Çift Girişli Ramjet Motor Yanma Odası İçin Reaktif DDES ve LES Benzetim Yöntemlerinin Karşılaştırılması
Yıl 2025,
Cilt: 45 Sayı: 1, 10 - 21, 07.04.2025
Mehmet Burak Solmaz
,
Sitki Uslu
Öz
Çift girişli bir ramjet motoru yanma odasının tasarımı, ramjet itki sistemi geliştirilmesinde kritik öneme sahiptir. Basınç düşüşü, basınç dalgalanmaları ve yanma verimliliği gibi parametreler, çeşitli uçuş rejimleri için ayrı ayrı değerlendirilmelidir. Bu çalışmada, bir ramjet yanma odasını modellemek için Kararlı Laminer Alevcik yanma modeli ile birlikte Büyük Burgaç Benzetimi (LES) ve Gecikmeli Ayrılmış Burgaç Benzetimi (DDES) teknikleri kullanılmıştır. Ağ yapısı yakınsaması, Richardson ekstrapolasyon yöntemi ile sağlanmış ve ağ kalitesi M-indisi kullanılarak değerlendirilmiştir. LES ve DDES yaklaşımları ile deneysel veriler arasında yakın bir uyum gözlemlenmiş ve yanma odasının karmaşık akış davranışı benzetiminde bu tekniklere başvurulabileceği doğrulamıştır. Mevcut araştırma, Kararlı Laminer Alevcik modelinin bir ramjet yanma odasındaki akış yapısını tahmin etme yeteneğini göstermektedir. LES benzetimlerinde, duvar yakınındaki bölgede türbülanslı kinetik enerji daha yüksek hesaplanmakta ve daha hızlı karışmaya ve yanma verimliliğinin fazla hesaplanmasına yol açmaktadır. Duvara yakın bölgede DDES hesaplamalarının büyük burgaç benzetimine kıyasla deneysel sonuçlara daha yakın değerler bulduğu gözlemlenmiştir. Ağ yapısında duvar kenarı çözünürlüğü sağlanamadığında modellemenin daha doğru sonuçlar doğurduğu anlaşılmaktadır. Bu çalışma, DDES çözümlemelerinin deneysel sonuçlar ile arasında iyi bir uyum olduğunu göstermesinin yanı sıra düşük sesaltı hızlara sahip yanma odası benzetimlerinde yüksek yoğunluklu ağ yapısı uygulamak mümkün olmadığında bu yöntemin elverişliliğini de vurgulamaktadır.
Etik Beyan
Bu çalışmanın bir kısmı özet bildiri olarak "9th International Conference on Combustion Science and Processes" isimli konferansta yayınlanmıştır. Yayının DOI numarası : 10.11159/csp24.118
Kaynakça
- Benim, A. C., M. P Escudier, A. Nahavandi, K. Nickson, and K. J. Syed. 2008. DES Analysis of Confined Turbulent Swirling Flows in the Sub-critical Regime. In Advances in Hybrid RANS-LES Modelling. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, ed. S.H. Peng and W. Haase. 97:172-181. Springer-Verlag Berlin Heidelberg.
https://doi.org/10.1007/978-3-540-77815-8
- Bilger, R. W. 1976. The Structure of Diffusion Flames. Combustion Science and Technology. 13:155-70. https://doi.org/10.1080/00102207608946733
- Blevins, J. A., and H. W. Coleman. 1999. Apparent Failure of Scaling Methods in Ramjet Connected-Pipe Testing. Journal of Propulsion and Power. 15(5):689-98. https://doi.org/10.2514/2.5480
- Burke, S. P., and T. E. W. Schumann. 1928. Diffusion Flames. Industrial & Engineering Chemistry. 20(10):998-1004.
