Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, Cilt: 7 Sayı: 2, 70 - 76, 15.12.2023

Öz

Kaynakça

  • [1]Araujo W, Ledezma C. Factors That Affect Liquefaction-Induced Lateral Spreading in Large Subduction Earthquakes. Applied Sciences(2020) 10(18):6503. doi:10.3390/app10186503.
  • [2]Durukan S, Akbuğa E. Liquefaction Analysis According to Turkish Building Earthquake Regulation (2018) and Sığacık (Seferihisar/İzmir) Case Study. Artvin Çoruh University, Natural Hazards Application and Research Center, Journal of Natural Hazards and Environment(2020) 6(2):304–318. doi:10.21324/dacd.617423.
  • [3]Youd TL. Application of MLR Procedure for Prediction of Liquefaction-Induced Lateral Spread Displacement. Journal of geotechnical and geoenvironmental engineering(2018) 6:144. doi:10.1061/(ASCE)GT.1943-5606.0001860.
  • [4]Bray JD, Boulanger R, Kramer SL, Rourke TO, Green RA, Rob PK, et al. Liquefaction-Induced Ground Movement Effects. In: Proceedings of the U.S.–New Zealand–Japan International Workshop, PEER Report 2017/02. Berkeley, CA, USA (2010). p. 150.
  • [5]Jia J. Soil Dynamics and Foundation Modeling. In: Liquefaction. Switzerland: Springer International Publishing: Cham (2017). p. 740.
  • [6]Mogami T, Kubo K. The Behaviour of Soil during Vibration. In: Proceedings of the Third International Conference on Soil Mechanics and Foundation Engineering(1953). p. 152–153.
  • [7]Seed HB, Idriss IM. Simplified procedure for evaluating soil liquefaction potential. Journal of the Soil Mechanics and Foundations Division(1971) 97(9):1249–1273. doi:10.1061/JSFEAQ.0001662.
  • [8]Iwasaki T, Tokida K, Tatsuoka F. Soil Liquefaction Potential Evaluation with Use of the Simplified Procedure. In: International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, St. Louis(1981). p. 209–214.
  • [9]Tokımatsu K, Yoshımı Y. Empirical correlation of soil liquefaction based on SPT N-value and fines content. Soils and Foundations, JSSMFE(1983) 23(4):56–74. doi:10.3208/sandf1972.23.4_56.
  • 10]Seed HB, Tokimatsu K, Harder LF, Chung R. Influence of Spt Procedures in Soil Liquefaction Resistance Evaluations. Journal of Geotechnical Engineering, ASCE(1985) 111, 12:1425–1445. doi:10.1061/(ASCE)0733-9410(1985)111:12(1425).
  • [11]Youd TL, Idriss IM. Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils. Journal of Geotechnical and Geoenvironmental Engineering(2001) 127(4):297–313. doi:10.1061/(ASCE)1090-0241(2001)127:4(297).
  • [12]Özsoy B, Durgunoğlu T. Sıvılaşma etkilerinin yüksek kayma modüllü zemin–çimento karışımı kolonlarla azaltılması, 5. Bildiri No: Ulusal Deprem Mühendisliği Kongresi (2003).
  • [13]Sumer BM, Kaya A, Hansen N. Impact of liquefaction on coastal structures in the 1999 Kocaeli, Turkey earthquake. In: The Twelfth International Offshore and Polar Engineering Conference. OnePetro (2002).
  • [14]Mollamahmutoglu M, Kayabali K, Beyaz T, Kolay E. Liquefaction-related building damage in Adapazari during the Turkey earthquake of August 17, 1999. Engineering Geology(2003) 67(3-4):297–307. doi:10.1016/S0013-7952(02)00190-4.
  • [15]Sumer BM, Ansal A, Cetin KO, Damgaard J, Gunbak AR, Hansen N, et al. Earthquake-induced liquefaction around marine structures. Journal of Waterway, Port, Coastal, and Ocean Engineering(2007) 133(1):55–82. doi:10.1061/(ASCE)0733-950X(2007)133:1(55).
  • [16]Martin JR, Olgun CG, Mitchell JK, Durgunoglu HT. High-modulus columns for liquefaction mitigation. Journal of geotechnical and geoenvironmental engineering(2004) 130(6):561–571.
  • [17]Şaroğlu F, Güner Y. Doğu Anadolu’nun jeomorfolojik gelişimine etki eden öğeler: Jeomorfoloji, volkanizma ilişkileri. TJK Bülteni(1981) 24:39–50.
  • [18]Bayraktutan MS, Merefield JR, Grainger P, Evans BM, Yilmaz M, Kalkan E. Regional gas geochemistry inan active tectonic zone, Erzurum Basin, eastern Turkey. Quarterly Journal of Engineering Geology(1996) 29:209–218.
  • [19]Kalkan E, Bayraktutan MS. Geotechnical evaluation of Turkish clay deposits: a case study in Northern Turkey. Environmental Geology(2008) 55(5):937–950. doi:10.1007/s00254-007-1044-8.
  • [20]Kalkan E, Yarbaşı N, Canbolat MY, Özgül M. Evaluation of thermal mud characteristics of Erzurum (Köprüköy) clayey raw materials (NE Turkey. International Journal of the Physical Sciences(2012) 7(40):5566–5576.
  • [21]Oruç B, Sertçelik İ, Kafadar Ö, Selim HH. Structural interpretation of the Erzurum Basin, eastern Turkey, using curvature gravity gradient tensor and gravity inversion of basement relief. Journal of Applied Geophysics(2013) 88:105–113. doi:10.1016/j.jappgeo.2012.10.006.
  • [22]Koçyiğit A, Öztürk A, İnal SG, E. Karasu Havzası’nın (Erzurum) Tektonostratigrafisi ve Mekanik Yorumu, Cumhuriyet Üniversitesi. Mühendislik Fakültesi Yerbilimleri Dergisi(1985) 2:2–15.
  • [23]Demirtaş R, Peynirci O, Yağyemez B. Erzurum ili Büyükşehir Belediyesi YerleĢim Alanının 1/5000 ölçekli Nazım İmar Planına Esas Jeolojik-Jeoteknik Etüt Raporu Kapsamında Erzurum Fay Zonunun Paleosismolojik ve Yüzey Faylanma Tehlike Zonu (Fay Tampon Bölge) Açısından Değerlendirilmesi. Erzurum Büyükşehir Belediyesi, Erzurum (2010).
  • [24]J.M.O. Jeoloji Mühendisleri Odası Fay Üzerinde Yaşayan İllerimiz: Erzurum Raporu-5(2021). Available from: https://www.jmo.org.tr/resimler/ekler/537dc875eb4c1f0_ek.pdf?tipi=58&turu=R&sube=0.
  • [25]Doğan A, Yıldırım C, Nefeslioğlu HA, Emre Ö. Maden Tetkik ve Arama Genel Müdürlüğü, 2004 Aşkale(Erzurum) Depremleri Değerlendirme Raporu. MTA: Jeoloji Etütleri Dairesi Başkanlığı (2004).
  • [26]Özer Ç, Bayrak E. Coulomb Stress Changes after 11 May 2017 Askale-Erzurum (NE Turkey) Earthquake (Mw = 4.7. International Journal of Earth Sciences Knowledge and Applications(2020) 2(1):13–18.
  • [27]Tavlaşoğlu E. Erzurum Aziziye Bölgesi Jeolojik Ve Jeoteknik Çalışması. Yüksek lisans Tezi, Atatürk Üniversitesi, Fen Bilimleri Enstitüsü. Erzurum (2021).
  • [28]Güzelhan Ü. Atatürk Üniversitesi kampüsü batısının zemin dinamik parametrelerinin belirlenmesi. Yüksek lisans Tezi, Atatürk Üniversitesi. Fen Bilimleri Enstitüsü, Erzurum (2023).
  • [29]Bilgin Y. Kamu binalarında deprem-zemin-yapı etkileşiminin araştırılması; Erzurum örneği. Yüksek lisans Tezi, Atatürk Üniversitesi, Fen Bilimleri Enstitüsü. Erzurum (2023).
  • [30]M.T.A. Maden Teknik Arama Genel Müdürlüğü, Yer Bilimleri Harita Görüntüleyici(2023). Available from: http://yerbilimleri.mta.gov.tr/anasayfa.aspx.
  • [31]A.F.A.D. Türkiye Deprem Tehlike Haritaları İnteraktif Web Uygulaması-AFAD(2023). Available from: https://tdth.afad.gov.tr/TDTH/main.xhtml.

