Araştırma Makalesi
BibTex RIS Kaynak Göster

PARABOLİK OLUKLU NEMLENDİRİCİ GÜNEŞ KOLLEKTÖRÜ BAZLI GÜNEŞ ENERJİLİ DESALİNASYON SİSTEMİNİN TEORİK PERFORMANS DEĞERLENDİRİLMESİ

Yıl 2024, Cilt: 44 Sayı: 1, 163 - 189, 03.06.2024
https://doi.org/10.47480/isibted.1494478

Öz

Bu makalede, parabolik oluklu nemlendirici güneş kolektörü bazlı güneş enerjili desalinasyon sistemi (PHSC-SS) önerilmektedir. Amacı, bazı önemli performans iyileştirme tekniklerini düz plaka nemlendirici güneş kolektörü bazlı desalinasyon sistemine (düz plaka HSC-SS) uygulamaktır. Genel sistem performansını önemli ölçüde iyileştirmek içindir. Bunlar arasında parabolik oluklu güneş yoğunlaştırıcılarının kullanımı ve nemlendirici güneş kolektörlerinin tahliye borulu kolektörlerden tasarlanması yer almaktadır. Sonuçlar, optimum genel performans elde etmek için türbülanslı bir hava akışı rejimiyle çalışması gereken düz plakalı HSC-SS'nin aksine, PHSC-SS'nin laminer bir hava akışı rejimiyle ve ısı kolektörü elemanında yüksek hava giriş ve çıkış sıcaklıklarıyla (atmosferik basınçta en az 55 °C ve 100 °C'den düşük) çalışması gerektiğini ortaya koymaktadır. 900 W/m2 gelen güneş ışınımı, 2 m2 güneş kolektörü alanı ve 0,00042 kg/s hava akış hızı için PHSC-SS'nin maksimum enerji verimi, ekserji verimi ve tatlı su üretkenliği sırasıyla %68,12, %14,87 ve 1.697 kg/saat olarak bulunmuştur. Aynı gelen güneş ışınımı, güneş kolektörü alanı, ve 0,1 kg/s hava akış hızı için düz plakalı HSC-SS'nin elde edilen değerleri sırasıyla %72,9, %1,12 ve atmosferik basınçta 30 °C'den düşük hava giriş ve çıkış sıcaklıkları için 1,07 - 2,923 kg/saat arasında olarak bulunmuştur. Bazı aşırı durumlarda düz plakalı HSC-SS'nin tatlı su verimliliği, PHSC-SS'den daha yüksek olsa da, laminer hava akımı rejiminin PHSC-SS'ye büyük avantajlar sağladığı belirtilmelidir. Bunlar, kondenser girişindeki daha yüksek hava sıcaklıkları (suyun yoğuşma işlemi kolaylaştırması), yardımcı bir soğutma cihazına gerek olmaması (düz plakalı HSC-SS'te gereklidir), sistemin daha az mekanik titreşimi, kondenser boyutunun küçülmesi ve hava üfleyiciler tarafından daha az enerji tüketilmesidir. Ayrıca, PHSC-SS'nin üst sınırı, hava akışı olmadan çalışan bir PHSC-SS'dir. Bu sistem, kaynama noktasındaki su damlacıklarının absorberden buharlaştırılması ve ardından kondensere emilmesi ile çalışmaktadır. Bu, bir flaş buharlaşmaya benzemektedir.