https://doi.org/10.1021/ie50226a005
- Cagdas, C.E. 2021. Investigation Of The Relight Characteristics Of A Turbojet Engine Combustion Chamber Under High-Altitude Conditions Using Computational Fluid Dynamics Large Eddy Simulation. M.Sc. Thesis, TOBB University of Economics and Technology Institute of Natural and Applied Sciences Mechanical Engineering Science Programme, Ankara. http://www.theses.fr/2009INPT025H/document
- Chuang, C. L., D.L. Cherng, W.H. Hsieh, G.S. Settles, and K.K. Kuo. 1989. Study of Flowfield Structure in a Simulated Solid-Propellant Ducted Rocket Motor. 27th Aerospace Sciences Meeting. https://doi.org/10.2514/6.1989-11
- Claramunt, K., R. Cònsul, D. Carbonell, and C.D. Pérez-Segarra. 2006. Analysis Of The Laminar Flamelet Concept For Nonpremixed Laminar Flames. Combustion and Flame. 145(4):845-62. https://doi.org/10.1016/j.combustflame.2005.11.005
- Crocco, L. 1940. Sullo strato limite laminare nei gas lungo una parete piana. Rendiconti del Circolo Matematico di Palermo. 63:121-75. https://doi.org/10.1007/BF03015720
- Erlebacher, G. Y., M. Hussaini, C.G. Speziale, and T.A. Zang. 1992. Toward the large-eddy simulation of compressible turbulent flows. Journal of Fluid Mechanics. 238:155-85.
https://doi.org/10.1017/S0022112092001678
- Fry, R. S. 2011. The U.S. Navy’s Contribution to Airbreathing Missile Propulsion Technology. AIAA Centennial of Naval Aviation Forum "100 Years of Achievement and Progress". AIAA Paper 2011-6942. https://doi.org/10.2514/6.2011-6942
- Garnier, E., N. Adams, and P. Sagaut. 2009. LES Governing Equations. Large Eddy Simulation for Compressible Flows. 1st ed., Springer Netherlands, Dordrecht.
- Gicquel, P., C. Brossard, M. Barat, and A. Ristori. 2002. Experimental Study of a High Speed Flow Inside a Dual Research Ducted Rocket Combustor Using Laser Doppler Velocimetry. ASME 2002 Fluids Engineering Division Summer Meeting. ASME Paper FEDSM2002-31432. https://doi.org/10.1115/FEDSM2002-31432
- Gicquel, L. Y. M., Y. Sommerer, B. Cuenot, and T. Poinsot. 2006. LES and Acoustic Analysis of Turbulent Reacting Flows: Application to a 3D Oscillatory Ramjet Combustor. 44th AIAA Aerospace Sciences Meeting and Exhibit. AIAA Paper 2006-151. https://doi.org/10.2514/6.2006-151
- Hunt, J. C. R., A. A. Wray, and P. Moin. 1988. Eddies, Streams and Convergence Zones in Turbulent Flows. Proceedings of the Summer Program 1988. Center for Turbulence Research, Stanford University, Stanford, CA, 1988, pp. 193-208. https://web.stanford.edu/group/ctr/Summer/201306111537.pdf
- Kim, S., and B. Natan. 2015. Inlet Geometry and Equivalence Ratio Effects on Combustion in a Ducted Rocket. Journal of Propulsion and Power. 31(2):619-31. https://doi.org/10.2514/1.B35369
- Kim, J. S., and F. A. Williams. 1997. Extinction of diffusion flames with nonunity Lewis numbers. Journal of Engineering Mathematics. 31(2):101-18. https://doi.org/10.1023/A:1004282110474
- Le Pichon, T., and A. Laverdant. 2016. Numerical Simulation of Reactive Flows in Ramjet Type Combustors and Associated Validation Experiments. Journal of Aerospace Lab. Paper AL11-03.
https://doi.org/10.12762/2016.al11-03
- Martín, P., M. Piomelli, and G. Candler. 2000. Subgrid-Scale Models for Compressible Large-Eddy Simulations. Theoretical and Computational Fluid Dynamics. 13(5):361-76. https://doi.org/10.1007/PL00020896
- Müller, C.M., H. Breitbach, and N. Peters. 1994. Partially Premixed Turbulent Flame Propagation in Jet Flames. Twenty-Fifth Symposium (International) on Combustion. pp. 1099-1106. https://doi.org/10.1016/S0082-0784(06)80747-2
- Nemati, A., J. Ong, and J. H. Walther. 2022. CFD Analysis of Combustion and Emission Formation Using URANS and LES Under Large Two-Stroke Marine Engine-Like Conditions. Applied Thermal Engineering, Vol. 216.
