Araştırma Makalesi
BibTex RIS Kaynak Göster

Jeomorfolojik Yaklaşıma Bağlı Heyelan Risk Değerlendirmesi: Kelkit Çayı Vadisi Aşağı Çığırı Örneği

Yıl 2022, , 61 - 80, 08.07.2022
https://doi.org/10.26650/JGEOG2022-971673

Öz

Kelkit Çayı Vadisinin aşağı çığırını oluşturan çalışma alanında keskin litolojik geçişler, yüksek topografik özellikler, klimatik ve tektonik özellikler bölgede dönemsel heyelanlanmaya neden olmaktadır. Çalışma kapsamında dönemsel aktiviteye bağlı gelişen heyelanların tehlike ve riskleri jeomorfolojik bir yaklaşımla değerlendirilmiştir. Bu bakımdan heyelan gelişimi Türkiye ortalamasının üzerindeki çalışma alanı için oluşabilecek kayıpların azaltılması amaçlanmıştır. Çalışma alanında 462 heyelanın belirli topografik özelliklere ve litolojiye göre dağılım gösterdikleri belirlenmiştir. Heyelanların, vadi kuzeyinin üst kesimlerinde ve paleo-heyelan topoğrafyasında ani kar erimesiyle, güneyde ise yağışlarla tetiklendiği görülmüştür. Heyelan aktivitesi yüksek alanların, morfolojik evrimleri ve mekânsal sürekliliği 1958-2021 yılları arasında çok yüksek-yüksek çözünürlüklü uydu görüntülerinden (1 m ve 5 m) ve stereo hava fotolarından (1: 16,000-1: 35,000 ölçekli) yorumlanmıştır. CBS ve UA araçlarıyla belirlenen çok zamanlı heyelan envanteri ile aktivitenin zamansal ve mekânsal farklılık gösterdiği görülmüştür. Aktivitenin yüksek ve risk elemanlarının olduğu dört bölgede tehlike, fiziksel, sosyal, sistemik ve ekonomik zarar görebilirliğe göre riskler değerlendirilmiştir. Heyelan tehlikesinin arttığı dönemlerde nüfus ve yerleşmenin yoğunlaştığı tespit edilmiştir. Koyulhisarın paleo heyelanlarının kuzeybatısında ve güneyindeki kısımlarda, Sugözü, Gökdere ve Boyalı heyelanlarının ise birikim zonuna yakın yerlerde risk elemanlarının ve dolayısıyla risk seviyesinin yüksek olduğu görülmüştür. Ayrıca Gökdere ve Boyalı heyelanlarının yeni bir aktivitede Kelkit Çayı’na set oluşturacağı tespit edilmiştir.

Teşekkür

Tolga Görüm’e yol göstericiliğinden ve yardımlarından dolayı yazar teşekkürlerini sunar.

