Enhancing Thermal Efficiency in Fluidized Bed Cooling Towers: An Experimental Approach to Bed Design
Yıl 2025,
Cilt: 45 Sayı: 1, 111 - 118, 07.04.2025
Mukilarasan Nedunchezhiyan
,
Ravikumar Jayabal
,
Sathiyamoorthi Ramalingam
,
Senthil S
Öz
The study aimed to investigate the thermal performance of a fluidized bed cooling tower (FBCT) by examining the effects of varying bed heights and circular tempestuous spheres on cooling efficiency. An experimental setup was designed to evaluate the FBCT's performance under different conditions, including variable water flow rates, bed heights ranging from 200 to 300 mm, and spherical balls with diameters of 25 mm and 50 mm. Critical parameters such as the range and approach of temperature and the liquid-to-gas (L/G) ratio were analyzed to understand their influence on the cooling tower's efficiency. The findings indicated that more petite turbulence balls significantly enhanced air mixing efficiency, improving thermal performance. It was observed that an increase in the ratio of water mass flux to air mass flux resulted in decreased cooling tower effectiveness. The static bed height was also identified as a critical factor affecting performance, with the entry water temperature impacting the static bed height. The study concluded that optimizing bed height and utilizing more petite spherical balls can enhance the thermal efficiency of fluidized bed cooling towers. The relationship between water and air mass flow rates is crucial for achieving effective cooling performance, highlighting the importance of these parameters in the design and operation of FBCTs in industrial applications.
Etik Beyan
Not applicable
Destekleyen Kurum
Not applicable
Proje Numarası
Not applicable
Kaynakça
- Agarwal, N. K., Biswas, P., & Shirke, A. (2022). Novel model predictive control by hypothetical stages to improve energy efficiency of industrial cooling tower. Applied Thermal Engineering, 215, 118899.
https://doi.org/10.1016/j.applthermaleng.2022.118899
- Amir, F. M., Yusoff, M. Z., & Hassan, S. H. A. (2023). Cooling tower performance and the ambiguity of the L/G ratio scheme in optimization: A single cell control volume approach. International Communications in Heat and Mass Transfer, 142, 106653.
https://doi.org/10.1016/j.icheatmasstransfer.2023.106653
- Ayaz, M., Namazi, M., ud Din, M. A., Ershath, M. M., Mansour, A., & Aggounee, M. (2022). Sustainable seawater desalination: Current status, environmental implications, and future expectations. Desalination, 540, 116022. https://doi.org/10.1016/j.desal.2022.116022
- Badruzzaman, M., et al. (2022). Municipal reclaimed water as makeup water for cooling systems: Water efficiency, biohazards, and reliability. Water Resources and Industry, 28, 100188.
https://doi.org/10.1016/j.wri.2022.100188
- Chaibi, M. T., Bourouni, K., & Bassem, M. M. (2013). Experimental analysis of the performance of a mechanical geothermal water cooling tower in South Tunisia. American Journal of Energy Research, 1, 1–6.
https://doi.org/10.12691/ajer-1-1-1
- Crook, B., Willerton, L., Smith, D., Wilson, L., Poran, V., Helps, J., & McDermott, P. (2020). Legionella risk in evaporative cooling systems and underlying causes of associated breaches in health and safety compliance. International Journal of Hygiene and Environmental Health, 224, 113425.
https://doi.org/10.1016/j.ijheh.2019.113425
- deNicolás, A. P., Molina-García, A., & Vera-García, F. (2023). Performance evaluation and feasibility study of a cooling tower model for zero liquid discharge-desalination processes. Energy Conversion and Management, 297, 117673.
https://doi.org/10.1016/J.ENCONMAN.2023.117673
- Distefano, T., & Kelly, S. (2017). Are we in deep water? Water scarcity and its limits to economic growth. Ecological Economics, 142, 130-147.
https://doi.org/10.1016/j.ecolecon.2017.06.019
- Dolan, F., Lamontagne, J., Link, R., Hejazi, M., Reed, P., & Edmonds, J. (2021). Evaluating the economic impact of water scarcity in a changing world. Nature Communications, 12(1), 1915.
https://doi.org/10.1038/s41467-021-22194-0
- El-Dessouky, H. (1993). Thermal and hydraulic performance of a three-phase fluidized bed cooling tower. Experimental Thermal and Fluid Science, 3, 417–426.
https://doi.org/10.1016/0894-1777(93)90018-E
- Lucas, M., Ruiz, J., Martínez, P. J., Kaiser, A. S., Viedma, A., & Zamora, B. (2013). Experimental study on the performance of a mechanical cooling tower fitted with different types of water distribution systems and drift eliminators. Applied Thermal Engineering, 50(1), 282–292.