https://doi.org/10.1016/j.applthermaleng.2022.119037
- Peters, N. 1984. Laminar Diffusion Flamelet Models in Non-Premixed Turbulent Combustion. Progress in Energy and Combustion Science. 10(3):319-39. https://doi.org/10.1016/0360-1285(84)90114-X
- Pierce, C. D., and P. Moin. 2004. Progress-Variable Approach for Large-Eddy Simulation of Non-Premixed Turbulent Combustion. Journal of Fluid Mechanics. 504:73-97. https://doi.org/10.1017/S0022112004008213
- Pierce, C. D., and P. Moin. 1998. A Dynamic Model for Subgrid-Scale Variance and Dissipation Rate of a Conserved Scalar. Physics of Fluids. 10(12):3041-44. https://doi.org/10.1063/1.869832
- Poinsot, T., and D. Veynante. 2012. Theoretical and Numerical Combustion. 3rd ed., T. Poinsot, Toulouse.
- Pope, S. B. 2004. Ten Questions Concerning the Large Eddy Simulation of Turbulent Flows. New Journal of Physics. Vol. 6. https://doi.org/10.1088/1367-2630/6/1/035
- Reichstadt, S., N. Bertier, A. Ristori, and P. Bruel. 2007. Towards LES of Mixing Processes Inside a Research Ramjet Combustor. XVIII International Symposium on Air Breathing Engines. ISABE Paper 2007-1188.
- Ristori, A., G. Heid, A. Cochet, and G. Lavergne. 1999. Experimental and Numerical Study of Turbulent Flow inside a Research SDR Combustor. 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. AIAA Paper 99-2814.
https://doi.org/10.2514/6.1999-2814
- Roux, A. 2009. Simulation aux Grandes Echelles d'un statoréacteur. Ph.D. Dissertation, Dynamique des Fluides, Institut National Polytechnique de Toulouse. http://www.theses.fr/2009INPT025H/document
- Roux, A., S. Reichstadt, N. Bertier, L. Gicquel, F. Vuillot, and T. Poinsot. 2009. Comparison of Numerical Methods and Combustion Models for LES of a Ramjet. Comptes Rendus Mécanique. 337(6-7):352-361.
https://doi.org/10.1016/j.crme.2009.06.008
- Roux, A., L. Y. M. Gicquel, S. Reichstadt, N. Bertier, , G. Staffelbach, , F. Vuillot, and T. J. Poinsot. 2010. Analysis of Unsteady Reacting Flows and Impact of Chemistry Description in Large Eddy Simulations of Side-Dump Ramjet Combustors. Combustion and Flame. 157(1):176-191. https://doi.org/10.1016/j.combustflame.2009.09.020
- Roy, C. J., 2010. Review of Discretization Error Estimators in Scientific Computing. 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. AIAA Paper 2010-126. https://doi.org/10.2514/6.2010-126
- Shih, T. H., W.W. Liou, A. Shabbir, Z. Yang, and J. Zhu. 1995. A New k-ϵ Eddy Viscosity Model for High Reynolds Number Turbulent Flows. Computers & Fluids. 24(3):227-238. https://doi.org/10.1016/0045-7930(94)00032-T
- Smith, G. P., D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R.K. Hanson, S. Song, Jr.W.C. Gardiner, V.V. Lissianski, and Z. Qin. 1999. http://combustion.berkeley.edu/gri-mech/version30/text30.html
- Solmaz, M. B., and S. Uslu. 2023. Effects of turbulence and flamelet combustion modeling on the CFD simulation of a dual inlet ramjet combustor. International Journal of Turbo & Jet Engines. https://doi.org/10.1515/tjj-2023-0039
- Solmaz, M. B., S. Uslu, and O. Uzol. 2014. Unsteady RANS for Simulation of High Swirling Non-Premixed Methane-Air Flame. 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. AIAA Paper 2014-3473.