Kaynakça

  • Abbaspour, M., Esmaili, Q., & Ramiar, A. (2024). Improving vertical solar still performance for efficient Desalination: Investigating the influence of Wick, condensate plate and device dimensions. Solar Energy, 272, 112468. https://doi.org/10.1016/j.solener.2024.112468
  • Abbaspour, M., Ramiar, A., & Esmaili, Q. (2022). Efficiency improvement of vertical solar stills – A review. Solar Energy, 235, 19–35. https://doi.org/10.1016/j.solener.2022.02.027
  • Abdelaziz, G. B., Algazzar, A. M., El-Said, E. M. S., Elsaid, A. M., Sharshir, S. W., Kabeel, A. E., & El-Behery, S. M. (2021). Performance enhancement of tubular solar still using nano-enhanced energy storage material integrated with v-corrugated aluminum basin, wick, and nanofluid. Journal of Energy Storage, 41, 102933. https://doi.org/10.1016/j.est.2021.102933
  • Abdelaziz, Gamal. B., Dahab, M. A., Omara, M. A., Sharshir, S. W., Elsaid, A. M., & El-Said, E. M. S. (2022). Humidification dehumidification saline water desalination system utilizing high frequency ultrasonic humidifier and solar heated air stream. Thermal Science and Engineering Progress, 27, 101144. https://doi.org/10.1016/j.tsep.2021.101144 Abdullah, A. S., Alarjani, A., Abou Al-sood, M. M., Omara, Z. M., Kabeel, A. E., & Essa, F. A. (2019). Rotating-wick solar still with mended evaporation technics: Experimental approach. Alexandria Engineering Journal, 58(4), 1449–1459. https://doi.org/10.1016/j.aej.2019.11.018
  • Abdullah, A. S., Omara, Z. M., Essa, F. A., Alarjani, A., Mansir, I. B., & Amro, M. I. (2021). Enhancing the solar still performance using reflectors and sliding-wick belt. Solar Energy, 214, 268–279. https://doi.org/10.1016/j.solener.2020.11.016
  • Abdullah, A. S., Omara, Z. M., Essa, F. A., Younes, M. M., Shanmugan, S., Abdelgaied, M., Amro, M. I., Kabeel, A. E., & Farouk, W. M. (2021). Improving the performance of trays solar still using wick corrugated absorber, nano-enhanced phase change material and photovoltaics-powered heaters. Journal of Energy Storage, 40, 102782. https://doi.org/10.1016/j.est.2021.102782
  • Abed, A. H., Hoshi, H. A., & Jabal, M. H. (2021). Experimental investigation of modified solar still coupled with high-frequency ultrasonic vaporizer and phase change material capsules. Case Studies in Thermal Engineering, 28, 101531. https://doi.org/10.1016/j.csite.2021.101531
  • Abozoor, M. K. S., Meraj, M., Azhar, M., Khan, M. E., Seraj, M., Ahsan, M., Ahmed, S. A., & Bani Hani, E. H. (2022). Energy and exergy analyses of active solar still integrated with evacuated flat plate collector for New Delhi. Groundwater for Sustainable Development, 19, 100833. https://doi.org/10.1016/j.gsd.2022.100833
  • Ahmed, H., Najib, A., Zaidi, A. A., Naseer, M. N., & Kim, B. (2022). Modeling, design optimization and field testing of a solar still with corrugated absorber plate and phase change material for Karachi weather conditions. Energy Reports, 8, 11530–11546. https://doi.org/10.1016/j.egyr.2022.08.276
  • Ahmed, M. M. Z., Alshammari, F., Alatawi, I., Alhadri, M., & Elashmawy, M. (2022). A novel solar desalination system integrating inclined and tubular solar still with parabolic concentrator. Applied Thermal Engineering, 213, 118665. https://doi.org/10.1016/j.applthermaleng.2022.118665
  • Alatawi, I., Khaliq, A., Ahmed Heniegal, A. M., Abdelaziz, G. B., & Elashmawy, M. (2022). Tubular solar stills: Recent developments and future. Solar Energy Materials and Solar Cells, 242, 111785. https://doi.org/10.1016/j.solmat.2022.111785
  • Al-Harahsheh, M., Abu-Arabi, M., Ahmad, M., & Mousa, H. (2022). Self-powered solar desalination using solar still enhanced by external solar collector and phase change material. Applied Thermal Engineering, 206, 118118. https://doi.org/10.1016/j.applthermaleng.2022.118118
  • Al-harahsheh, M., Abu-Arabi, M., Mousa, H., & Alzghoul, Z. (2018). Solar desalination using solar still enhanced by external solar collector and PCM. Applied Thermal Engineering, 128, 1030–1040. https://doi.org/10.1016/j.applthermaleng.2017.09.073
  • Alnaimat, F., Ziauddin, M., & Mathew, B. (2021). A review of recent advances in humidification and dehumidification desalination technologies using solar energy. Desalination, 499, 114860. https://doi.org/10.1016/j.desal.2020.114860
  • Al-Otoom, A., & Al-Khalaileh, A. T. (2020). Water desalination using solar continuous humidification–dehumidification process using hygroscopic solutions and rotating belt. Solar Energy, 197, 38–49. https://doi.org/10.1016/j.solener.2019.12.075
  • Alqsair, U. F., Abdullah, A. S., & Omara, Z. M. (2022). Enhancement the productivity of drum solar still utilizing parabolic solar concentrator, phase change material and nanoparticles’ coating. Journal of Energy Storage, 55, 105477. https://doi.org/10.1016/j.est.2022.105477
  • Alrbai, M., Hayajneh, H., Arakza, F., Enizat, J., Al-Dahidi, S., Al-Ghussain, L., & Hassan, M. A. (2022). Techno-economic analysis of a solar-powered humidification-dehumidification desalination system under fogging effect. Sustainable Energy Technologies and Assessments, 53, 102752. https://doi.org/10.1016/j.seta.2022.102752
  • American Society of Heating Refrigerating and Air-Conditioning Engineers Inc. (ASHRAE). (2021). 2021 ASHRAE Handbook - Fundamentals. https://www.ashrae.org
  • Amin, M., Umar, H., Ginting, S. F., Amir, F., Rizal, T. A., Septiadi, W. N., & Mahlia, T. M. I. (2024). Enhancing solar distillation through beeswax-infused tubular solar still with a heat exchanger using parabolic trough collector. Journal of Energy Storage, 86, 111262. https://doi.org/10.1016/j.est.2024.111262
  • Angappan, G., Pandiaraj, S., Panchal, H., Kathiresan, T., Ather, D., Dutta, C., Subramaniam, M. K., Muthusamy, S., Kabeel, A. E., El-Shafay, A. S., & Sadasivuni, K. K. (2022). An extensive review of performance enhancement techniques for pyramid solar still for solar thermal applications. Desalination, 532, 115692. https://doi.org/10.1016/j.desal.2022.115692
  • Arunkumar, T., & Kabeel, A. E. (2017). Effect of phase change material on concentric circular tubular solar still-Integration meets enhancement. Desalination, 414, 46–50. https://doi.org/10.1016/j.desal.2017.03.035
  • Bahrami, M., Madadi Avargani, V., & Bonyadi, M. (2019). Comprehensive experimental and theoretical study of a novel still coupled to a solar dish concentrator. Applied Thermal Engineering, 151, 77–89. https://doi.org/10.1016/j.applthermaleng.2019.01.103
  • Bait, O., & Si–Ameur, M. (2018). Enhanced heat and mass transfer in solar stills using nanofluids: A review. Solar Energy, 170, 694–722. https://doi.org/10.1016/j.solener.2018.06.020
  • Bejan, A. (2016). Advanced Engineering Thermodynamics. Wiley. https://doi.org/10.1002/9781119245964
  • Chandrashekara, M., & Yadav, A. (2017). An experimental study of the effect of exfoliated graphite solar coating with a sensible heat storage and Scheffler dish for desalination. Applied Thermal Engineering, 123, 111–122. https://doi.org/10.1016/j.applthermaleng.2017.05.058
  • Chauhan, V. K., Shukla, S. K., Tirkey, J. V., & Singh Rathore, P. K. (2021). A comprehensive review of direct solar desalination techniques and its advancements. Journal of Cleaner Production, 284, 124719. https://doi.org/10.1016/j.jclepro.2020.124719
  • Deniz, E., & Çınar, S. (2016). Energy, exergy, economic and environmental (4E) analysis of a solar desalination system with humidification-dehumidification. Energy Conversion and Management, 126, 12–19. https://doi.org/10.1016/j.enconman.2016.07.064
  • Deshmukh, H. S., & Thombre, S. B. (2017). Solar distillation with single basin solar still using sensible heat storage materials. Desalination, 410, 91–98. https://doi.org/10.1016/j.desal.2017.01.030
  • Dhindsa, G. S. (2021). Performance enhancement of basin solar still using paraffin wax and floating wicks in the basin. Materials Today: Proceedings, 37, 3310–3316. https://doi.org/10.1016/j.matpr.2020.09.121
  • Dhivagar, R., El-Sapa, S., Alrubaie, A. J., Al-khaykan, A., Chamkha, A. J., Panchal, H., El-Sebaey, M. S., & sharma, K. (2022). A case study on thermal performance analysis of a solar still basin employing ceramic magnets. Case Studies in Thermal Engineering, 39, 102402. https://doi.org/10.1016/j.csite.2022.102402
  • Duffie, J. A., & Beckman, W. A. (2013). Solar Engineering of Thermal Processes (4th ed.). John Wiley & Sons, Inc. https://doi.org/10.1002/9781118671603
  • Dumka, P., & Mishra, D. R. (2020). Performance evaluation of single slope solar still augmented with the ultrasonic fogger. Energy, 190, 116398. https://doi.org/10.1016/j.energy.2019.116398
  • Durkaieswaran, P., & Murugavel, K. K. (2015). Various special designs of single basin passive solar still – A review. Renewable and Sustainable Energy Reviews, 49, 1048–1060. https://doi.org/10.1016/j.rser.2015.04.111
  • Elango, T., Kannan, A., & Kalidasa Murugavel, K. (2015). Performance study on single basin single slope solar still with different water nanofluids. Desalination, 360, 45–51. https://doi.org/10.1016/j.desal.2015.01.004
  • Elashmawy, M. (2019). Effect of surface cooling and tube thickness on the performance of a high temperature standalone tubular solar still. Applied Thermal Engineering, 156, 276–286. https://doi.org/10.1016/j.applthermaleng.2019.04.068
  • Elashmawy, M., & Ahmed, M. M. Z. (2021). Enhancing tubular solar still productivity using composite aluminum/copper/sand sensible energy storage tubes. Solar Energy Materials and Solar Cells, 221, 110882. https://doi.org/10.1016/j.solmat.2020.110882
  • Elashmawy, M., Nafey, A. S., Sharshir, S. W., Abdelaziz, G. B., & Ahmed, M. M. Z. (2024). Experimental investigation of developed tubular solar still using multi-evaporator design. Journal of Cleaner Production, 443, 141040. https://doi.org/10.1016/j.jclepro.2024.141040
  • Elgendi, M., Kabeel, A. E., & Essa, F. A. (2022). Improving the solar still productivity using thermoelectric materials: A review. Alexandria Engineering Journal. https://doi.org/10.1016/j.aej.2022.10.011
  • Elminshawy, N. A. S., Siddiqui, F. R., & Addas, M. F. (2015). Experimental and analytical study on productivity augmentation of a novel solar humidification–dehumidification (HDH) system. Desalination, 365, 36–45. https://doi.org/10.1016/j.desal.2015.02.019
  • El-Said, E. M. S., & Abdelaziz, G. B. (2020). Experimental investigation and economic assessment of a solar still performance using high-frequency ultrasound waves atomizer. Journal of Cleaner Production, 256, 120609. https://doi.org/10.1016/j.jclepro.2020.120609
  • El-Said, E. M. S., Dahab, M. A., Omara, M., & Abdelaziz, G. B. (2021). Solar desalination unit coupled with a novel humidifier. Renewable Energy, 180, 297–312. https://doi.org/10.1016/j.renene.2021.08.105
  • Elshamy, S. M., & El-Said, E. M. S. (2018). Comparative study based on thermal, exergetic and economic analyses of a tubular solar still with semi-circular corrugated absorber. Journal of Cleaner Production, 195, 328–339. https://doi.org/10.1016/j.jclepro.2018.05.243
  • Essa, F. A., Abdullah, A. S., Omara, Z. M., Kabeel, A. E., & Gamiel, Y. (2021). Experimental study on the performance of trays solar still with cracks and reflectors. Applied Thermal Engineering, 188, 116652. https://doi.org/10.1016/j.applthermaleng.2021.116652
  • Essa, F. A., Alawee, W. H., Mohammed, S. A., Dhahad, H. A., Abdullah, A. S., & Omara, Z. M. (2021). Experimental investigation of convex tubular solar still performance using wick and nanocomposites. Case Studies in Thermal Engineering, 27, 101368. https://doi.org/10.1016/j.csite.2021.101368
  • Essa, F. A., Omara, Z. M., Abdullah, A. S., Kabeel, A. E., & Abdelaziz, G. B. (2021). Enhancing the solar still performance via rotating wick belt and quantum dots nanofluid. Case Studies in Thermal Engineering, 27, 101222. https://doi.org/10.1016/j.csite.2021.101222
  • Essa, M. A., Ibrahim, M. M., & Mostafa, N. H. (2021). Experimental parametric passive solar desalination prototype analysis. Journal of Cleaner Production, 325, 129333. https://doi.org/10.1016/j.jclepro.2021.129333
  • Evangelisti, L., Guattari, C., & Asdrubali, F. (2019). On the sky temperature models and their influence on buildings energy performance: A critical review. Energy and Buildings, 183, 607–625. https://doi.org/10.1016/j.enbuild.2018.11.037
  • Fallahzadeh, R., Aref, L., Madadi Avargani, V., & Gholamiarjenaki, N. (2020). An experimental investigation on the performance of a new portable active bubble basin solar still. Applied Thermal Engineering, 181, 115918. https://doi.org/10.1016/j.applthermaleng.2020.115918
  • Fayaz, Z., Dhindsa, G. S., & Sokhal, G. S. (2022). Experimental study of solar still having variable slope tilted wick in the basin to enhance its daily yield. Materials Today: Proceedings, 48, 1421–1426. https://doi.org/10.1016/j.matpr.2021.09.195
  • FlyCarpet. (2021, May 7). Free Online Interactive Psychrometric Chart. http://www.flycarpet.net/en/PsyOnline
  • Forristall, R. (2003). Heat Transfer Analysis and Modeling of a Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver. https://www.nrel.gov/docs/fy04osti/34169.pdf
  • Ge, Z., Wang, H., Wang, H., Zhang, S., & Guan, X. (2014). Exergy Analysis of Flat Plate Solar Collectors. Entropy, 16(5), 2549–2567. https://doi.org/10.3390/e16052549
  • Ghandourah, E., Panchal, H., Fallatah, O., Ahmed, H. M., Moustafa, E. B., & Elsheikh, A. H. (2022). Performance enhancement and economic analysis of pyramid solar still with corrugated absorber plate and conventional solar still: A case study. Case Studies in Thermal Engineering, 35, 101966. https://doi.org/10.1016/j.csite.2022.101966
  • Hashemi, S. A., Kazemi, M., Taheri, A., Passandideh-Fard, M., & Sardarabadi, M. (2020). Experimental investigation and cost analysis on a nanofluid-based desalination system integrated with an automatic dual-axis sun tracker and Fresnel lens. Applied Thermal Engineering, 180, 115788. https://doi.org/10.1016/j.applthermaleng.2020.115788
  • Hussein, A. K., Rashid, F. L., Rasul, M. K., Basem, A., Younis, O., Homod, R. Z., El Hadi Attia, M., Al-Obaidi, M. A., Ben Hamida, M. B., Ali, B., & Abdulameer, S. F. (2024). A review of the application of hybrid nanofluids in solar still energy systems and guidelines for future prospects. Solar Energy, 272, 112485. https://doi.org/10.1016/j.solener.2024.112485
  • Ibrahim, A. G. M., & Dincer, I. (2015). A solar desalination system: Exergetic performance assessment. Energy Conversion and Management, 101, 379–392. https://doi.org/10.1016/j.enconman.2015.05.060
  • Jafari Mosleh, H., & Ahmadi, R. (2019). Linear parabolic trough solar power plant assisted with latent thermal energy storage system: A dynamic simulation. Applied Thermal Engineering, 161, 114204. https://doi.org/10.1016/j.applthermaleng.2019.114204
  • Jafari Mosleh, H., Jahangiri Mamouri, S., Shafii, M. B., & Hakim Sima, A. (2015). A new desalination system using a combination of heat pipe, evacuated tube and parabolic trough collector. Energy Conversion and Management, 99, 141–150. https://doi.org/10.1016/j.enconman.2015.04.028
  • Jafarkazemi, F., & Ahmadifard, E. (2013). Energetic and exergetic evaluation of flat plate solar collectors. Renewable Energy, 56, 55–63. https://doi.org/10.1016/j.renene.2012.10.031
  • Jobrane, M., Kopmeier, A., Kahn, A., Cauchie, H.-M., Kharroubi, A., & Penny, C. (2021). Internal and external improvements of wick type solar stills in different configurations for drinking water production– A review. Groundwater for Sustainable Development, 12, 100519. https://doi.org/10.1016/j.gsd.2020.100519
  • Jobrane, M., Kopmeier, A., Kahn, A., Cauchie, H.-M., Kharroubi, A., & Penny, C. (2022). Theoretical and experimental investigation on a novel design of wick type solar still for sustainable freshwater production. Applied Thermal Engineering, 200, 117648. https://doi.org/10.1016/j.applthermaleng.2021.117648
  • Kabeel, A. E., & Abdelgaied, M. (2017). Performance enhancement of modified solar still using multi-groups of two coaxial pipes in basin. Applied Thermal Engineering, 118, 23–32. https://doi.org/10.1016/j.applthermaleng.2017.02.090
  • Kabeel, A. E., Arunkumar, T., Denkenberger, D. C., & Sathyamurthy, R. (2017). Performance enhancement of solar still through efficient heat exchange mechanism – A review. Applied Thermal Engineering, 114, 815–836. https://doi.org/10.1016/j.applthermaleng.2016.12.044
  • Kabeel, A. E., Omara, Z. M., & Essa, F. A. (2014a). Enhancement of modified solar still integrated with external condenser using nanofluids: An experimental approach. Energy Conversion and Management, 78, 493–498. https://doi.org/10.1016/j.enconman.2013.11.013
  • Kabeel, A. E., Omara, Z. M., & Essa, F. A. (2014b). Improving the performance of solar still by using nanofluids and providing vacuum. Energy Conversion and Management, 86, 268–274. https://doi.org/10.1016/j.enconman.2014.05.050
  • Kakaç, S., Liu, H., & Pramuanjaroenkij, A. (2012). Heat Exchangers: Selection, Rating, and Thermal Design (3rd ed.). CRC Press. https://doi.org/10.1201/b11784
  • Kalogirou, S. A., Karellas, S., Badescu, V., & Braimakis, K. (2016). Exergy analysis on solar thermal systems: A better understanding of their sustainability. Renewable Energy, 85, 1328–1333. https://doi.org/10.1016/j.renene.2015.05.037
  • Kasaeian, A., Babaei, S., Jahanpanah, M., Sarrafha, H., Sulaiman Alsagri, A., Ghaffarian, S., & Yan, W.-M. (2019). Solar humidification-dehumidification desalination systems: A critical review. Energy Conversion and Management, 201, 112129. https://doi.org/10.1016/j.enconman.2019.112129
  • Kaushal, A., & Varun. (2010). Solar stills: A review. Renewable and Sustainable Energy Reviews, 14(1), 446–453. https://doi.org/10.1016/j.rser.2009.05.011
  • Kousik Suraparaju, S., & Kumar Natarajan, S. (2022). Effect of Natural Sisal Fibre on Enhancing the Condensation Rate of Solar Still for Sustainable Clean Water Production. Thermal Science and Engineering Progress, 101527. https://doi.org/10.1016/j.tsep.2022.101527
  • Kumar Chauhan, V., & Kumar Shukla, S. (2022a). Analytical and experimental study of performance of Pyrex glass Q-dot based passive solar still glass evaporator. Thermal Science and Engineering Progress, 34, 101387. https://doi.org/10.1016/j.tsep.2022.101387
  • Kumar Chauhan, V., & Kumar Shukla, S. (2022b). Experimental study of effect of glass cover tilt angle of solar still in winter season of India’s composite climate. Thermal Science and Engineering Progress, 33, 101348. https://doi.org/10.1016/j.tsep.2022.101348
  • Kumar, S., Dubey, A., & Tiwari, G. N. (2014). A solar still augmented with an evacuated tube collector in forced mode. Desalination, 347, 15–24. https://doi.org/10.1016/j.desal.2014.05.019
  • Lauvandy, A. F., Raihananda, F. A., Estefan, M. J., Damanik, W. S., Mu’min, G. F., Juangsa, F. B., & Sambegoro, P. (2024). Application of a low-cost floating solar still in Indonesia. Energy for Sustainable Development, 79, 101410. https://doi.org/10.1016/j.esd.2024.101410
  • Liang, P., Liu, S., Ding, Y., Wen, X., Wang, K., Shao, C., Hong, X., & Liu, Y. (2021). A self-floating electrospun nanofiber mat for continuously high-efficiency solar desalination. Chemosphere, 280, 130719. https://doi.org/10.1016/j.chemosphere.2021.130719