https://doi.org/10.1016/j.applthermaleng.2012.06.030
- MirabdolahLavasani, A., NamdarBaboli, Z., Zamanizadeh, M., & Zareh, M. (2014). Experimental study on the thermal performance of mechanical cooling tower with rotational splash type packing. Energy Conversion and Management, 87, 530–538. https://doi.org/10.1016/j.enconman.2014.07.036
- Moglia, A., Bracco, L., Chiolo, M., & Buffagni, M. (2024). E&P Operations in Water Stressed Areas: An Approach to the Identification, Selection and Implementation of Initiatives for a Sustainable Water Management, Withdrawal Reduction and Water Valorization.
https://doi.org/10.2118/220301-ms
- Mohiuddin, A., & Kant, K. (1996). Knowledge base for the systematic design of wet cooling towers. Part II: Fill and other design parameters. International Journal of Refrigeration, 19(1), 52–60.
https://doi.org/10.1016/0140-7007(95)00060-7
- Muscio, A., et al. (2023). A modified ε-NTU analytical model for the investigation of counter-flow Maisotsenko-based cooling systems. Applied Thermal Engineering, 120944.
https://doi.org/10.1016/j.applthermaleng.2023.120944
- Navarro, P., et al. (2023). Effect of fill length and distribution on the thermal performance of an inverted cooling tower. Applied Thermal Engineering, 120876.
https://doi.org/10.1016/j.applthermaleng.2023.120876
- Ren, C.-Q. (2008). Corrections to the simple effectiveness-NTU method for counterflow cooling towers and packed bed liquid desiccant–air contact systems. International Journal of Heat and Mass Transfer, 51(1–2), 237–245.
https://doi.org/10.1016/j.ijheatmasstransfer.2007.04.028
- Safari, I., Walker, M. E., Hsieh, M.-K., Dzombak, D. A., Liu, W., Vidic, R. D., Miller, D. C., & Abbasian, J. (2013). Utilization of municipal wastewater for cooling in thermoelectric power plants. Fuel, 111, 103–113.
https://doi.org/10.1016/j.fuel.2013.03.062
- Saha, P., et al. (2021). Advanced oxidation processes for removal of organics from cooling tower blowdown: Efficiencies and evaluation of chlorinated species. Separation and Purification Technology, 278, 119537.
https://doi.org/10.1016/j.seppur.2021.119537
- Salins, S. S., et al. (2023). Influence of packing configuration and flow rate on the performance of a forced draft wet cooling tower. Journal of Building Engineering, 72, 106615.
https://doi.org/10.1016/j.jobe.2023.106615
- Shalaby, S., Sharshir, S. W., Kabeel, A., Kandeal, A., Abosheiasha, H., & Abdelgaied, M., et al. (2022). Reverse osmosis desalination systems powered by solar energy: Preheating techniques and brine disposal challenges–A detailed review. Energy Conversion and Management, 251, 114971.
https://doi.org/10.1016/j.enconman.2021.114971
- Shublaq, M., & Sleiti, A. K. (2020). Experimental analysis of water evaporation losses in cooling towers using filters. Applied Thermal Engineering, 175, 115418.
https://doi.org/10.1016/j.applthermaleng.2020.115418
- Tsao, H. F., Scheikl, U., Herbold, C., Indra, A., Walochnik, J., & Horn, M. (2019). The cooling tower water microbiota: Seasonal dynamics and co-occurrence of bacterial and protist phylotypes. Water Research, 159, 464–479.
https://doi.org/10.1016/j.watres.2019.04
- Turetgen, I. (2004). Comparison of the efficacy of free residual chlorine and monochloramine against biofilms in model and full-scale cooling towers. Biofouling, 20, 81–85.
https://doi.org/10.1080/08927010410001710027
- Wang, Y., Shen, C., Tang, Z., Yao, Y., Wang, X., & Park, B. (2019). Interaction between particulate fouling and precipitation fouling: Sticking probability and deposit bond strength. International Journal of Heat and Mass Transfer, 144, 118700.
https://doi.org/10.1016/j.ijheatmasstransfer.2019.118700
- Xi, Y., et al. (2023). Research on heat and mass transfer characteristics of a counterflow wet cooling tower using a new type of straight wave packing. International Journal of Thermal Sciences, 193, 108540.
https://doi.org/10.1016/j.ijthermalsci.2023.108540
- Yu, X., Yang, H., Lei, H., & Shapiro, A. (2013). Experimental evaluation on concentrating cooling tower blowdown water by direct contact membrane distillation. Desalination, 323, 134–141.