https://doi.org/10.2514/6.2014-3473
- Spalart, P. R., S. Deck, M.L. Shur, K.D. Squires, M.K. Strelets, and A. Travin. 2006. A New Version of Detached-Eddy Simulation, Resistant to Ambiguous Grid Densities. Theoretical and Computational Fluid Dynamics. 20(3):181-195. https://doi.org/10.1007/s00162-006-0015-0
- Spalart, P. R., W-H. Jou, M.K. Strelets, and S. R. Allmaras. 1997. Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. 1st AFOSR Int. Conf. on DNS/LES, Aug. 4-8, 1997, Ruston, LA. In Advances in DNS/LES, C. Liu & Z. Liu Eds., Greyden Press, Columbus, OH
- Stowe, R.A., C. Dubois, P.G. Harris, A.E.H.J. Mayer, A. deChamplain, and S. Ringuette. 2004. Performance Prediction of a Ducted Rocket Combustor Using a Simulated Solid Fuel. Journal of Propulsion and Power. 20(5):936-944.
https://doi.org/10.2514/1.2799
- Stull, F.D., R.R. Craig, G.D. Streby, and S. P. Vanka. 1985. Investigation of a Dual Inlet Side Dump Combustor Using Liquid Fuel Injection. Journal of Propulsion and Power. 1(1):83-88. https://doi.org/10.2514/3.22763
- Sun, M.-B., Z.-G. Wang, J.-H. Liang, and H. Geng. 2008. Flame Characteristics in Supersonic Combustor with Hydrogen Injection Upstream of Cavity Flameholder. Journal of Propulsion and Power. 24(4):688-95.
https://doi.org/10.2514/1.34970
- Timnat, Y.M. 1990. Recent Developments In Ramjets, Ducted Rockets And Scramjets. Progress in Aerospace Sciences. 27(3):201-235. https://doi.org/10.1016/0376-0421(90)90007-7
- Travin, A., M. Shur, M. Strelets, and P.R. Spalart. 2002. Physical and Numerical Upgrades in the Detached-Eddy Simulation of Complex Turbulent Flows. In Advances in LES of Complex Flows. ed. R. Friedrich, W. Rodi. Springer Netherlands, Dordrecht. https://doi.org/10.1007/0-306-48383-1_16
- Williams, F.A. 1975. Recent Advances in Theoretical Descriptions of Turbulent Diffusion Flames. In Turbulent Mixing in Nonreactive and Reactive Flows, ed. S.N.B. Murthy. Springer New York.
https://doi.org/10.1007/978-1-4615-8738-5_5
- Yang, S., X. Wang, W. Sun, and V. Yang. 2020. Comparison of Finite Rate Chemistry and Flamelet/Progress-Variable Models: Sandia Flames and the Effect of Differential Diffusion. Combustion Science and Technology. 192(7):1137-1159. https://doi.org/10.1080/00102202.2020.1754809
Comparison of Reacting DDES and LES CFD Simulation Methodologies for a Dual Inlet Ramjet Engine Combustor
Yıl 2025,
Cilt: 45 Sayı: 1, 10 - 21, 07.04.2025
Mehmet Burak Solmaz
,
Sitki Uslu
Öz
The design of a dual inlet dump ramjet combustor is critical in the development of propulsion systems. Parameters such as pressure drop, pressure fluctuations, and combustion efficiency must be evaluated across various flight regimes. In this study, Large Eddy Simulation (LES) and Delayed Detached Eddy Simulation (DDES) techniques, coupled with the Steady Laminar Flamelet combustion model, are used to model a generic ramjet combustor. Grid convergence was ensured through the application of the Richardson extrapolation method, and the grid quality was evaluated using the M-index. A close agreement between both LES and DDES approaches and experimental data was observed, confirming their accuracy in simulating the complex flow behavior of the combustor. The present research demonstrates that the Steady Laminar Flamelet model is capable of predicting flow structures in a ramjet combustor under reacting conditions. Within LES simulations, the prediction of turbulent kinetic energy within the near-wall region was enhanced, resulting in faster mixing and an overestimation of combustion efficiency. Even closer agreement with experimental data was achieved in DDES predictions, highlighting the effectiveness of employing eddy simulation with near-wall modeling when wall resolution is unfeasible. This approach not only demonstrates better agreement between DDES predictions and experimental data but also showcases its efficiency in reducing the need for excessively refined meshes in the study of dump-type low subsonic combustors.