  • Lienhard IV, J. H., & Lienhard V, J. H. (2020). A Heat Transfer Textbook (5th ed.). Phlogiston Pres. https://ahtt.mit.edu/wp-content/uploads/2020/08/AHTTv510.pdf
  • Luo, X., Jiao, L., Guo, Y., Bao, H., Zhao, C., & Gu, X. (2024). Ultrahigh freshwater production achieved by unidirectional heat transfer interfacial evaporation solar still integrated with waste heat recovery. Energy Conversion and Management, 304, 118226. https://doi.org/10.1016/j.enconman.2024.118226
  • Luo, X., Shi, J., Zhao, C., Luo, Z., Gu, X., & Bao, H. (2021). The energy efficiency of interfacial solar desalination. Applied Energy, 302, 117581. https://doi.org/10.1016/j.apenergy.2021.117581
  • M, C., & Yadav, A. (2017). Water desalination system using solar heat: A review. Renewable and Sustainable Energy Reviews, 67, 1308–1330. https://doi.org/10.1016/j.rser.2016.08.058
  • Mahala, T., & Sharma, N. (2024). Experimental investigations of a novel solar still with heat storage materials - energy, exergy, economic and environmental analyses. Desalination, 578, 117467. https://doi.org/10.1016/j.desal.2024.117467
  • Mahian, O., Kianifar, A., Heris, S. Z., Wen, D., Sahin, A. Z., & Wongwises, S. (2017). Nanofluids effects on the evaporation rate in a solar still equipped with a heat exchanger. Nano Energy, 36, 134–155. https://doi.org/10.1016/j.nanoen.2017.04.025
  • Maliani, O. D., Bekkaoui, A., Baali, E. H., Guissi, K., El Fellah, Y., & Errais, R. (2020). Investigation on novel design of solar still coupled with two axis solar tracking system. Applied Thermal Engineering, 172, 115144. https://doi.org/10.1016/j.applthermaleng.2020.115144
  • Mehta, P., Bhatt, N., Bassan, G., Said, Z., & ElCheikh, A. (2024). Exploring stepped solar still developments with a case study for potable water provision in salt farming regions. Sustainable Energy Technologies and Assessments, 64, 103700. https://doi.org/10.1016/j.seta.2024.103700
  • Meng, Z., Li, Z., Li, Y., Zhang, C., Wang, K., Yu, W., Wu, D., Zhu, H., & Li, W. (2022). Novel nanofluid based efficient solar vaporization systems with applications in desalination and wastewater treatment. Energy, 247, 123513. https://doi.org/10.1016/j.energy.2022.123513
  • Modi, K. V., Maurya, S. R., Parmar, J. H., Kalsariya, A. B., & Panasara, P. B. (2022). An experimental investigation of the effectiveness of partially and fully submerged metal hollow-fins and jute cloth wick-fins on the performance of a dual-basin single-slope solar still. Cleaner Engineering and Technology, 6, 100392. https://doi.org/10.1016/j.clet.2021.100392
  • Modi, K. V., & Modi, J. G. (2019). Performance of single-slope double-basin solar stills with small pile of wick materials. Applied Thermal Engineering, 149, 723–730. https://doi.org/10.1016/j.applthermaleng.2018.12.071
  • Modi, K. V., Patel, U. N., Patel, S. J., Patel, J. N., & Patel, S. R. (2022). Efficacy of partially and fully submerged circular cross-section metal hollow-fins and black cotton cloth wick-segments on a single-basin dual-slope solar still. Journal of Cleaner Production, 344, 131059. https://doi.org/10.1016/j.jclepro.2022.131059
  • Mohamed, A. F., Hegazi, A. A., Sultan, G. I., & El-Said, E. M. S. (2019). Augmented heat and mass transfer effect on performance of a solar still using porous absorber: Experimental investigation and exergetic analysis. Applied Thermal Engineering, 150, 1206–1215. https://doi.org/10.1016/j.applthermaleng.2019.01.070
  • Mohamed, A. S. A., Shahdy, A. G., & Salem Ahmed, M. (2021). Investigation on solar humidification dehumidification water desalination system using a closed-air cycle. Applied Thermal Engineering, 188, 116621. https://doi.org/10.1016/j.applthermaleng.2021.116621
  • Mohammadi, K., Taghvaei, H., & Rad, E. G. (2020). Experimental investigation of a double slope active solar still: Effect of a new heat exchanger design performance. Applied Thermal Engineering, 180, 115875. https://doi.org/10.1016/j.applthermaleng.2020.115875
  • Mohanraj, M., Karthick, L., & Dhivagar, R. (2021). Performance and economic analysis of a heat pump water heater assisted regenerative solar still using latent heat storage. Applied Thermal Engineering, 196, 117263. https://doi.org/10.1016/j.applthermaleng.2021.117263
  • Muthu Manokar, A., Kalidasa Murugavel, K., & Esakkimuthu, G. (2014). Different parameters affecting the rate of evaporation and condensation on passive solar still – A review. Renewable and Sustainable Energy Reviews, 38, 309–322. https://doi.org/10.1016/j.rser.2014.05.092
  • Nassar, Y. F., Yousif, S. A., & Salem, A. A. (2007). The second generation of the solar desalination systems. Desalination, 209(1–3), 177–181. https://doi.org/10.1016/j.desal.2007.04.039
  • Nayagam, V. S., Geetha, K., Vallikannu, R., Muthuvel, S. K., Ram, G. C., Gupta, P., Sudhakar, M., Mohanavel, V., & Sathyamurthy, R. (2022). Energy efficient tubular solar still for augmented yield using electrical heater. Energy Reports, 8, 959–964. https://doi.org/10.1016/j.egyr.2022.10.283
  • Negi, A., Dhindsa, G. S., & Sehgal, S. S. (2022). Experimental investigation on single basin tilted wick solar still integrated with flat plate collector. Materials Today: Proceedings, 48, 1439–1446. https://doi.org/10.1016/j.matpr.2021.09.210
  • Nijmeh, S., Odeh, S., & Akash, B. (2005). Experimental and theoretical study of a single-basin solar sill in Jordan. International Communications in Heat and Mass Transfer, 32(3–4), 565–572. https://doi.org/10.1016/j.icheatmasstransfer.2004.06.006
  • Omara, Z. M., Ahmed, M. M. Z., Alawee, W. H., Shanmugan, S., & Elashmawy, M. (2024). A comprehensive review of nano-enhanced phase change materials on solar stills with scientometric analysis. Results in Engineering, 22, 102088. https://doi.org/10.1016/j.rineng.2024.102088
  • Omara, Z. M., Alawee, W. H., Basem, A., & Jawad Al-Bayati, A. D. (2024). Heat loss reduction techniques for walls in solar stills: A review. Results in Engineering, 22, 101996. https://doi.org/10.1016/j.rineng.2024.101996
  • Omara, Z. M., Eltawil, M. A., & ElNashar, E. A. (2013). A new hybrid desalination system using wicks/solar still and evacuated solar water heater. Desalination, 325, 56–64. https://doi.org/10.1016/j.desal.2013.06.024
  • Padilla, R. V., Demirkaya, G., Goswami, D. Y., Stefanakos, E., & Rahman, M. M. (2011). Heat transfer analysis of parabolic trough solar receiver. Applied Energy, 88(12), 5097–5110. https://doi.org/10.1016/j.apenergy.2011.07.012
  • Pandey, N., & Naresh, Y. (2024). A comprehensive 4E (energy, exergy, economic, environmental) analysis of novel pyramid solar still coupled with pulsating heat pipe: An experimental study. Renewable Energy, 225, 120227. https://doi.org/10.1016/j.renene.2024.120227
  • Peng, G., Xu, Z., Ji, J., Sun, S., & Yang, N. (2022). A study on the upper limit efficiency of solar still by optimizing the mass transfer. Applied Thermal Engineering, 213, 118664. https://doi.org/10.1016/j.applthermaleng.2022.118664
  • Poonia, S., Singh, A. K., & Jain, D. (2022). Performance evaluation of PCM based solar concentrator type desalination device. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2022.02.637
  • Prasanna, Y. S., & Deshmukh, S. S. (2022). Energy, exergy and economic analysis of an air cavity appended passive solar still of different basin material at varying depth. Energy for Sustainable Development, 71, 13–26. https://doi.org/10.1016/j.esd.2022.09.008
  • Rahimi-Ahar, Z., Hatamipour, M. S., & Ahar, L. R. (2020). Air humidification-dehumidification process for desalination: A review. Progress in Energy and Combustion Science, 80, 100850. https://doi.org/10.1016/j.pecs.2020.100850
  • Rahimi-Ahar, Z., Hatamipour, M. S., Ghalavand, Y., & Palizvan, A. (2020). Comprehensive study on vacuum humidification-dehumidification (VHDH) desalination. Applied Thermal Engineering, 169, 114944. https://doi.org/10.1016/j.applthermaleng.2020.114944
  • Sadaghiyani, O., Boubakran, M., & Hassanzadeh, A. (2018). Energy and exergy analysis of parabolic trough collectors. International Journal of Heat and Technology, 36(1), 147–158. https://doi.org/10.18280/ijht.360120
  • Saeed, A. A., Alharthi, A. M., Aldosari, K. M., Abdullah, A. S., Essa, F. A., Alqsair, U. F., Aljaghtham, M., & Omara, Z. M. (2022). Improving the drum solar still performance using corrugated drum and nano-based phase change material. Journal of Energy Storage, 55, 105647. https://doi.org/10.1016/j.est.2022.105647
  • Saha, S., Sarker, M. R. I., Kader, M. A., Ahmed, M. M., Tuly, S. S., & Mustafi, N. N. (2024). Development of a vacuum double-slope solar still for enhanced freshwater productivity. Solar Energy, 270, 112385. https://doi.org/10.1016/j.solener.2024.112385
  • Sambare, R. K., Dewangan, S. K., Gupta, P. K., & Joshi, S. (2022). Energy, exergy and economic analyses of Tubular solar still with various transparent cover materials. Process Safety and Environmental Protection. https://doi.org/10.1016/j.psep.2022.10.064
  • Sampathkumar, K., Arjunan, T. V., Pitchandi, P., & Senthilkumar, P. (2010). Active solar distillation—A detailed review. Renewable and Sustainable Energy Reviews, 14(6), 1503–1526. https://doi.org/10.1016/j.rser.2010.01.023
  • Santosh, R., Arunkumar, T., Velraj, R., & Kumaresan, G. (2019). Technological advancements in solar energy driven humidification-dehumidification desalination systems - A review. Journal of Cleaner Production, 207, 826–845. https://doi.org/10.1016/j.jclepro.2018.09.247
  • Santosh, R., Lee, H.-S., & Kim, Y.-D. (2022). A comprehensive review on humidifiers and dehumidifiers in solar and low-grade waste heat powered humidification-dehumidification desalination systems. Journal of Cleaner Production, 347, 131300. https://doi.org/10.1016/j.jclepro.2022.131300
  • Saravanakumar, R., Venugopal, J., Udagani, C., Thiyagarajan, V., Kumar, S. K. N., Karnan, L., Kabeel, A. E., Madhu, B., & Sathyamurthy, R. (2022). A mini review on recent advancements in inclined solar still. Energy Reports, 8, 641–645. https://doi.org/10.1016/j.egyr.2022.09.174
  • Shafii, M. B., Jahangiri Mamouri, S., Lotfi, M. M., & Jafari Mosleh, H. (2016). A modified solar desalination system using evacuated tube collector. Desalination, 396, 30–38. https://doi.org/10.1016/j.desal.2016.05.030
  • Shah, R., Makwana, M., Makwana, N., & Desai, R. (2022). Perfromance analysis of black gravel solar still. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2022.09.115
  • Shanazari, E., & Kalbasi, R. (2018). Improving performance of an inverted absorber multi-effect solar still by applying exergy analysis. Applied Thermal Engineering, 143, 1–10. https://doi.org/10.1016/j.applthermaleng.2018.07.021
  • Sharshir, S. W., Elkadeem, M. R., & Meng, A. (2020). Performance enhancement of pyramid solar distiller using nanofluid integrated with v-corrugated absorber and wick: An experimental study. Applied Thermal Engineering, 168, 114848. https://doi.org/10.1016/j.applthermaleng.2019.114848
  • Sharshir, S. W., El-Samadony, M. O. A., Peng, G., Yang, N., Essa, F. A., Hamed, M. H., & Kabeel, A. E. (2016). Performance enhancement of wick solar still using rejected water from humidification-dehumidification unit and film cooling. Applied Thermal Engineering, 108, 1268–1278. https://doi.org/10.1016/j.applthermaleng.2016.07.179
  • Sharshir, S. W., Eltawil, M. A., Algazzar, A. M., Sathyamurthy, R., & Kandeal, A. W. (2020). Performance enhancement of stepped double slope solar still by using nanoparticles and linen wicks: Energy, exergy and economic analysis. Applied Thermal Engineering, 174, 115278. https://doi.org/10.1016/j.applthermaleng.2020.115278
  • Sharshir, S. W., Kandeal, A. W., Ismail, M., Abdelaziz, G. B., Kabeel, A. E., & Yang, N. (2019). Augmentation of a pyramid solar still performance using evacuated tubes and nanofluid: Experimental approach. Applied Thermal Engineering, 160, 113997. https://doi.org/10.1016/j.applthermaleng.2019.113997
  • Sharshir, S. W., Peng, G., Wu, L., Yang, N., Essa, F. A., Elsheikh, A. H., Mohamed, S. I. T., & Kabeel, A. E. (2017). Enhancing the solar still performance using nanofluids and glass cover cooling: Experimental study. Applied Thermal Engineering, 113, 684–693. https://doi.org/10.1016/j.applthermaleng.2016.11.085
  • Sharshir, S. W., Peng, G., Yang, N., El-Samadony, M. O. A., & Kabeel, A. E. (2016). A continuous desalination system using humidification – dehumidification and a solar still with an evacuated solar water heater. Applied Thermal Engineering, 104, 734–742. https://doi.org/10.1016/j.applthermaleng.2016.05.120
  • Sharshir, S. W., Rozza, M. A., Elsharkawy, M., Youns, M. M., Abou-Taleb, F., & Kabeel, A. E. (2022). Performance evaluation of a modified pyramid solar still employing wick, reflectors, glass cooling and TiO2 nanomaterial. Desalination, 539, 115939. https://doi.org/10.1016/j.desal.2022.115939
  • Sharshir, S. W., Rozza, M. A., Joseph, A., Kandeal, A. W., Tareemi, A. A., Abou-Taleb, F., & Kabeel, A. E. (2022). A new trapezoidal pyramid solar still design with multi thermal enhancers. Applied Thermal Engineering, 213, 118699. https://doi.org/10.1016/j.applthermaleng.2022.118699
  • Sharshir, S. W., Yang, N., Peng, G., & Kabeel, A. E. (2016). Factors affecting solar stills productivity and improvement techniques: A detailed review. Applied Thermal Engineering, 100, 267–284. https://doi.org/10.1016/j.applthermaleng.2015.11.041
  • Shoeibi, S., Kargarsharifabad, H., Mirjalily, S. A. A., & Muhammad, T. (2022). Solar district heating with solar desalination using energy storage material for domestic hot water and drinking water – Environmental and economic analysis. Sustainable Energy Technologies and Assessments, 49, 101713. https://doi.org/10.1016/j.seta.2021.101713
  • Shoeibi, S., Kargarsharifabad, H., Rahbar, N., Khosravi, G., & Sharifpur, M. (2022). An integrated solar desalination with evacuated tube heat pipe solar collector and new wind ventilator external condenser. Sustainable Energy Technologies and Assessments, 50, 101857. https://doi.org/10.1016/j.seta.2021.101857
  • Sibagariang, Y. P., Napitupulu, F. H., Kawai, H., & Ambarita, H. (2022). Investigation of the effect of a solar collector, nozzle, and water cooling on solar still double slope. Case Studies in Thermal Engineering, 40, 102489. https://doi.org/10.1016/j.csite.2022.102489
  • Siddula, Sundeep., Stalin, N., Mahesha, C. R., Dattu, V. S. N. C. H., S, H., Singh, D. P., Mohanavel, V., & Sathyamurthy, R. (2022). Triangular and single slope solar stills: Performance and yield studies with different water mass. Energy Reports, 8, 480–488. https://doi.org/10.1016/j.egyr.2022.10.225
  • Somwanshi, A., & Shrivastav, R. (2024). Enhancement in the performance of closed loop inclined wick solar still by attaching external bottom reflector. Desalination and Water Treatment, 317, 100063. https://doi.org/10.1016/j.dwt.2024.100063
  • Somwanshi, A., & Shrivastava, R. (2023). Thermal analysis of a closed loop inclined wick solar still (CLIWSS) with an additional heat storage water reservoir. Solar Energy, 262, 111902. https://doi.org/10.1016/j.solener.2023.111902
  • Thakur, A. K., Sathyamurthy, R., Saidur, R., Velraj, R., Lynch, I., & Aslfattahi, N. (2022). Exploring the potential of MXene-based advanced solar-absorber in improving the performance and efficiency of a solar-desalination unit for brackish water purification. Desalination, 526, 115521. https://doi.org/10.1016/j.desal.2021.115521
  • Trinh, V.-H., Nguyen, N.-A., Omelianovych, O., Dao, V.-D., Yoon, I., Choi, H.-S., & Keidar, M. (2022). Sustainable desalination device capable of producing freshwater and electricity. Desalination, 535, 115820. https://doi.org/10.1016/j.desal.2022.115820
  • Tuly, S. S., Ayon, A. B. S., Hassan, R., Das, B. K., Khan, R. H., & Sarker, M. R. I. (2022). Performance investigation of active double slope solar stills incorporating internal sidewall reflector, hollow circular fins, and nanoparticle-mixed phase change material. Journal of Energy Storage, 55, 105660. https://doi.org/10.1016/j.est.2022.105660
  • U.S. Particle Accelerator School Education in Beam Physics and Accelerator Technology. (2015). Vacuum Science and Technology for Accelerator Vacuum Systems. USPAS - Vacuum Fundamentals. https://uspas.fnal.gov/materials/15ODU/Session1_Fundamentals.pdf
  • Velmurugan, V., Gopalakrishnan, M., Raghu, R., & Srithar, K. (2008). Single basin solar still with fin for enhancing productivity. Energy Conversion and Management, 49(10), 2602–2608. https://doi.org/10.1016/j.enconman.2008.05.010
  • Wang, Q., Wang, L., Song, S., Li, Y., Jia, F., Feng, T., & Hu, N. (2022). Flexible 2D@3D Janus evaporators for high-performance and continuous solar desalination. Desalination, 525, 115483. https://doi.org/10.1016/j.desal.2021.115483
  • Welepe, H. J. N., Günerhan, H., & Bilir, L. (2022). Humidifying solar collector for improving the performance of direct solar desalination systems: A theoretical approach. Applied Thermal Engineering, 216, 119043. https://doi.org/10.1016/j.applthermaleng.2022.119043
  • Wu, G., Zheng, H., Ma, X., Kutlu, C., & Su, Y. (2017). Experimental investigation of a multi-stage humidification-dehumidification desalination system heated directly by a cylindrical Fresnel lens solar concentrator. Energy Conversion and Management, 143, 241–251. https://doi.org/10.1016/j.enconman.2017.04.011
  • Yılmaz, İ. H., & Mwesigye, A. (2018). Modeling, simulation and performance analysis of parabolic trough solar collectors: A comprehensive review. Applied Energy, 225, 135–174. https://doi.org/10.1016/j.apenergy.2018.05.014
  • Younes, M. M., Abdullah, A. S., Essa, F. A., & Omara, Z. M. (2021). Half barrel and corrugated wick solar stills – Comprehensive study. Journal of Energy Storage, 42, 103117. https://doi.org/10.1016/j.est.2021.103117
  • Younes, M. M., Abdullah, A. S., Essa, F. A., Omara, Z. M., & Amro, M. I. (2021). Enhancing the wick solar still performance using half barrel and corrugated absorbers. Process Safety and Environmental Protection, 150, 440–452. https://doi.org/10.1016/j.psep.2021.04.036
  • Yousef, M. S., Hassan, H., & Sekiguchi, H. (2019). Energy, exergy, economic and enviroeconomic (4E) analyses of solar distillation system using different absorbing materials. Applied Thermal Engineering, 150, 30–41. https://doi.org/10.1016/j.applthermaleng.2019.01.005
  • Yunus A. Çengel. (2011). Heat and Mass Transfer: A Practical Approach, 3rd Edition.
  • Zaheen Khan, M. (2022). Diffusion of single-effect vertical solar still fixed with inclined wick still: An experimental study. Fuel, 329, 125502. https://doi.org/10.1016/j.fuel.2022.125502
  • Ziapour, B. M., Afzal, S., Mahdian, J., & Reza Miroliaei, A. (2024). Enhancing solar still performance through innovative modeling, integration with reflectors, and semi-transparent solar cells: A 3E analysis and multi-objective optimization. Applied Thermal Engineering, 242, 122464. https://doi.org/10.1016/j.applthermaleng.2024.122464
  • Zubair, M. I., Al-Sulaiman, F. A., Antar, M. A., Al-Dini, S. A., & Ibrahim, N. I. (2017). Performance and cost assessment of solar driven humidification dehumidification desalination system. Energy Conversion and Management, 132, 28–39. https://doi.org/10.1016/j.enconman.2016.10.005