Kaynakça

  • Adrianto, L., & Matsuda, Y. (2002). Developing economic vulnerability indices of environmental disasters in small island regions. Environmental Impact Assessment Review, 22(4), 393-414. https:// doi.org/https://doi.org/10.1016/S0195-9255(02)00012-4 google scholar
  • AFAD. (2020). Afet Yönetimi Kapsamında 2019 Yılına Bakış ve Doğa Kaynaklı Olay İstatistikleri Raporu. google scholar
  • Alcantara-Ayala, I. (2002). Geomorphology, natural hazards, vulnerability and prevention of natural disasters in developing countries. Geomorphology, 47(2), 107-124. https://doi.org/https:// doi.org/10.1016/S0169-555X(02)00083-1 google scholar
  • Atkinson, P. M., & Massari, R. (1998). Generalised linear modelling of susceptibility to landsliding in the central Apennines, Italy. Computers & Geosciences, 24(4), 373-385. https://doi.org/https:// doi.org/10.1016/S0098-3004(97)00117-9 google scholar
  • Ayenew, T., & Barbieri, G. (2005). Inventory of landslides and susceptibility mapping in the Dessie area, northern Ethiopia. Engineering Geology, 77(1-2), 1-15. https://doi.Org/https://doi. org/10.1016/j.enggeo.2004.07.002 google scholar
  • Brabb, E. E., & Pampeyan, E. H. (1972). Preliminary map of landslide deposits in San Mateo County, California. google scholar
  • Cannon, S. H., & Ellen, S. (1985). Rainfall conditions for abundant debris avalanches, San Francisco Bay region, California. California geology, 38(12), 267-272. google scholar
  • Cardinali, M., Galli, M., Ardizzone, F., Guzzetti, F., & Reichenbach, P. (2007). Comparing landslide rates in the northern and central Apennines, Italy. Geophysical Research Abstracts, google scholar
  • Cardinali, M., Reichenbach, P., Guzzetti, F., Ardizzone, F., Antonini, G., Galli, M., Cacciano, M., Castellani, M., & Salvati, P. (2002). A geomorphological approach to the estimation of landslide hazards and risks in Umbria, Central Italy. Natural Hazards and Earth System Science, 2(1/2), 57-72. https://doi.org/https://doi.org/10.5194/nhess-2-57-2002 google scholar
  • Carrara, A., Cardinali, M., Detti, R., Guzzetti, F., Pasqui, V., & Reichenbach, P. (1991). GIS techniques and statistical models in evaluating landslide hazard. Earth Surface Processes and Landforms, 16(5), 427-445. https://doi.org/https://doi.org/10.1002/ esp.3290160505 google scholar
  • Chau, K., Sze, Y., Fung, M., Wong, W., Fong, E., & Chan, L. (2004). Landslide hazard analysis for Hong Kong using landslide inventory and GIS. Computers & Geosciences, 30(4), 429- 443. https://doi. org/https://doi.org/10.1016/j.cageo.2003.08.013 google scholar
  • Cihangir, M. E. (2018). Kelkit Çayı Vadisinde (Umurca-Koyulhisar Arası) Heyelan Riskinin Belirlenmesi (Publication Number 522001) [Unpublished PhD thesis, Istanbul University]. Istanbul. google scholar
  • Cihangir, M. E., & Gorum, T. (2016). Kelkit Vadisinin Aşağı Çığrında Gelişmiş Heyelanların Dağılım Deseni ve Oluşumlarını Kontrol Eden Faktörler. Türk Cografya Dergisi, 0(66). https://doi.org/ https://doi.org/10.17211/tcd.84731 google scholar
  • Cihangir, M. E., & Görüm, T. (2016). Kelkit vadisinin aşağı çığırında gelişmiş heyelanların dağılım deseni ve oluşumlarını kontrol eden faktörler. Türk Cografya Dergisi, (66), 19-28. google scholar
  • Cihangir, M. E., Görüm, T., & Nefeslioğlu, H. A. (2018). Heyelan tetikleyici faktörlerine bağlı mekânsal hassasiyet değerlendirmesi. Türk Cografya Dergisi, (70), 133-142. https://doi.org/https://doi. org/10.17211/tcd.410998 google scholar
  • Cotecchia, F., Lollino, P., Santaloia, F., Vitone, C., & Mitaritonna, G. (2009). A research project for deterministic landslide risk assessment in Southern Italy: methodological approach and preliminary results. Geotechnical risk and safety. Taylor & Francis Group, London, 363-370. google scholar
  • Crozier, M. J., & Glade, T. (2005). Landslide hazard and risk: issues, concepts and approach. Landslide hazard and risk, 1-40. google scholar
  • Cruden, D., & Varnes, D. (1996). Landslide types and processes., In, Landslides: investigation and mitigation., Edited by, A. K. Turner and R. L. Schuster. Transportation Research Board, Special Report 247, pp. 36-75. google scholar
  • Cruden, D., & Varnes, D. (1996). Landslides: investigation and mitigation. Chapter 3-Landslide types and processes. Transportation research board special report (247). google scholar
  • Cruden, D. M., & Fell, R. (1997). Landslide risk assessment. AA Balkema Rotterdam. google scholar