Kaynakça
- Benim, A. C., M. P Escudier, A. Nahavandi, K. Nickson, and K. J. Syed. 2008. DES Analysis of Confined Turbulent Swirling Flows in the Sub-critical Regime. In Advances in Hybrid RANS-LES Modelling. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, ed. S.H. Peng and W. Haase. 97:172-181. Springer-Verlag Berlin Heidelberg.
https://doi.org/10.1007/978-3-540-77815-8
- Bilger, R. W. 1976. The Structure of Diffusion Flames. Combustion Science and Technology. 13:155-70. https://doi.org/10.1080/00102207608946733
- Blevins, J. A., and H. W. Coleman. 1999. Apparent Failure of Scaling Methods in Ramjet Connected-Pipe Testing. Journal of Propulsion and Power. 15(5):689-98. https://doi.org/10.2514/2.5480
- Burke, S. P., and T. E. W. Schumann. 1928. Diffusion Flames. Industrial & Engineering Chemistry. 20(10):998-1004.
https://doi.org/10.1021/ie50226a005
- Cagdas, C.E. 2021. Investigation Of The Relight Characteristics Of A Turbojet Engine Combustion Chamber Under High-Altitude Conditions Using Computational Fluid Dynamics Large Eddy Simulation. M.Sc. Thesis, TOBB University of Economics and Technology Institute of Natural and Applied Sciences Mechanical Engineering Science Programme, Ankara. http://www.theses.fr/2009INPT025H/document
- Chuang, C. L., D.L. Cherng, W.H. Hsieh, G.S. Settles, and K.K. Kuo. 1989. Study of Flowfield Structure in a Simulated Solid-Propellant Ducted Rocket Motor. 27th Aerospace Sciences Meeting. https://doi.org/10.2514/6.1989-11
- Claramunt, K., R. Cònsul, D. Carbonell, and C.D. Pérez-Segarra. 2006. Analysis Of The Laminar Flamelet Concept For Nonpremixed Laminar Flames. Combustion and Flame. 145(4):845-62. https://doi.org/10.1016/j.combustflame.2005.11.005
- Crocco, L. 1940. Sullo strato limite laminare nei gas lungo una parete piana. Rendiconti del Circolo Matematico di Palermo. 63:121-75. https://doi.org/10.1007/BF03015720
- Erlebacher, G. Y., M. Hussaini, C.G. Speziale, and T.A. Zang. 1992. Toward the large-eddy simulation of compressible turbulent flows. Journal of Fluid Mechanics. 238:155-85.
https://doi.org/10.1017/S0022112092001678
- Fry, R. S. 2011. The U.S. Navy’s Contribution to Airbreathing Missile Propulsion Technology. AIAA Centennial of Naval Aviation Forum "100 Years of Achievement and Progress". AIAA Paper 2011-6942. https://doi.org/10.2514/6.2011-6942
- Garnier, E., N. Adams, and P. Sagaut. 2009. LES Governing Equations. Large Eddy Simulation for Compressible Flows. 1st ed., Springer Netherlands, Dordrecht.
- Gicquel, P., C. Brossard, M. Barat, and A. Ristori. 2002. Experimental Study of a High Speed Flow Inside a Dual Research Ducted Rocket Combustor Using Laser Doppler Velocimetry. ASME 2002 Fluids Engineering Division Summer Meeting. ASME Paper FEDSM2002-31432. https://doi.org/10.1115/FEDSM2002-31432
- Gicquel, L. Y. M., Y. Sommerer, B. Cuenot, and T. Poinsot. 2006. LES and Acoustic Analysis of Turbulent Reacting Flows: Application to a 3D Oscillatory Ramjet Combustor. 44th AIAA Aerospace Sciences Meeting and Exhibit. AIAA Paper 2006-151. https://doi.org/10.2514/6.2006-151
- Hunt, J. C. R., A. A. Wray, and P. Moin. 1988. Eddies, Streams and Convergence Zones in Turbulent Flows. Proceedings of the Summer Program 1988. Center for Turbulence Research, Stanford University, Stanford, CA, 1988, pp. 193-208. https://web.stanford.edu/group/ctr/Summer/201306111537.pdf
- Kim, S., and B. Natan. 2015. Inlet Geometry and Equivalence Ratio Effects on Combustion in a Ducted Rocket. Journal of Propulsion and Power. 31(2):619-31. https://doi.org/10.2514/1.B35369
- Kim, J. S., and F. A. Williams. 1997. Extinction of diffusion flames with nonunity Lewis numbers. Journal of Engineering Mathematics. 31(2):101-18. https://doi.org/10.1023/A:1004282110474
- Le Pichon, T., and A. Laverdant. 2016. Numerical Simulation of Reactive Flows in Ramjet Type Combustors and Associated Validation Experiments. Journal of Aerospace Lab. Paper AL11-03.