THEORETICAL PERFORMANCE ASSESSMENT OF A PARABOLIC TROUGH HUMIDIFYING SOLAR COLLECTOR-BASED SOLAR STILL

Yıl 2024, Cilt: 44 Sayı: 1, 163 - 189, 03.06.2024
https://doi.org/10.47480/isibted.1494478

Öz

In this paper, a parabolic trough humidifying solar collector-based solar still (PHSC-SS) is proposed. Its purpose is to apply some important performance improvement techniques to the flat plate humidifying solar collector-based solar still (flat plate HSC-SS), to significantly improve overall system performance. These included the use of parabolic trough solar concentrators and the design of humidifying solar collectors from evacuated tube collectors. The results reveal that, unlike flat plate HSC-SS, which must operate with a turbulent airflow regime to achieve optimum overall performance, PHSC-SS must operate with a laminar airflow regime and high inlet and outlet temperatures of air (at least 55 °C and less than 100 °C, at atmospheric pressure) in the heat collector element. For 900 W/m2 of incident solar irradiance, 2 m2 of solar collector area, and 0,00042 kg/s of air flow rate, the maximum energy efficiency, exergy efficiency and daily freshwater productivity of PHSC-SS were found to be 68,12%, 14,87% and 1,697 kg/h, respectively. Whereas for the same incident solar irradiance and solar collector area, and 0,1 kg/s of air flow rate, those of the flat plat HSC-SS were 72,9%, 1,12%, and between 1,07 – 2,923 kg/h (for inlet and outlet temperatures of air less than 30 °C, at atmospheric pressure), respectively. Although in some extreme cases freshwater productivity of flat plate HSC-SS can be higher than that of PHSC-SS, it should be noted that laminar airflow regime confers great advantages to PHSC-SS. These are higher air temperatures at condenser inlet (which ease water condensation process), no need of an auxiliary cooling device (needed in the flat plate HSC-SS), less mechanical vibrations of system, reduced condenser size, and less energy consumed by air blowers. Furthermore, the upper limit of the PHSC-SS is a PHSC-SS that operates without air flow, but rather by vaporization of water droplets at boiling point from absorber, followed by their suction to condenser, similarly to a flash evaporation.