Liquefaction Analysis for Aziziye District (Erzurum, NE Turkey) Soils According to Turkey Building Earthquake Regulations 2018 (TBER-2018)

Yıl 2023, Cilt: 7 Sayı: 2, 70 - 76, 15.12.2023

Öz

Erzurum, like many provinces of Turkey, which is located in the earthquake zone, faces the danger of a major earthquake atany moment. There are many active fault lines especially in the eastern, southern and central districts of Erzurum (NE Turkey). Especially the central districts will be highly affected by a possible earthquake due to their proximity to active fault lines.In this study, the liquefaction potential of Aziziye District (Erzurum, NE Turkey), which is considered to have a high liquefaction risk due to the high groundwater level in the central districts of Erzurum province, was investigated according to the Turkish Building Earthquake Regulations (TBER). Since Aziziye District is a district with a large construction and population density, the results of the study are important. The drilling data belonging to the ground investigation reports (made by the Municipality, Public Institutions and Organizations and individuals) and the master's thesis on this subject were used for Aziziye District. Within the scope of the study, local soil classes were determined according to TBER-2018 and liquefaction potentials were calculated according to earthquake magnitude Mw=6.0, Mw=6.5, Mw=7.0, Mw=7.5 and earthquake ground motion level DD-2. As a result, it was determined that a large part of Aziziye District is under liquefaction risk.