https://doi.org/10.1016/j.desal.2013.01.029
Akışkan Yataklı Soğutma Kulelerinde Isıl Verimliliğin Artırılması: Yatak Tasarımına Deneysel Bir Yaklaşım
Yıl 2025,
Cilt: 45 Sayı: 1, 111 - 118, 07.04.2025
Mukilarasan Nedunchezhiyan
,
Ravikumar Jayabal
,
Sathiyamoorthi Ramalingam
,
Senthil S
Öz
Bu çalışma, değişen yatak yüksekliklerinin ve dairesel fırtınalı kürelerin soğutma verimliliği üzerindeki etkilerini inceleyerek akışkan yataklı bir soğutma kulesinin (FBCT) termal performansını araştırmayı amaçlamıştır. FBCT'nin performansını, değişken su akış hızları, 200 ila 300 mm arasında değişen yatak yükseklikleri ve 25 mm ve 50 mm çapında küresel toplar dahil olmak üzere farklı koşullar altında değerlendirmek için bir deney düzeneği tasarlandı. Sıcaklığın aralığı ve yaklaşımı ile sıvı-gaz (L/G) oranı gibi kritik parametreler, soğutma kulesinin verimliliği üzerindeki etkilerini anlamak için analiz edildi. Bulgular, daha küçük türbülans toplarının hava karıştırma verimliliğini önemli ölçüde arttırdığını ve termal performansı iyileştirdiğini gösterdi. Su kütle akısının hava kütle akısına oranındaki artışın soğutma kulesi etkinliğinin azalmasına neden olduğu gözlendi. Statik yatak yüksekliğinin de performansı etkileyen kritik bir faktör olduğu ve giriş suyu sıcaklığının statik yatak yüksekliğini etkilediği belirlendi. Çalışma, yatak yüksekliğini optimize etmenin ve daha küçük küresel toplar kullanmanın, akışkan yataklı soğutma kulelerinin termal verimliliğini artırabileceği sonucuna vardı. Su ve hava kütle akış hızları arasındaki ilişki, etkili soğutma performansı elde etmek için çok önemlidir ve bu parametrelerin endüstriyel uygulamalarda FBCT'lerin tasarımı ve çalıştırılmasındaki önemini vurgulamaktadır.
Proje Numarası
Not applicable
Kaynakça
- Agarwal, N. K., Biswas, P., & Shirke, A. (2022). Novel model predictive control by hypothetical stages to improve energy efficiency of industrial cooling tower. Applied Thermal Engineering, 215, 118899.
https://doi.org/10.1016/j.applthermaleng.2022.118899
- Amir, F. M., Yusoff, M. Z., & Hassan, S. H. A. (2023). Cooling tower performance and the ambiguity of the L/G ratio scheme in optimization: A single cell control volume approach. International Communications in Heat and Mass Transfer, 142, 106653.
https://doi.org/10.1016/j.icheatmasstransfer.2023.106653
- Ayaz, M., Namazi, M., ud Din, M. A., Ershath, M. M., Mansour, A., & Aggounee, M. (2022). Sustainable seawater desalination: Current status, environmental implications, and future expectations. Desalination, 540, 116022. https://doi.org/10.1016/j.desal.2022.116022
- Badruzzaman, M., et al. (2022). Municipal reclaimed water as makeup water for cooling systems: Water efficiency, biohazards, and reliability. Water Resources and Industry, 28, 100188.
https://doi.org/10.1016/j.wri.2022.100188
- Chaibi, M. T., Bourouni, K., & Bassem, M. M. (2013). Experimental analysis of the performance of a mechanical geothermal water cooling tower in South Tunisia. American Journal of Energy Research, 1, 1–6.
https://doi.org/10.12691/ajer-1-1-1
- Crook, B., Willerton, L., Smith, D., Wilson, L., Poran, V., Helps, J., & McDermott, P. (2020). Legionella risk in evaporative cooling systems and underlying causes of associated breaches in health and safety compliance. International Journal of Hygiene and Environmental Health, 224, 113425.
https://doi.org/10.1016/j.ijheh.2019.113425
- deNicolás, A. P., Molina-García, A., & Vera-García, F. (2023). Performance evaluation and feasibility study of a cooling tower model for zero liquid discharge-desalination processes. Energy Conversion and Management, 297, 117673.
https://doi.org/10.1016/J.ENCONMAN.2023.117673
- Distefano, T., & Kelly, S. (2017). Are we in deep water? Water scarcity and its limits to economic growth. Ecological Economics, 142, 130-147.
https://doi.org/10.1016/j.ecolecon.2017.06.019
- Dolan, F., Lamontagne, J., Link, R., Hejazi, M., Reed, P., & Edmonds, J. (2021). Evaluating the economic impact of water scarcity in a changing world. Nature Communications, 12(1), 1915.
https://doi.org/10.1038/s41467-021-22194-0
- El-Dessouky, H. (1993). Thermal and hydraulic performance of a three-phase fluidized bed cooling tower. Experimental Thermal and Fluid Science, 3, 417–426.
