ve Çözüm Önerileri (s.61-89), Pegem Akedemi, Ankara.
  • Özgun-Koca, S. A. (2001). The graphing skills of students in mathematics and science education. [Online]: Retrieved on 25-July 2009, at URL: http://www.gpoaccess.gov/eric/200211/ed464804.pdf.
  • Padilla, J. M., McKenzie, L.D. & Shaw,L.E. (1986). An Examination of Line Graphing Ability of Students in Grades Seven Through Twelve. School Science and Mathematics, 86, 20-16.
  • Piez, C.M. & Voxman, M.H. (1997). Multiple Representations-Using Different Perspectives to Form a Clearer Picture, Mathematics Teachers, 90(2), 164-166.
  • Schultz,J.E. & Waters,M.(2000). Why representations?. Mathematics Teachers, 93(6), 448-453.
  • Shulman, L.S. (1986). Those Who Understand: Knowledge Growth in Teaching. Educational Researcher, 15(2), 4-14.
  • Stein, M. K., Baxter, J. A., & Leinhardt, G. (1990). Subject-Matter Knowledge and Elementary Instruction: A Case from Functions and Graphing. American Educational Research Journal,27(4), 639-663.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Derya Çelik

Ayşegül Sağlam-arslan

Yayımlanma Tarihi 26 Haziran 2012
Yayımlandığı Sayı Yıl 2012 Cilt: 11 Sayı: 1

Kaynak Göster

APA Çelik, D., & Sağlam-arslan, A. (2012). Öğretmen Adaylarının Çoklu Gösterimleri Kullanma Becerilerinin Analizi. İlköğretim Online, 11(1), 239-250.
AMA Çelik D, Sağlam-arslan A. Öğretmen Adaylarının Çoklu Gösterimleri Kullanma Becerilerinin Analizi. İOO. Mart 2012;11(1):239-250.
Chicago Çelik, Derya, ve Ayşegül Sağlam-arslan. “Öğretmen Adaylarının Çoklu Gösterimleri Kullanma Becerilerinin Analizi”. İlköğretim Online 11, sy. 1 (Mart 2012): 239-50.
EndNote Çelik D, Sağlam-arslan A (01 Mart 2012) Öğretmen Adaylarının Çoklu Gösterimleri Kullanma Becerilerinin Analizi. İlköğretim Online 11 1 239–250.
IEEE D. Çelik ve A. Sağlam-arslan, “Öğretmen Adaylarının Çoklu Gösterimleri Kullanma Becerilerinin Analizi”, İOO, c. 11, sy. 1, ss. 239–250, 2012.
ISNAD Çelik, Derya - Sağlam-arslan, Ayşegül. “Öğretmen Adaylarının Çoklu Gösterimleri Kullanma Becerilerinin Analizi”. İlköğretim Online 11/1 (Mart 2012), 239-250.
JAMA Çelik D, Sağlam-arslan A. Öğretmen Adaylarının Çoklu Gösterimleri Kullanma Becerilerinin Analizi. İOO. 2012;11:239–250.
MLA Çelik, Derya ve Ayşegül Sağlam-arslan. “Öğretmen Adaylarının Çoklu Gösterimleri Kullanma Becerilerinin Analizi”. İlköğretim Online, c. 11, sy. 1, 2012, ss. 239-50.
Vancouver Çelik D, Sağlam-arslan A. Öğretmen Adaylarının Çoklu Gösterimleri Kullanma Becerilerinin Analizi. İOO. 2012;11(1):239-50.