Kaynakça

  • [1]Araujo W, Ledezma C. Factors That Affect Liquefaction-Induced Lateral Spreading in Large Subduction Earthquakes. Applied Sciences(2020) 10(18):6503. doi:10.3390/app10186503.
  • [2]Durukan S, Akbuğa E. Liquefaction Analysis According to Turkish Building Earthquake Regulation (2018) and Sığacık (Seferihisar/İzmir) Case Study. Artvin Çoruh University, Natural Hazards Application and Research Center, Journal of Natural Hazards and Environment(2020) 6(2):304–318. doi:10.21324/dacd.617423.
  • [3]Youd TL. Application of MLR Procedure for Prediction of Liquefaction-Induced Lateral Spread Displacement. Journal of geotechnical and geoenvironmental engineering(2018) 6:144. doi:10.1061/(ASCE)GT.1943-5606.0001860.
  • [4]Bray JD, Boulanger R, Kramer SL, Rourke TO, Green RA, Rob PK, et al. Liquefaction-Induced Ground Movement Effects. In: Proceedings of the U.S.–New Zealand–Japan International Workshop, PEER Report 2017/02. Berkeley, CA, USA (2010). p. 150.
  • [5]Jia J. Soil Dynamics and Foundation Modeling. In: Liquefaction. Switzerland: Springer International Publishing: Cham (2017). p. 740.
  • [6]Mogami T, Kubo K. The Behaviour of Soil during Vibration. In: Proceedings of the Third International Conference on Soil Mechanics and Foundation Engineering(1953). p. 152–153.
  • [7]Seed HB, Idriss IM. Simplified procedure for evaluating soil liquefaction potential. Journal of the Soil Mechanics and Foundations Division(1971) 97(9):1249–1273. doi:10.1061/JSFEAQ.0001662.
  • [8]Iwasaki T, Tokida K, Tatsuoka F. Soil Liquefaction Potential Evaluation with Use of the Simplified Procedure. In: International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, St. Louis(1981). p. 209–214.
  • [9]Tokımatsu K, Yoshımı Y. Empirical correlation of soil liquefaction based on SPT N-value and fines content. Soils and Foundations, JSSMFE(1983) 23(4):56–74. doi:10.3208/sandf1972.23.4_56.
  • 10]Seed HB, Tokimatsu K, Harder LF, Chung R. Influence of Spt Procedures in Soil Liquefaction Resistance Evaluations. Journal of Geotechnical Engineering, ASCE(1985) 111, 12:1425–1445. doi:10.1061/(ASCE)0733-9410(1985)111:12(1425).
  • [11]Youd TL, Idriss IM. Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils. Journal of Geotechnical and Geoenvironmental Engineering(2001) 127(4):297–313. doi:10.1061/(ASCE)1090-0241(2001)127:4(297).
  • [12]Özsoy B, Durgunoğlu T. Sıvılaşma etkilerinin yüksek kayma modüllü zemin–çimento karışımı kolonlarla azaltılması, 5. Bildiri No: Ulusal Deprem Mühendisliği Kongresi (2003).
  • [13]Sumer BM, Kaya A, Hansen N. Impact of liquefaction on coastal structures in the 1999 Kocaeli, Turkey earthquake. In: The Twelfth International Offshore and Polar Engineering Conference. OnePetro (2002).
  • [14]Mollamahmutoglu M, Kayabali K, Beyaz T, Kolay E. Liquefaction-related building damage in Adapazari during the Turkey earthquake of August 17, 1999. Engineering Geology(2003) 67(3-4):297–307. doi:10.1016/S0013-7952(02)00190-4.
  • [15]Sumer BM, Ansal A, Cetin KO, Damgaard J, Gunbak AR, Hansen N, et al. Earthquake-induced liquefaction around marine structures. Journal of Waterway, Port, Coastal, and Ocean Engineering(2007) 133(1):55–82. doi:10.1061/(ASCE)0733-950X(2007)133:1(55).
  • [16]Martin JR, Olgun CG, Mitchell JK, Durgunoglu HT. High-modulus columns for liquefaction mitigation. Journal of geotechnical and geoenvironmental engineering(2004) 130(6):561–571.