https://doi.org/10.12762/2016.al11-03
- Martín, P., M. Piomelli, and G. Candler. 2000. Subgrid-Scale Models for Compressible Large-Eddy Simulations. Theoretical and Computational Fluid Dynamics. 13(5):361-76. https://doi.org/10.1007/PL00020896
- Müller, C.M., H. Breitbach, and N. Peters. 1994. Partially Premixed Turbulent Flame Propagation in Jet Flames. Twenty-Fifth Symposium (International) on Combustion. pp. 1099-1106. https://doi.org/10.1016/S0082-0784(06)80747-2
- Nemati, A., J. Ong, and J. H. Walther. 2022. CFD Analysis of Combustion and Emission Formation Using URANS and LES Under Large Two-Stroke Marine Engine-Like Conditions. Applied Thermal Engineering, Vol. 216.
https://doi.org/10.1016/j.applthermaleng.2022.119037
- Peters, N. 1984. Laminar Diffusion Flamelet Models in Non-Premixed Turbulent Combustion. Progress in Energy and Combustion Science. 10(3):319-39. https://doi.org/10.1016/0360-1285(84)90114-X
- Pierce, C. D., and P. Moin. 2004. Progress-Variable Approach for Large-Eddy Simulation of Non-Premixed Turbulent Combustion. Journal of Fluid Mechanics. 504:73-97. https://doi.org/10.1017/S0022112004008213
- Pierce, C. D., and P. Moin. 1998. A Dynamic Model for Subgrid-Scale Variance and Dissipation Rate of a Conserved Scalar. Physics of Fluids. 10(12):3041-44. https://doi.org/10.1063/1.869832
- Poinsot, T., and D. Veynante. 2012. Theoretical and Numerical Combustion. 3rd ed., T. Poinsot, Toulouse.
- Pope, S. B. 2004. Ten Questions Concerning the Large Eddy Simulation of Turbulent Flows. New Journal of Physics. Vol. 6. https://doi.org/10.1088/1367-2630/6/1/035
- Reichstadt, S., N. Bertier, A. Ristori, and P. Bruel. 2007. Towards LES of Mixing Processes Inside a Research Ramjet Combustor. XVIII International Symposium on Air Breathing Engines. ISABE Paper 2007-1188.
- Ristori, A., G. Heid, A. Cochet, and G. Lavergne. 1999. Experimental and Numerical Study of Turbulent Flow inside a Research SDR Combustor. 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. AIAA Paper 99-2814.
https://doi.org/10.2514/6.1999-2814
- Roux, A. 2009. Simulation aux Grandes Echelles d'un statoréacteur. Ph.D. Dissertation, Dynamique des Fluides, Institut National Polytechnique de Toulouse. http://www.theses.fr/2009INPT025H/document
- Roux, A., S. Reichstadt, N. Bertier, L. Gicquel, F. Vuillot, and T. Poinsot. 2009. Comparison of Numerical Methods and Combustion Models for LES of a Ramjet. Comptes Rendus Mécanique. 337(6-7):352-361.