Etik Beyan

We declare that this paper is original, has not been published before and is not currently being considered for publication elsewhere. We have no known conflicts of interest or financial support associated to this publication. No AI or AI-assisted technologies were used in the writing process of this manuscript. All authors have read and approved the final version submitted.

Kaynakça

  • Abbaspour, M., Esmaili, Q., & Ramiar, A. (2024). Improving vertical solar still performance for efficient Desalination: Investigating the influence of Wick, condensate plate and device dimensions. Solar Energy, 272, 112468. https://doi.org/10.1016/j.solener.2024.112468
  • Abbaspour, M., Ramiar, A., & Esmaili, Q. (2022). Efficiency improvement of vertical solar stills – A review. Solar Energy, 235, 19–35. https://doi.org/10.1016/j.solener.2022.02.027
  • Abdelaziz, G. B., Algazzar, A. M., El-Said, E. M. S., Elsaid, A. M., Sharshir, S. W., Kabeel, A. E., & El-Behery, S. M. (2021). Performance enhancement of tubular solar still using nano-enhanced energy storage material integrated with v-corrugated aluminum basin, wick, and nanofluid. Journal of Energy Storage, 41, 102933. https://doi.org/10.1016/j.est.2021.102933
  • Abdelaziz, Gamal. B., Dahab, M. A., Omara, M. A., Sharshir, S. W., Elsaid, A. M., & El-Said, E. M. S. (2022). Humidification dehumidification saline water desalination system utilizing high frequency ultrasonic humidifier and solar heated air stream. Thermal Science and Engineering Progress, 27, 101144. https://doi.org/10.1016/j.tsep.2021.101144 Abdullah, A. S., Alarjani, A., Abou Al-sood, M. M., Omara, Z. M., Kabeel, A. E., & Essa, F. A. (2019). Rotating-wick solar still with mended evaporation technics: Experimental approach. Alexandria Engineering Journal, 58(4), 1449–1459. https://doi.org/10.1016/j.aej.2019.11.018
  • Abdullah, A. S., Omara, Z. M., Essa, F. A., Alarjani, A., Mansir, I. B., & Amro, M. I. (2021). Enhancing the solar still performance using reflectors and sliding-wick belt. Solar Energy, 214, 268–279. https://doi.org/10.1016/j.solener.2020.11.016
  • Abdullah, A. S., Omara, Z. M., Essa, F. A., Younes, M. M., Shanmugan, S., Abdelgaied, M., Amro, M. I., Kabeel, A. E., & Farouk, W. M. (2021). Improving the performance of trays solar still using wick corrugated absorber, nano-enhanced phase change material and photovoltaics-powered heaters. Journal of Energy Storage, 40, 102782. https://doi.org/10.1016/j.est.2021.102782
  • Abed, A. H., Hoshi, H. A., & Jabal, M. H. (2021). Experimental investigation of modified solar still coupled with high-frequency ultrasonic vaporizer and phase change material capsules. Case Studies in Thermal Engineering, 28, 101531. https://doi.org/10.1016/j.csite.2021.101531
  • Abozoor, M. K. S., Meraj, M., Azhar, M., Khan, M. E., Seraj, M., Ahsan, M., Ahmed, S. A., & Bani Hani, E. H. (2022). Energy and exergy analyses of active solar still integrated with evacuated flat plate collector for New Delhi. Groundwater for Sustainable Development, 19, 100833. https://doi.org/10.1016/j.gsd.2022.100833
  • Ahmed, H., Najib, A., Zaidi, A. A., Naseer, M. N., & Kim, B. (2022). Modeling, design optimization and field testing of a solar still with corrugated absorber plate and phase change material for Karachi weather conditions. Energy Reports, 8, 11530–11546. https://doi.org/10.1016/j.egyr.2022.08.276
  • Ahmed, M. M. Z., Alshammari, F., Alatawi, I., Alhadri, M., & Elashmawy, M. (2022). A novel solar desalination system integrating inclined and tubular solar still with parabolic concentrator. Applied Thermal Engineering, 213, 118665. https://doi.org/10.1016/j.applthermaleng.2022.118665
  • Alatawi, I., Khaliq, A., Ahmed Heniegal, A. M., Abdelaziz, G. B., & Elashmawy, M. (2022). Tubular solar stills: Recent developments and future. Solar Energy Materials and Solar Cells, 242, 111785. https://doi.org/10.1016/j.solmat.2022.111785
  • Al-Harahsheh, M., Abu-Arabi, M., Ahmad, M., & Mousa, H. (2022). Self-powered solar desalination using solar still enhanced by external solar collector and phase change material. Applied Thermal Engineering, 206, 118118. https://doi.org/10.1016/j.applthermaleng.2022.118118
  • Al-harahsheh, M., Abu-Arabi, M., Mousa, H., & Alzghoul, Z. (2018). Solar desalination using solar still enhanced by external solar collector and PCM. Applied Thermal Engineering, 128, 1030–1040. https://doi.org/10.1016/j.applthermaleng.2017.09.073
  • Alnaimat, F., Ziauddin, M., & Mathew, B. (2021). A review of recent advances in humidification and dehumidification desalination technologies using solar energy. Desalination, 499, 114860. https://doi.org/10.1016/j.desal.2020.114860
  • Al-Otoom, A., & Al-Khalaileh, A. T. (2020). Water desalination using solar continuous humidification–dehumidification process using hygroscopic solutions and rotating belt. Solar Energy, 197, 38–49. https://doi.org/10.1016/j.solener.2019.12.075
  • Alqsair, U. F., Abdullah, A. S., & Omara, Z. M. (2022). Enhancement the productivity of drum solar still utilizing parabolic solar concentrator, phase change material and nanoparticles’ coating. Journal of Energy Storage, 55, 105477. https://doi.org/10.1016/j.est.2022.105477
  • Alrbai, M., Hayajneh, H., Arakza, F., Enizat, J., Al-Dahidi, S., Al-Ghussain, L., & Hassan, M. A. (2022). Techno-economic analysis of a solar-powered humidification-dehumidification desalination system under fogging effect. Sustainable Energy Technologies and Assessments, 53, 102752. https://doi.org/10.1016/j.seta.2022.102752
  • American Society of Heating Refrigerating and Air-Conditioning Engineers Inc. (ASHRAE). (2021). 2021 ASHRAE Handbook - Fundamentals. https://www.ashrae.org
  • Amin, M., Umar, H., Ginting, S. F., Amir, F., Rizal, T. A., Septiadi, W. N., & Mahlia, T. M. I. (2024). Enhancing solar distillation through beeswax-infused tubular solar still with a heat exchanger using parabolic trough collector. Journal of Energy Storage, 86, 111262. https://doi.org/10.1016/j.est.2024.111262
  • Angappan, G., Pandiaraj, S., Panchal, H., Kathiresan, T., Ather, D., Dutta, C., Subramaniam, M. K., Muthusamy, S., Kabeel, A. E., El-Shafay, A. S., & Sadasivuni, K. K. (2022). An extensive review of performance enhancement techniques for pyramid solar still for solar thermal applications. Desalination, 532, 115692. https://doi.org/10.1016/j.desal.2022.115692
  • Arunkumar, T., & Kabeel, A. E. (2017). Effect of phase change material on concentric circular tubular solar still-Integration meets enhancement. Desalination, 414, 46–50. https://doi.org/10.1016/j.desal.2017.03.035
  • Bahrami, M., Madadi Avargani, V., & Bonyadi, M. (2019). Comprehensive experimental and theoretical study of a novel still coupled to a solar dish concentrator. Applied Thermal Engineering, 151, 77–89. https://doi.org/10.1016/j.applthermaleng.2019.01.103
  • Bait, O., & Si–Ameur, M. (2018). Enhanced heat and mass transfer in solar stills using nanofluids: A review. Solar Energy, 170, 694–722. https://doi.org/10.1016/j.solener.2018.06.020
  • Bejan, A. (2016). Advanced Engineering Thermodynamics. Wiley. https://doi.org/10.1002/9781119245964
  • Chandrashekara, M., & Yadav, A. (2017). An experimental study of the effect of exfoliated graphite solar coating with a sensible heat storage and Scheffler dish for desalination. Applied Thermal Engineering, 123, 111–122. https://doi.org/10.1016/j.applthermaleng.2017.05.058
  • Chauhan, V. K., Shukla, S. K., Tirkey, J. V., & Singh Rathore, P. K. (2021). A comprehensive review of direct solar desalination techniques and its advancements. Journal of Cleaner Production, 284, 124719. https://doi.org/10.1016/j.jclepro.2020.124719
  • Deniz, E., & Çınar, S. (2016). Energy, exergy, economic and environmental (4E) analysis of a solar desalination system with humidification-dehumidification. Energy Conversion and Management, 126, 12–19. https://doi.org/10.1016/j.enconman.2016.07.064
  • Deshmukh, H. S., & Thombre, S. B. (2017). Solar distillation with single basin solar still using sensible heat storage materials. Desalination, 410, 91–98. https://doi.org/10.1016/j.desal.2017.01.030
  • Dhindsa, G. S. (2021). Performance enhancement of basin solar still using paraffin wax and floating wicks in the basin. Materials Today: Proceedings, 37, 3310–3316. https://doi.org/10.1016/j.matpr.2020.09.121
  • Dhivagar, R., El-Sapa, S., Alrubaie, A. J., Al-khaykan, A., Chamkha, A. J., Panchal, H., El-Sebaey, M. S., & sharma, K. (2022). A case study on thermal performance analysis of a solar still basin employing ceramic magnets. Case Studies in Thermal Engineering, 39, 102402. https://doi.org/10.1016/j.csite.2022.102402
  • Duffie, J. A., & Beckman, W. A. (2013). Solar Engineering of Thermal Processes (4th ed.). John Wiley & Sons, Inc. https://doi.org/10.1002/9781118671603
  • Dumka, P., & Mishra, D. R. (2020). Performance evaluation of single slope solar still augmented with the ultrasonic fogger. Energy, 190, 116398. https://doi.org/10.1016/j.energy.2019.116398
  • Durkaieswaran, P., & Murugavel, K. K. (2015). Various special designs of single basin passive solar still – A review. Renewable and Sustainable Energy Reviews, 49, 1048–1060. https://doi.org/10.1016/j.rser.2015.04.111
  • Elango, T., Kannan, A., & Kalidasa Murugavel, K. (2015). Performance study on single basin single slope solar still with different water nanofluids. Desalination, 360, 45–51. https://doi.org/10.1016/j.desal.2015.01.004
  • Elashmawy, M. (2019). Effect of surface cooling and tube thickness on the performance of a high temperature standalone tubular solar still. Applied Thermal Engineering, 156, 276–286. https://doi.org/10.1016/j.applthermaleng.2019.04.068
  • Elashmawy, M., & Ahmed, M. M. Z. (2021). Enhancing tubular solar still productivity using composite aluminum/copper/sand sensible energy storage tubes. Solar Energy Materials and Solar Cells, 221, 110882. https://doi.org/10.1016/j.solmat.2020.110882
  • Elashmawy, M., Nafey, A. S., Sharshir, S. W., Abdelaziz, G. B., & Ahmed, M. M. Z. (2024). Experimental investigation of developed tubular solar still using multi-evaporator design. Journal of Cleaner Production, 443, 141040. https://doi.org/10.1016/j.jclepro.2024.141040
  • Elgendi, M., Kabeel, A. E., & Essa, F. A. (2022). Improving the solar still productivity using thermoelectric materials: A review. Alexandria Engineering Journal. https://doi.org/10.1016/j.aej.2022.10.011
  • Elminshawy, N. A. S., Siddiqui, F. R., & Addas, M. F. (2015). Experimental and analytical study on productivity augmentation of a novel solar humidification–dehumidification (HDH) system. Desalination, 365, 36–45. https://doi.org/10.1016/j.desal.2015.02.019
  • El-Said, E. M. S., & Abdelaziz, G. B. (2020). Experimental investigation and economic assessment of a solar still performance using high-frequency ultrasound waves atomizer. Journal of Cleaner Production, 256, 120609. https://doi.org/10.1016/j.jclepro.2020.120609
  • El-Said, E. M. S., Dahab, M. A., Omara, M., & Abdelaziz, G. B. (2021). Solar desalination unit coupled with a novel humidifier. Renewable Energy, 180, 297–312. https://doi.org/10.1016/j.renene.2021.08.105
  • Elshamy, S. M., & El-Said, E. M. S. (2018). Comparative study based on thermal, exergetic and economic analyses of a tubular solar still with semi-circular corrugated absorber. Journal of Cleaner Production, 195, 328–339. https://doi.org/10.1016/j.jclepro.2018.05.243
  • Essa, F. A., Abdullah, A. S., Omara, Z. M., Kabeel, A. E., & Gamiel, Y. (2021). Experimental study on the performance of trays solar still with cracks and reflectors. Applied Thermal Engineering, 188, 116652. https://doi.org/10.1016/j.applthermaleng.2021.116652
  • Essa, F. A., Alawee, W. H., Mohammed, S. A., Dhahad, H. A., Abdullah, A. S., & Omara, Z. M. (2021). Experimental investigation of convex tubular solar still performance using wick and nanocomposites. Case Studies in Thermal Engineering, 27, 101368. https://doi.org/10.1016/j.csite.2021.101368
  • Essa, F. A., Omara, Z. M., Abdullah, A. S., Kabeel, A. E., & Abdelaziz, G. B. (2021). Enhancing the solar still performance via rotating wick belt and quantum dots nanofluid. Case Studies in Thermal Engineering, 27, 101222. https://doi.org/10.1016/j.csite.2021.101222
  • Essa, M. A., Ibrahim, M. M., & Mostafa, N. H. (2021). Experimental parametric passive solar desalination prototype analysis. Journal of Cleaner Production, 325, 129333. https://doi.org/10.1016/j.jclepro.2021.129333
  • Evangelisti, L., Guattari, C., & Asdrubali, F. (2019). On the sky temperature models and their influence on buildings energy performance: A critical review. Energy and Buildings, 183, 607–625. https://doi.org/10.1016/j.enbuild.2018.11.037
  • Fallahzadeh, R., Aref, L., Madadi Avargani, V., & Gholamiarjenaki, N. (2020). An experimental investigation on the performance of a new portable active bubble basin solar still. Applied Thermal Engineering, 181, 115918. https://doi.org/10.1016/j.applthermaleng.2020.115918