  • [17]Şaroğlu F, Güner Y. Doğu Anadolu’nun jeomorfolojik gelişimine etki eden öğeler: Jeomorfoloji, volkanizma ilişkileri. TJK Bülteni(1981) 24:39–50.
  • [18]Bayraktutan MS, Merefield JR, Grainger P, Evans BM, Yilmaz M, Kalkan E. Regional gas geochemistry inan active tectonic zone, Erzurum Basin, eastern Turkey. Quarterly Journal of Engineering Geology(1996) 29:209–218.
  • [19]Kalkan E, Bayraktutan MS. Geotechnical evaluation of Turkish clay deposits: a case study in Northern Turkey. Environmental Geology(2008) 55(5):937–950. doi:10.1007/s00254-007-1044-8.
  • [20]Kalkan E, Yarbaşı N, Canbolat MY, Özgül M. Evaluation of thermal mud characteristics of Erzurum (Köprüköy) clayey raw materials (NE Turkey. International Journal of the Physical Sciences(2012) 7(40):5566–5576.
  • [21]Oruç B, Sertçelik İ, Kafadar Ö, Selim HH. Structural interpretation of the Erzurum Basin, eastern Turkey, using curvature gravity gradient tensor and gravity inversion of basement relief. Journal of Applied Geophysics(2013) 88:105–113. doi:10.1016/j.jappgeo.2012.10.006.
  • [22]Koçyiğit A, Öztürk A, İnal SG, E. Karasu Havzası’nın (Erzurum) Tektonostratigrafisi ve Mekanik Yorumu, Cumhuriyet Üniversitesi. Mühendislik Fakültesi Yerbilimleri Dergisi(1985) 2:2–15.
  • [23]Demirtaş R, Peynirci O, Yağyemez B. Erzurum ili Büyükşehir Belediyesi YerleĢim Alanının 1/5000 ölçekli Nazım İmar Planına Esas Jeolojik-Jeoteknik Etüt Raporu Kapsamında Erzurum Fay Zonunun Paleosismolojik ve Yüzey Faylanma Tehlike Zonu (Fay Tampon Bölge) Açısından Değerlendirilmesi. Erzurum Büyükşehir Belediyesi, Erzurum (2010).
  • [24]J.M.O. Jeoloji Mühendisleri Odası Fay Üzerinde Yaşayan İllerimiz: Erzurum Raporu-5(2021). Available from: https://www.jmo.org.tr/resimler/ekler/537dc875eb4c1f0_ek.pdf?tipi=58&turu=R&sube=0.
  • [25]Doğan A, Yıldırım C, Nefeslioğlu HA, Emre Ö. Maden Tetkik ve Arama Genel Müdürlüğü, 2004 Aşkale(Erzurum) Depremleri Değerlendirme Raporu. MTA: Jeoloji Etütleri Dairesi Başkanlığı (2004).
  • [26]Özer Ç, Bayrak E. Coulomb Stress Changes after 11 May 2017 Askale-Erzurum (NE Turkey) Earthquake (Mw = 4.7. International Journal of Earth Sciences Knowledge and Applications(2020) 2(1):13–18.
  • [27]Tavlaşoğlu E. Erzurum Aziziye Bölgesi Jeolojik Ve Jeoteknik Çalışması. Yüksek lisans Tezi, Atatürk Üniversitesi, Fen Bilimleri Enstitüsü. Erzurum (2021).
  • [28]Güzelhan Ü. Atatürk Üniversitesi kampüsü batısının zemin dinamik parametrelerinin belirlenmesi. Yüksek lisans Tezi, Atatürk Üniversitesi. Fen Bilimleri Enstitüsü, Erzurum (2023).
  • [29]Bilgin Y. Kamu binalarında deprem-zemin-yapı etkileşiminin araştırılması; Erzurum örneği. Yüksek lisans Tezi, Atatürk Üniversitesi, Fen Bilimleri Enstitüsü. Erzurum (2023).
  • [30]M.T.A. Maden Teknik Arama Genel Müdürlüğü, Yer Bilimleri Harita Görüntüleyici(2023). Available from: http://yerbilimleri.mta.gov.tr/anasayfa.aspx.
  • [31]A.F.A.D. Türkiye Deprem Tehlike Haritaları İnteraktif Web Uygulaması-AFAD(2023). Available from: https://tdth.afad.gov.tr/TDTH/main.xhtml.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mikro ve Nanosistemler
Bölüm Research Articles
Yazarlar

Lale Öncü

Ekrem Kalkan

Yayımlanma Tarihi 15 Aralık 2023
Gönderilme Tarihi 15 Ekim 2023
Kabul Tarihi 25 Kasım 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 7 Sayı: 2

Kaynak Göster

APA Öncü, L., & Kalkan, E. (2023). Liquefaction Analysis for Aziziye District (Erzurum, NE Turkey) Soils According to Turkey Building Earthquake Regulations 2018 (TBER-2018). International Journal of Innovative Research and Reviews, 7(2), 70-76.