https://doi.org/10.1016/j.crme.2009.06.008
- Roux, A., L. Y. M. Gicquel, S. Reichstadt, N. Bertier, , G. Staffelbach, , F. Vuillot, and T. J. Poinsot. 2010. Analysis of Unsteady Reacting Flows and Impact of Chemistry Description in Large Eddy Simulations of Side-Dump Ramjet Combustors. Combustion and Flame. 157(1):176-191. https://doi.org/10.1016/j.combustflame.2009.09.020
- Roy, C. J., 2010. Review of Discretization Error Estimators in Scientific Computing. 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. AIAA Paper 2010-126. https://doi.org/10.2514/6.2010-126
- Shih, T. H., W.W. Liou, A. Shabbir, Z. Yang, and J. Zhu. 1995. A New k-ϵ Eddy Viscosity Model for High Reynolds Number Turbulent Flows. Computers & Fluids. 24(3):227-238. https://doi.org/10.1016/0045-7930(94)00032-T
- Smith, G. P., D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R.K. Hanson, S. Song, Jr.W.C. Gardiner, V.V. Lissianski, and Z. Qin. 1999. http://combustion.berkeley.edu/gri-mech/version30/text30.html
- Solmaz, M. B., and S. Uslu. 2023. Effects of turbulence and flamelet combustion modeling on the CFD simulation of a dual inlet ramjet combustor. International Journal of Turbo & Jet Engines. https://doi.org/10.1515/tjj-2023-0039
- Solmaz, M. B., S. Uslu, and O. Uzol. 2014. Unsteady RANS for Simulation of High Swirling Non-Premixed Methane-Air Flame. 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. AIAA Paper 2014-3473.
https://doi.org/10.2514/6.2014-3473
- Spalart, P. R., S. Deck, M.L. Shur, K.D. Squires, M.K. Strelets, and A. Travin. 2006. A New Version of Detached-Eddy Simulation, Resistant to Ambiguous Grid Densities. Theoretical and Computational Fluid Dynamics. 20(3):181-195. https://doi.org/10.1007/s00162-006-0015-0
- Spalart, P. R., W-H. Jou, M.K. Strelets, and S. R. Allmaras. 1997. Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. 1st AFOSR Int. Conf. on DNS/LES, Aug. 4-8, 1997, Ruston, LA. In Advances in DNS/LES, C. Liu & Z. Liu Eds., Greyden Press, Columbus, OH
- Stowe, R.A., C. Dubois, P.G. Harris, A.E.H.J. Mayer, A. deChamplain, and S. Ringuette. 2004. Performance Prediction of a Ducted Rocket Combustor Using a Simulated Solid Fuel. Journal of Propulsion and Power. 20(5):936-944.
https://doi.org/10.2514/1.2799
- Stull, F.D., R.R. Craig, G.D. Streby, and S. P. Vanka. 1985. Investigation of a Dual Inlet Side Dump Combustor Using Liquid Fuel Injection. Journal of Propulsion and Power. 1(1):83-88. https://doi.org/10.2514/3.22763
- Sun, M.-B., Z.-G. Wang, J.-H. Liang, and H. Geng. 2008. Flame Characteristics in Supersonic Combustor with Hydrogen Injection Upstream of Cavity Flameholder. Journal of Propulsion and Power. 24(4):688-95.
https://doi.org/10.2514/1.34970
- Timnat, Y.M. 1990. Recent Developments In Ramjets, Ducted Rockets And Scramjets. Progress in Aerospace Sciences. 27(3):201-235. https://doi.org/10.1016/0376-0421(90)90007-7
- Travin, A., M. Shur, M. Strelets, and P.R. Spalart. 2002. Physical and Numerical Upgrades in the Detached-Eddy Simulation of Complex Turbulent Flows. In Advances in LES of Complex Flows. ed. R. Friedrich, W. Rodi. Springer Netherlands, Dordrecht. https://doi.org/10.1007/0-306-48383-1_16
- Williams, F.A. 1975. Recent Advances in Theoretical Descriptions of Turbulent Diffusion Flames. In Turbulent Mixing in Nonreactive and Reactive Flows, ed. S.N.B. Murthy. Springer New York.
https://doi.org/10.1007/978-1-4615-8738-5_5
- Yang, S., X. Wang, W. Sun, and V. Yang. 2020. Comparison of Finite Rate Chemistry and Flamelet/Progress-Variable Models: Sandia Flames and the Effect of Differential Diffusion. Combustion Science and Technology. 192(7):1137-1159. https://doi.org/10.1080/00102202.2020.1754809