  • Fayaz, Z., Dhindsa, G. S., & Sokhal, G. S. (2022). Experimental study of solar still having variable slope tilted wick in the basin to enhance its daily yield. Materials Today: Proceedings, 48, 1421–1426. https://doi.org/10.1016/j.matpr.2021.09.195
  • FlyCarpet. (2021, May 7). Free Online Interactive Psychrometric Chart. http://www.flycarpet.net/en/PsyOnline
  • Forristall, R. (2003). Heat Transfer Analysis and Modeling of a Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver. https://www.nrel.gov/docs/fy04osti/34169.pdf
  • Ge, Z., Wang, H., Wang, H., Zhang, S., & Guan, X. (2014). Exergy Analysis of Flat Plate Solar Collectors. Entropy, 16(5), 2549–2567. https://doi.org/10.3390/e16052549
  • Ghandourah, E., Panchal, H., Fallatah, O., Ahmed, H. M., Moustafa, E. B., & Elsheikh, A. H. (2022). Performance enhancement and economic analysis of pyramid solar still with corrugated absorber plate and conventional solar still: A case study. Case Studies in Thermal Engineering, 35, 101966. https://doi.org/10.1016/j.csite.2022.101966
  • Hashemi, S. A., Kazemi, M., Taheri, A., Passandideh-Fard, M., & Sardarabadi, M. (2020). Experimental investigation and cost analysis on a nanofluid-based desalination system integrated with an automatic dual-axis sun tracker and Fresnel lens. Applied Thermal Engineering, 180, 115788. https://doi.org/10.1016/j.applthermaleng.2020.115788
  • Hussein, A. K., Rashid, F. L., Rasul, M. K., Basem, A., Younis, O., Homod, R. Z., El Hadi Attia, M., Al-Obaidi, M. A., Ben Hamida, M. B., Ali, B., & Abdulameer, S. F. (2024). A review of the application of hybrid nanofluids in solar still energy systems and guidelines for future prospects. Solar Energy, 272, 112485. https://doi.org/10.1016/j.solener.2024.112485
  • Ibrahim, A. G. M., & Dincer, I. (2015). A solar desalination system: Exergetic performance assessment. Energy Conversion and Management, 101, 379–392. https://doi.org/10.1016/j.enconman.2015.05.060
  • Jafari Mosleh, H., & Ahmadi, R. (2019). Linear parabolic trough solar power plant assisted with latent thermal energy storage system: A dynamic simulation. Applied Thermal Engineering, 161, 114204. https://doi.org/10.1016/j.applthermaleng.2019.114204
  • Jafari Mosleh, H., Jahangiri Mamouri, S., Shafii, M. B., & Hakim Sima, A. (2015). A new desalination system using a combination of heat pipe, evacuated tube and parabolic trough collector. Energy Conversion and Management, 99, 141–150. https://doi.org/10.1016/j.enconman.2015.04.028
  • Jafarkazemi, F., & Ahmadifard, E. (2013). Energetic and exergetic evaluation of flat plate solar collectors. Renewable Energy, 56, 55–63. https://doi.org/10.1016/j.renene.2012.10.031
  • Jobrane, M., Kopmeier, A., Kahn, A., Cauchie, H.-M., Kharroubi, A., & Penny, C. (2021). Internal and external improvements of wick type solar stills in different configurations for drinking water production– A review. Groundwater for Sustainable Development, 12, 100519. https://doi.org/10.1016/j.gsd.2020.100519
  • Jobrane, M., Kopmeier, A., Kahn, A., Cauchie, H.-M., Kharroubi, A., & Penny, C. (2022). Theoretical and experimental investigation on a novel design of wick type solar still for sustainable freshwater production. Applied Thermal Engineering, 200, 117648. https://doi.org/10.1016/j.applthermaleng.2021.117648
  • Kabeel, A. E., & Abdelgaied, M. (2017). Performance enhancement of modified solar still using multi-groups of two coaxial pipes in basin. Applied Thermal Engineering, 118, 23–32. https://doi.org/10.1016/j.applthermaleng.2017.02.090
  • Kabeel, A. E., Arunkumar, T., Denkenberger, D. C., & Sathyamurthy, R. (2017). Performance enhancement of solar still through efficient heat exchange mechanism – A review. Applied Thermal Engineering, 114, 815–836. https://doi.org/10.1016/j.applthermaleng.2016.12.044
  • Kabeel, A. E., Omara, Z. M., & Essa, F. A. (2014a). Enhancement of modified solar still integrated with external condenser using nanofluids: An experimental approach. Energy Conversion and Management, 78, 493–498. https://doi.org/10.1016/j.enconman.2013.11.013
  • Kabeel, A. E., Omara, Z. M., & Essa, F. A. (2014b). Improving the performance of solar still by using nanofluids and providing vacuum. Energy Conversion and Management, 86, 268–274. https://doi.org/10.1016/j.enconman.2014.05.050
  • Kakaç, S., Liu, H., & Pramuanjaroenkij, A. (2012). Heat Exchangers: Selection, Rating, and Thermal Design (3rd ed.). CRC Press. https://doi.org/10.1201/b11784
  • Kalogirou, S. A., Karellas, S., Badescu, V., & Braimakis, K. (2016). Exergy analysis on solar thermal systems: A better understanding of their sustainability. Renewable Energy, 85, 1328–1333. https://doi.org/10.1016/j.renene.2015.05.037
  • Kasaeian, A., Babaei, S., Jahanpanah, M., Sarrafha, H., Sulaiman Alsagri, A., Ghaffarian, S., & Yan, W.-M. (2019). Solar humidification-dehumidification desalination systems: A critical review. Energy Conversion and Management, 201, 112129. https://doi.org/10.1016/j.enconman.2019.112129
  • Kaushal, A., & Varun. (2010). Solar stills: A review. Renewable and Sustainable Energy Reviews, 14(1), 446–453. https://doi.org/10.1016/j.rser.2009.05.011
  • Kousik Suraparaju, S., & Kumar Natarajan, S. (2022). Effect of Natural Sisal Fibre on Enhancing the Condensation Rate of Solar Still for Sustainable Clean Water Production. Thermal Science and Engineering Progress, 101527. https://doi.org/10.1016/j.tsep.2022.101527
  • Kumar Chauhan, V., & Kumar Shukla, S. (2022a). Analytical and experimental study of performance of Pyrex glass Q-dot based passive solar still glass evaporator. Thermal Science and Engineering Progress, 34, 101387. https://doi.org/10.1016/j.tsep.2022.101387
  • Kumar Chauhan, V., & Kumar Shukla, S. (2022b). Experimental study of effect of glass cover tilt angle of solar still in winter season of India’s composite climate. Thermal Science and Engineering Progress, 33, 101348. https://doi.org/10.1016/j.tsep.2022.101348
  • Kumar, S., Dubey, A., & Tiwari, G. N. (2014). A solar still augmented with an evacuated tube collector in forced mode. Desalination, 347, 15–24. https://doi.org/10.1016/j.desal.2014.05.019
  • Lauvandy, A. F., Raihananda, F. A., Estefan, M. J., Damanik, W. S., Mu’min, G. F., Juangsa, F. B., & Sambegoro, P. (2024). Application of a low-cost floating solar still in Indonesia. Energy for Sustainable Development, 79, 101410. https://doi.org/10.1016/j.esd.2024.101410
  • Liang, P., Liu, S., Ding, Y., Wen, X., Wang, K., Shao, C., Hong, X., & Liu, Y. (2021). A self-floating electrospun nanofiber mat for continuously high-efficiency solar desalination. Chemosphere, 280, 130719. https://doi.org/10.1016/j.chemosphere.2021.130719
  • Lienhard IV, J. H., & Lienhard V, J. H. (2020). A Heat Transfer Textbook (5th ed.). Phlogiston Pres. https://ahtt.mit.edu/wp-content/uploads/2020/08/AHTTv510.pdf
  • Luo, X., Jiao, L., Guo, Y., Bao, H., Zhao, C., & Gu, X. (2024). Ultrahigh freshwater production achieved by unidirectional heat transfer interfacial evaporation solar still integrated with waste heat recovery. Energy Conversion and Management, 304, 118226. https://doi.org/10.1016/j.enconman.2024.118226
  • Luo, X., Shi, J., Zhao, C., Luo, Z., Gu, X., & Bao, H. (2021). The energy efficiency of interfacial solar desalination. Applied Energy, 302, 117581. https://doi.org/10.1016/j.apenergy.2021.117581
  • M, C., & Yadav, A. (2017). Water desalination system using solar heat: A review. Renewable and Sustainable Energy Reviews, 67, 1308–1330. https://doi.org/10.1016/j.rser.2016.08.058
  • Mahala, T., & Sharma, N. (2024). Experimental investigations of a novel solar still with heat storage materials - energy, exergy, economic and environmental analyses. Desalination, 578, 117467. https://doi.org/10.1016/j.desal.2024.117467
  • Mahian, O., Kianifar, A., Heris, S. Z., Wen, D., Sahin, A. Z., & Wongwises, S. (2017). Nanofluids effects on the evaporation rate in a solar still equipped with a heat exchanger. Nano Energy, 36, 134–155. https://doi.org/10.1016/j.nanoen.2017.04.025
  • Maliani, O. D., Bekkaoui, A., Baali, E. H., Guissi, K., El Fellah, Y., & Errais, R. (2020). Investigation on novel design of solar still coupled with two axis solar tracking system. Applied Thermal Engineering, 172, 115144. https://doi.org/10.1016/j.applthermaleng.2020.115144
  • Mehta, P., Bhatt, N., Bassan, G., Said, Z., & ElCheikh, A. (2024). Exploring stepped solar still developments with a case study for potable water provision in salt farming regions. Sustainable Energy Technologies and Assessments, 64, 103700. https://doi.org/10.1016/j.seta.2024.103700
  • Meng, Z., Li, Z., Li, Y., Zhang, C., Wang, K., Yu, W., Wu, D., Zhu, H., & Li, W. (2022). Novel nanofluid based efficient solar vaporization systems with applications in desalination and wastewater treatment. Energy, 247, 123513. https://doi.org/10.1016/j.energy.2022.123513
  • Modi, K. V., Maurya, S. R., Parmar, J. H., Kalsariya, A. B., & Panasara, P. B. (2022). An experimental investigation of the effectiveness of partially and fully submerged metal hollow-fins and jute cloth wick-fins on the performance of a dual-basin single-slope solar still. Cleaner Engineering and Technology, 6, 100392. https://doi.org/10.1016/j.clet.2021.100392
  • Modi, K. V., & Modi, J. G. (2019). Performance of single-slope double-basin solar stills with small pile of wick materials. Applied Thermal Engineering, 149, 723–730. https://doi.org/10.1016/j.applthermaleng.2018.12.071
  • Modi, K. V., Patel, U. N., Patel, S. J., Patel, J. N., & Patel, S. R. (2022). Efficacy of partially and fully submerged circular cross-section metal hollow-fins and black cotton cloth wick-segments on a single-basin dual-slope solar still. Journal of Cleaner Production, 344, 131059. https://doi.org/10.1016/j.jclepro.2022.131059
  • Mohamed, A. F., Hegazi, A. A., Sultan, G. I., & El-Said, E. M. S. (2019). Augmented heat and mass transfer effect on performance of a solar still using porous absorber: Experimental investigation and exergetic analysis. Applied Thermal Engineering, 150, 1206–1215. https://doi.org/10.1016/j.applthermaleng.2019.01.070
  • Mohamed, A. S. A., Shahdy, A. G., & Salem Ahmed, M. (2021). Investigation on solar humidification dehumidification water desalination system using a closed-air cycle. Applied Thermal Engineering, 188, 116621. https://doi.org/10.1016/j.applthermaleng.2021.116621
  • Mohammadi, K., Taghvaei, H., & Rad, E. G. (2020). Experimental investigation of a double slope active solar still: Effect of a new heat exchanger design performance. Applied Thermal Engineering, 180, 115875. https://doi.org/10.1016/j.applthermaleng.2020.115875
  • Mohanraj, M., Karthick, L., & Dhivagar, R. (2021). Performance and economic analysis of a heat pump water heater assisted regenerative solar still using latent heat storage. Applied Thermal Engineering, 196, 117263. https://doi.org/10.1016/j.applthermaleng.2021.117263
  • Muthu Manokar, A., Kalidasa Murugavel, K., & Esakkimuthu, G. (2014). Different parameters affecting the rate of evaporation and condensation on passive solar still – A review. Renewable and Sustainable Energy Reviews, 38, 309–322. https://doi.org/10.1016/j.rser.2014.05.092
  • Nassar, Y. F., Yousif, S. A., & Salem, A. A. (2007). The second generation of the solar desalination systems. Desalination, 209(1–3), 177–181. https://doi.org/10.1016/j.desal.2007.04.039
  • Nayagam, V. S., Geetha, K., Vallikannu, R., Muthuvel, S. K., Ram, G. C., Gupta, P., Sudhakar, M., Mohanavel, V., & Sathyamurthy, R. (2022). Energy efficient tubular solar still for augmented yield using electrical heater. Energy Reports, 8, 959–964. https://doi.org/10.1016/j.egyr.2022.10.283
  • Negi, A., Dhindsa, G. S., & Sehgal, S. S. (2022). Experimental investigation on single basin tilted wick solar still integrated with flat plate collector. Materials Today: Proceedings, 48, 1439–1446. https://doi.org/10.1016/j.matpr.2021.09.210
  • Nijmeh, S., Odeh, S., & Akash, B. (2005). Experimental and theoretical study of a single-basin solar sill in Jordan. International Communications in Heat and Mass Transfer, 32(3–4), 565–572. https://doi.org/10.1016/j.icheatmasstransfer.2004.06.006
  • Omara, Z. M., Ahmed, M. M. Z., Alawee, W. H., Shanmugan, S., & Elashmawy, M. (2024). A comprehensive review of nano-enhanced phase change materials on solar stills with scientometric analysis. Results in Engineering, 22, 102088. https://doi.org/10.1016/j.rineng.2024.102088
  • Omara, Z. M., Alawee, W. H., Basem, A., & Jawad Al-Bayati, A. D. (2024). Heat loss reduction techniques for walls in solar stills: A review. Results in Engineering, 22, 101996. https://doi.org/10.1016/j.rineng.2024.101996
  • Omara, Z. M., Eltawil, M. A., & ElNashar, E. A. (2013). A new hybrid desalination system using wicks/solar still and evacuated solar water heater. Desalination, 325, 56–64. https://doi.org/10.1016/j.desal.2013.06.024
  • Padilla, R. V., Demirkaya, G., Goswami, D. Y., Stefanakos, E., & Rahman, M. M. (2011). Heat transfer analysis of parabolic trough solar receiver. Applied Energy, 88(12), 5097–5110. https://doi.org/10.1016/j.apenergy.2011.07.012