https://doi.org/10.1016/0894-1777(93)90018-E
- Lucas, M., Ruiz, J., Martínez, P. J., Kaiser, A. S., Viedma, A., & Zamora, B. (2013). Experimental study on the performance of a mechanical cooling tower fitted with different types of water distribution systems and drift eliminators. Applied Thermal Engineering, 50(1), 282–292.
https://doi.org/10.1016/j.applthermaleng.2012.06.030
- MirabdolahLavasani, A., NamdarBaboli, Z., Zamanizadeh, M., & Zareh, M. (2014). Experimental study on the thermal performance of mechanical cooling tower with rotational splash type packing. Energy Conversion and Management, 87, 530–538. https://doi.org/10.1016/j.enconman.2014.07.036
- Moglia, A., Bracco, L., Chiolo, M., & Buffagni, M. (2024). E&P Operations in Water Stressed Areas: An Approach to the Identification, Selection and Implementation of Initiatives for a Sustainable Water Management, Withdrawal Reduction and Water Valorization.
https://doi.org/10.2118/220301-ms
- Mohiuddin, A., & Kant, K. (1996). Knowledge base for the systematic design of wet cooling towers. Part II: Fill and other design parameters. International Journal of Refrigeration, 19(1), 52–60.
https://doi.org/10.1016/0140-7007(95)00060-7
- Muscio, A., et al. (2023). A modified ε-NTU analytical model for the investigation of counter-flow Maisotsenko-based cooling systems. Applied Thermal Engineering, 120944.
https://doi.org/10.1016/j.applthermaleng.2023.120944
- Navarro, P., et al. (2023). Effect of fill length and distribution on the thermal performance of an inverted cooling tower. Applied Thermal Engineering, 120876.
https://doi.org/10.1016/j.applthermaleng.2023.120876
- Ren, C.-Q. (2008). Corrections to the simple effectiveness-NTU method for counterflow cooling towers and packed bed liquid desiccant–air contact systems. International Journal of Heat and Mass Transfer, 51(1–2), 237–245.
https://doi.org/10.1016/j.ijheatmasstransfer.2007.04.028
- Safari, I., Walker, M. E., Hsieh, M.-K., Dzombak, D. A., Liu, W., Vidic, R. D., Miller, D. C., & Abbasian, J. (2013). Utilization of municipal wastewater for cooling in thermoelectric power plants. Fuel, 111, 103–113.
https://doi.org/10.1016/j.fuel.2013.03.062
- Saha, P., et al. (2021). Advanced oxidation processes for removal of organics from cooling tower blowdown: Efficiencies and evaluation of chlorinated species. Separation and Purification Technology, 278, 119537.
https://doi.org/10.1016/j.seppur.2021.119537
- Salins, S. S., et al. (2023). Influence of packing configuration and flow rate on the performance of a forced draft wet cooling tower. Journal of Building Engineering, 72, 106615.
https://doi.org/10.1016/j.jobe.2023.106615
- Shalaby, S., Sharshir, S. W., Kabeel, A., Kandeal, A., Abosheiasha, H., & Abdelgaied, M., et al. (2022). Reverse osmosis desalination systems powered by solar energy: Preheating techniques and brine disposal challenges–A detailed review. Energy Conversion and Management, 251, 114971.
https://doi.org/10.1016/j.enconman.2021.114971
- Shublaq, M., & Sleiti, A. K. (2020). Experimental analysis of water evaporation losses in cooling towers using filters. Applied Thermal Engineering, 175, 115418.
https://doi.org/10.1016/j.applthermaleng.2020.115418
- Tsao, H. F., Scheikl, U., Herbold, C., Indra, A., Walochnik, J., & Horn, M. (2019). The cooling tower water microbiota: Seasonal dynamics and co-occurrence of bacterial and protist phylotypes. Water Research, 159, 464–479.
https://doi.org/10.1016/j.watres.2019.04
- Turetgen, I. (2004). Comparison of the efficacy of free residual chlorine and monochloramine against biofilms in model and full-scale cooling towers. Biofouling, 20, 81–85.
https://doi.org/10.1080/08927010410001710027
- Wang, Y., Shen, C., Tang, Z., Yao, Y., Wang, X., & Park, B. (2019). Interaction between particulate fouling and precipitation fouling: Sticking probability and deposit bond strength. International Journal of Heat and Mass Transfer, 144, 118700.
https://doi.org/10.1016/j.ijheatmasstransfer.2019.118700
- Xi, Y., et al. (2023). Research on heat and mass transfer characteristics of a counterflow wet cooling tower using a new type of straight wave packing. International Journal of Thermal Sciences, 193, 108540.
https://doi.org/10.1016/j.ijthermalsci.2023.108540
- Yu, X., Yang, H., Lei, H., & Shapiro, A. (2013). Experimental evaluation on concentrating cooling tower blowdown water by direct contact membrane distillation. Desalination, 323, 134–141.
https://doi.org/10.1016/j.desal.2013.01.029