  • Pandey, N., & Naresh, Y. (2024). A comprehensive 4E (energy, exergy, economic, environmental) analysis of novel pyramid solar still coupled with pulsating heat pipe: An experimental study. Renewable Energy, 225, 120227. https://doi.org/10.1016/j.renene.2024.120227
  • Peng, G., Xu, Z., Ji, J., Sun, S., & Yang, N. (2022). A study on the upper limit efficiency of solar still by optimizing the mass transfer. Applied Thermal Engineering, 213, 118664. https://doi.org/10.1016/j.applthermaleng.2022.118664
  • Poonia, S., Singh, A. K., & Jain, D. (2022). Performance evaluation of PCM based solar concentrator type desalination device. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2022.02.637
  • Prasanna, Y. S., & Deshmukh, S. S. (2022). Energy, exergy and economic analysis of an air cavity appended passive solar still of different basin material at varying depth. Energy for Sustainable Development, 71, 13–26. https://doi.org/10.1016/j.esd.2022.09.008
  • Rahimi-Ahar, Z., Hatamipour, M. S., & Ahar, L. R. (2020). Air humidification-dehumidification process for desalination: A review. Progress in Energy and Combustion Science, 80, 100850. https://doi.org/10.1016/j.pecs.2020.100850
  • Rahimi-Ahar, Z., Hatamipour, M. S., Ghalavand, Y., & Palizvan, A. (2020). Comprehensive study on vacuum humidification-dehumidification (VHDH) desalination. Applied Thermal Engineering, 169, 114944. https://doi.org/10.1016/j.applthermaleng.2020.114944
  • Sadaghiyani, O., Boubakran, M., & Hassanzadeh, A. (2018). Energy and exergy analysis of parabolic trough collectors. International Journal of Heat and Technology, 36(1), 147–158. https://doi.org/10.18280/ijht.360120
  • Saeed, A. A., Alharthi, A. M., Aldosari, K. M., Abdullah, A. S., Essa, F. A., Alqsair, U. F., Aljaghtham, M., & Omara, Z. M. (2022). Improving the drum solar still performance using corrugated drum and nano-based phase change material. Journal of Energy Storage, 55, 105647. https://doi.org/10.1016/j.est.2022.105647
  • Saha, S., Sarker, M. R. I., Kader, M. A., Ahmed, M. M., Tuly, S. S., & Mustafi, N. N. (2024). Development of a vacuum double-slope solar still for enhanced freshwater productivity. Solar Energy, 270, 112385. https://doi.org/10.1016/j.solener.2024.112385
  • Sambare, R. K., Dewangan, S. K., Gupta, P. K., & Joshi, S. (2022). Energy, exergy and economic analyses of Tubular solar still with various transparent cover materials. Process Safety and Environmental Protection. https://doi.org/10.1016/j.psep.2022.10.064
  • Sampathkumar, K., Arjunan, T. V., Pitchandi, P., & Senthilkumar, P. (2010). Active solar distillation—A detailed review. Renewable and Sustainable Energy Reviews, 14(6), 1503–1526. https://doi.org/10.1016/j.rser.2010.01.023
  • Santosh, R., Arunkumar, T., Velraj, R., & Kumaresan, G. (2019). Technological advancements in solar energy driven humidification-dehumidification desalination systems - A review. Journal of Cleaner Production, 207, 826–845. https://doi.org/10.1016/j.jclepro.2018.09.247
  • Santosh, R., Lee, H.-S., & Kim, Y.-D. (2022). A comprehensive review on humidifiers and dehumidifiers in solar and low-grade waste heat powered humidification-dehumidification desalination systems. Journal of Cleaner Production, 347, 131300. https://doi.org/10.1016/j.jclepro.2022.131300
  • Saravanakumar, R., Venugopal, J., Udagani, C., Thiyagarajan, V., Kumar, S. K. N., Karnan, L., Kabeel, A. E., Madhu, B., & Sathyamurthy, R. (2022). A mini review on recent advancements in inclined solar still. Energy Reports, 8, 641–645. https://doi.org/10.1016/j.egyr.2022.09.174
  • Shafii, M. B., Jahangiri Mamouri, S., Lotfi, M. M., & Jafari Mosleh, H. (2016). A modified solar desalination system using evacuated tube collector. Desalination, 396, 30–38. https://doi.org/10.1016/j.desal.2016.05.030
  • Shah, R., Makwana, M., Makwana, N., & Desai, R. (2022). Perfromance analysis of black gravel solar still. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2022.09.115
  • Shanazari, E., & Kalbasi, R. (2018). Improving performance of an inverted absorber multi-effect solar still by applying exergy analysis. Applied Thermal Engineering, 143, 1–10. https://doi.org/10.1016/j.applthermaleng.2018.07.021
  • Sharshir, S. W., Elkadeem, M. R., & Meng, A. (2020). Performance enhancement of pyramid solar distiller using nanofluid integrated with v-corrugated absorber and wick: An experimental study. Applied Thermal Engineering, 168, 114848. https://doi.org/10.1016/j.applthermaleng.2019.114848
  • Sharshir, S. W., El-Samadony, M. O. A., Peng, G., Yang, N., Essa, F. A., Hamed, M. H., & Kabeel, A. E. (2016). Performance enhancement of wick solar still using rejected water from humidification-dehumidification unit and film cooling. Applied Thermal Engineering, 108, 1268–1278. https://doi.org/10.1016/j.applthermaleng.2016.07.179
  • Sharshir, S. W., Eltawil, M. A., Algazzar, A. M., Sathyamurthy, R., & Kandeal, A. W. (2020). Performance enhancement of stepped double slope solar still by using nanoparticles and linen wicks: Energy, exergy and economic analysis. Applied Thermal Engineering, 174, 115278. https://doi.org/10.1016/j.applthermaleng.2020.115278
  • Sharshir, S. W., Kandeal, A. W., Ismail, M., Abdelaziz, G. B., Kabeel, A. E., & Yang, N. (2019). Augmentation of a pyramid solar still performance using evacuated tubes and nanofluid: Experimental approach. Applied Thermal Engineering, 160, 113997. https://doi.org/10.1016/j.applthermaleng.2019.113997
  • Sharshir, S. W., Peng, G., Wu, L., Yang, N., Essa, F. A., Elsheikh, A. H., Mohamed, S. I. T., & Kabeel, A. E. (2017). Enhancing the solar still performance using nanofluids and glass cover cooling: Experimental study. Applied Thermal Engineering, 113, 684–693. https://doi.org/10.1016/j.applthermaleng.2016.11.085
  • Sharshir, S. W., Peng, G., Yang, N., El-Samadony, M. O. A., & Kabeel, A. E. (2016). A continuous desalination system using humidification – dehumidification and a solar still with an evacuated solar water heater. Applied Thermal Engineering, 104, 734–742. https://doi.org/10.1016/j.applthermaleng.2016.05.120
  • Sharshir, S. W., Rozza, M. A., Elsharkawy, M., Youns, M. M., Abou-Taleb, F., & Kabeel, A. E. (2022). Performance evaluation of a modified pyramid solar still employing wick, reflectors, glass cooling and TiO2 nanomaterial. Desalination, 539, 115939. https://doi.org/10.1016/j.desal.2022.115939
  • Sharshir, S. W., Rozza, M. A., Joseph, A., Kandeal, A. W., Tareemi, A. A., Abou-Taleb, F., & Kabeel, A. E. (2022). A new trapezoidal pyramid solar still design with multi thermal enhancers. Applied Thermal Engineering, 213, 118699. https://doi.org/10.1016/j.applthermaleng.2022.118699
  • Sharshir, S. W., Yang, N., Peng, G., & Kabeel, A. E. (2016). Factors affecting solar stills productivity and improvement techniques: A detailed review. Applied Thermal Engineering, 100, 267–284. https://doi.org/10.1016/j.applthermaleng.2015.11.041
  • Shoeibi, S., Kargarsharifabad, H., Mirjalily, S. A. A., & Muhammad, T. (2022). Solar district heating with solar desalination using energy storage material for domestic hot water and drinking water – Environmental and economic analysis. Sustainable Energy Technologies and Assessments, 49, 101713. https://doi.org/10.1016/j.seta.2021.101713
  • Shoeibi, S., Kargarsharifabad, H., Rahbar, N., Khosravi, G., & Sharifpur, M. (2022). An integrated solar desalination with evacuated tube heat pipe solar collector and new wind ventilator external condenser. Sustainable Energy Technologies and Assessments, 50, 101857. https://doi.org/10.1016/j.seta.2021.101857
  • Sibagariang, Y. P., Napitupulu, F. H., Kawai, H., & Ambarita, H. (2022). Investigation of the effect of a solar collector, nozzle, and water cooling on solar still double slope. Case Studies in Thermal Engineering, 40, 102489. https://doi.org/10.1016/j.csite.2022.102489
  • Siddula, Sundeep., Stalin, N., Mahesha, C. R., Dattu, V. S. N. C. H., S, H., Singh, D. P., Mohanavel, V., & Sathyamurthy, R. (2022). Triangular and single slope solar stills: Performance and yield studies with different water mass. Energy Reports, 8, 480–488. https://doi.org/10.1016/j.egyr.2022.10.225
  • Somwanshi, A., & Shrivastav, R. (2024). Enhancement in the performance of closed loop inclined wick solar still by attaching external bottom reflector. Desalination and Water Treatment, 317, 100063. https://doi.org/10.1016/j.dwt.2024.100063
  • Somwanshi, A., & Shrivastava, R. (2023). Thermal analysis of a closed loop inclined wick solar still (CLIWSS) with an additional heat storage water reservoir. Solar Energy, 262, 111902. https://doi.org/10.1016/j.solener.2023.111902
  • Thakur, A. K., Sathyamurthy, R., Saidur, R., Velraj, R., Lynch, I., & Aslfattahi, N. (2022). Exploring the potential of MXene-based advanced solar-absorber in improving the performance and efficiency of a solar-desalination unit for brackish water purification. Desalination, 526, 115521. https://doi.org/10.1016/j.desal.2021.115521
  • Trinh, V.-H., Nguyen, N.-A., Omelianovych, O., Dao, V.-D., Yoon, I., Choi, H.-S., & Keidar, M. (2022). Sustainable desalination device capable of producing freshwater and electricity. Desalination, 535, 115820. https://doi.org/10.1016/j.desal.2022.115820
  • Tuly, S. S., Ayon, A. B. S., Hassan, R., Das, B. K., Khan, R. H., & Sarker, M. R. I. (2022). Performance investigation of active double slope solar stills incorporating internal sidewall reflector, hollow circular fins, and nanoparticle-mixed phase change material. Journal of Energy Storage, 55, 105660. https://doi.org/10.1016/j.est.2022.105660
  • U.S. Particle Accelerator School Education in Beam Physics and Accelerator Technology. (2015). Vacuum Science and Technology for Accelerator Vacuum Systems. USPAS - Vacuum Fundamentals. https://uspas.fnal.gov/materials/15ODU/Session1_Fundamentals.pdf
  • Velmurugan, V., Gopalakrishnan, M., Raghu, R., & Srithar, K. (2008). Single basin solar still with fin for enhancing productivity. Energy Conversion and Management, 49(10), 2602–2608. https://doi.org/10.1016/j.enconman.2008.05.010
  • Wang, Q., Wang, L., Song, S., Li, Y., Jia, F., Feng, T., & Hu, N. (2022). Flexible 2D@3D Janus evaporators for high-performance and continuous solar desalination. Desalination, 525, 115483. https://doi.org/10.1016/j.desal.2021.115483
  • Welepe, H. J. N., Günerhan, H., & Bilir, L. (2022). Humidifying solar collector for improving the performance of direct solar desalination systems: A theoretical approach. Applied Thermal Engineering, 216, 119043. https://doi.org/10.1016/j.applthermaleng.2022.119043
  • Wu, G., Zheng, H., Ma, X., Kutlu, C., & Su, Y. (2017). Experimental investigation of a multi-stage humidification-dehumidification desalination system heated directly by a cylindrical Fresnel lens solar concentrator. Energy Conversion and Management, 143, 241–251. https://doi.org/10.1016/j.enconman.2017.04.011
  • Yılmaz, İ. H., & Mwesigye, A. (2018). Modeling, simulation and performance analysis of parabolic trough solar collectors: A comprehensive review. Applied Energy, 225, 135–174. https://doi.org/10.1016/j.apenergy.2018.05.014
  • Younes, M. M., Abdullah, A. S., Essa, F. A., & Omara, Z. M. (2021). Half barrel and corrugated wick solar stills – Comprehensive study. Journal of Energy Storage, 42, 103117. https://doi.org/10.1016/j.est.2021.103117
  • Younes, M. M., Abdullah, A. S., Essa, F. A., Omara, Z. M., & Amro, M. I. (2021). Enhancing the wick solar still performance using half barrel and corrugated absorbers. Process Safety and Environmental Protection, 150, 440–452. https://doi.org/10.1016/j.psep.2021.04.036
  • Yousef, M. S., Hassan, H., & Sekiguchi, H. (2019). Energy, exergy, economic and enviroeconomic (4E) analyses of solar distillation system using different absorbing materials. Applied Thermal Engineering, 150, 30–41. https://doi.org/10.1016/j.applthermaleng.2019.01.005
  • Yunus A. Çengel. (2011). Heat and Mass Transfer: A Practical Approach, 3rd Edition.
  • Zaheen Khan, M. (2022). Diffusion of single-effect vertical solar still fixed with inclined wick still: An experimental study. Fuel, 329, 125502. https://doi.org/10.1016/j.fuel.2022.125502
  • Ziapour, B. M., Afzal, S., Mahdian, J., & Reza Miroliaei, A. (2024). Enhancing solar still performance through innovative modeling, integration with reflectors, and semi-transparent solar cells: A 3E analysis and multi-objective optimization. Applied Thermal Engineering, 242, 122464. https://doi.org/10.1016/j.applthermaleng.2024.122464
  • Zubair, M. I., Al-Sulaiman, F. A., Antar, M. A., Al-Dini, S. A., & Ibrahim, N. I. (2017). Performance and cost assessment of solar driven humidification dehumidification desalination system. Energy Conversion and Management, 132, 28–39. https://doi.org/10.1016/j.enconman.2016.10.005
Toplam 148 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Enerji Üretimi, Dönüşüm ve Depolama (Kimyasal ve Elektiksel hariç)
Bölüm Araştırma Makalesi
Yazarlar

Harris Jonathan Nzeme Welepe 0000-0001-7431-9813

Hüseyin Günerhan 0000-0003-4256-2418

Levent Bilir 0000-0002-8227-6267

Yayımlanma Tarihi 3 Haziran 2024
Gönderilme Tarihi 4 Aralık 2023
Kabul Tarihi 12 Mayıs 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 44 Sayı: 1

Kaynak Göster

APA Nzeme Welepe, H. J., Günerhan, H., & Bilir, L. (2024). THEORETICAL PERFORMANCE ASSESSMENT OF A PARABOLIC TROUGH HUMIDIFYING SOLAR COLLECTOR-BASED SOLAR STILL. Isı Bilimi Ve Tekniği Dergisi, 44(1), 163-189. https://doi.org/10.47480/isibted.1494478
AMA Nzeme Welepe HJ, Günerhan H, Bilir L. THEORETICAL PERFORMANCE ASSESSMENT OF A PARABOLIC TROUGH HUMIDIFYING SOLAR COLLECTOR-BASED SOLAR STILL. Isı Bilimi ve Tekniği Dergisi. Haziran 2024;44(1):163-189. doi:10.47480/isibted.1494478
Chicago Nzeme Welepe, Harris Jonathan, Hüseyin Günerhan, ve Levent Bilir. “THEORETICAL PERFORMANCE ASSESSMENT OF A PARABOLIC TROUGH HUMIDIFYING SOLAR COLLECTOR-BASED SOLAR STILL”. Isı Bilimi Ve Tekniği Dergisi 44, sy. 1 (Haziran 2024): 163-89. https://doi.org/10.47480/isibted.1494478.
EndNote Nzeme Welepe HJ, Günerhan H, Bilir L (01 Haziran 2024) THEORETICAL PERFORMANCE ASSESSMENT OF A PARABOLIC TROUGH HUMIDIFYING SOLAR COLLECTOR-BASED SOLAR STILL. Isı Bilimi ve Tekniği Dergisi 44 1 163–189.
IEEE H. J. Nzeme Welepe, H. Günerhan, ve L. Bilir, “THEORETICAL PERFORMANCE ASSESSMENT OF A PARABOLIC TROUGH HUMIDIFYING SOLAR COLLECTOR-BASED SOLAR STILL”, Isı Bilimi ve Tekniği Dergisi, c. 44, sy. 1, ss. 163–189, 2024, doi: 10.47480/isibted.1494478.
ISNAD Nzeme Welepe, Harris Jonathan vd. “THEORETICAL PERFORMANCE ASSESSMENT OF A PARABOLIC TROUGH HUMIDIFYING SOLAR COLLECTOR-BASED SOLAR STILL”. Isı Bilimi ve Tekniği Dergisi 44/1 (Haziran 2024), 163-189. https://doi.org/10.47480/isibted.1494478.
JAMA Nzeme Welepe HJ, Günerhan H, Bilir L. THEORETICAL PERFORMANCE ASSESSMENT OF A PARABOLIC TROUGH HUMIDIFYING SOLAR COLLECTOR-BASED SOLAR STILL. Isı Bilimi ve Tekniği Dergisi. 2024;44:163–189.
MLA Nzeme Welepe, Harris Jonathan vd. “THEORETICAL PERFORMANCE ASSESSMENT OF A PARABOLIC TROUGH HUMIDIFYING SOLAR COLLECTOR-BASED SOLAR STILL”. Isı Bilimi Ve Tekniği Dergisi, c. 44, sy. 1, 2024, ss. 163-89, doi:10.47480/isibted.1494478.
Vancouver Nzeme Welepe HJ, Günerhan H, Bilir L. THEORETICAL PERFORMANCE ASSESSMENT OF A PARABOLIC TROUGH HUMIDIFYING SOLAR COLLECTOR-BASED SOLAR STILL. Isı Bilimi ve Tekniği Dergisi. 2024;44(1):163-89.