  • Cutter, S. L., Boruff, B. J., & Shirley, W. L. (2003). Social vulnerability to environmental hazards. Social science quarterly, 84(2), 242-261. https://doi.org/https://doi.org/10.1111/1540- 6237.8402002 google scholar
  • Dai, F., & Lee, C. (2002). Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology, 42(3), 213-228. https://doi.org/https://doi.org/10.1016/S0169-555X(01)00087-3 google scholar
  • Dai, F., Lee, C., & Ngai, Y. Y. (2002). Landslide risk assessment and management: an overview. Engineering Geology, 64(1), 65-87. https://doi.org/https://doi.org/10.1016/S0013- 7952(01)00093-X google scholar
  • Demir, G. (2018). Coğrafi Bilgi Sistemleri ile Suşehri (Sivas) Heyelan Duyarlılık Analizi. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(1), 96-112. google scholar
  • Demirel, M., Tatar, O., & Koçbulut, F. (2016). Kuzey Anadolu Fay Zonu Üzerinde Koyulhisar (Sivas) ve Yakın Çevresindeki Fayların Kinematik Özellikleri. Türkiye Jeoloji Bülteni, 59(3), 357-370. google scholar
  • Douglas, J. (2007). Physical vulnerability modelling in natural hazard risk assessment. Natural Hazards and Earth System Science, 7(2), 283-288. https://doi.org/https://doi.org/10.5194/nhess-7-283-2007 google scholar
  • Duman, T. Y., Can, T., Gokceoglu, C., Nefeslioglu, H. A., & Sonmez, H. (2006). Application of logistic regression for landslide susceptibility zoning of Cekmece Area, Istanbul, Turkey. Environmental Geology, 51(2), 241-256. https://doi.org/10.1007/s00254-006-0322-1 google scholar
  • Dwyer, A., Zoppou, C., Nielsen, O., Day, S., & Roberts, S. (2004). Quantifying social vulnerability: a methodology for identifying those at risk to natural hazards. Geoscience Australia Canberra. google scholar
  • Ercanoglu, M., & Gokceoglu, C. (2002). Assessment of landslide susceptibility for a landslide-prone area (north of Yenice, NW Turkey) by fuzzy approach. Environmental Geology, 41(6). https:// doi.org/DOI 10.1007/s00254-001-0454-2 google scholar
  • Ercanoglu, M., & Gokceoglu, C. (2004). Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (West Black Sea Region, Turkey). Engineering Geology, 75(3-4), 229250. https://doi.org/https://doi.org/10.1016/j.enggeo.2004.06.001 google scholar
  • Erdem, F. (1987). Kelkit Havzasında Sediment Erozyon İlişkileri. Jeomorfoloji Dergisi,, 15, 65-73, Ankara. google scholar
  • Galli, M., & Guzzetti, F. (2007). Landslide vulnerability criteria: a case study from Umbria, Central Italy. Environmental management, 40(4), 649-665. google scholar
  • Glade, T., Anderson, M. G., & Crozier, M. J. (2006). Landslide hazard and risk. John Wiley & Sons. google scholar
  • Gokceoglu, C., Sonmez, H., Nefeslioglu, H. A., Duman, T. Y., & Can, T. (2005). The 17 March 2005 Kuzulu landslide (Sivas, Turkey) and landslide-susceptibility map of its near vicinity. Engineering Geology, 81(1), 65-83. google scholar
  • Gökceoglu, C., & Aksoy, H. (1996). Landslide susceptibility mapping of the slopes in the residual soils of the Mengen region (Turkey) by deterministic stability analyses and image processing techniques. Engineering Geology, 44(1-4), 147-161. https://doi.Org/https://doi. org/10.1016/S0013-7952(97)81260-4 google scholar
  • Guzzetti, F. (2006). Landslide hazard and risk assessment Universitats-und Landesbibliothek Bonn]. google scholar
  • Guzzetti, F., Ardizzone, F., Cardinali, M., Rossi, M., & Valigi, D. (2009). Landslide volumes and landslide mobilization rates in Umbria, central Italy. Earth and Planetary Science Letters, 279(3), 222-229. https://doi.org/https://doi.org/10.1016/j.epsl.2009.01.005 google scholar
  • Guzzetti, F., Carrara, A., Cardinali, M., & Reichenbach, P. (1999). Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology, 31(1), 181-216. https://doi.org/https://doi.org/10.1016/S0169-555X(99)00078-1 google scholar
  • Guzzetti, F., Reichenbach, P., Cardinali, M., Galli, M., & Ardizzone, F. (2005). Probabilistic landslide hazard assessment at the basin scale. Geomorphology, 72(1-4), 272-299. google scholar
  • Gürsoy, H., Tatar, O., Koçbulut, F., Mesci, B. L., Akpınar, Z., Tunçer D, & Yaman, S. (2006). “Kuzulu (Sugözü-KoyulhiSAR, Sivas) heyelan bölgesinin temel jeolojik özellikleri: heyelan sahasında gözlenen tektonik yapıların heyelanın gelişiminde rolü var mı? ATAG10 -Aktif Tektonik Araştırma Grubu 10. Toplantısı, google scholar
  • Hastaoğlu, K., Poyraz, F., Türk, T., Koçbulut, F., Şanlı, D., Yılmaz, I., Balık Şanlı, F., Kuçak, R., Demirel, M., & Gürsoy, Ö. (2014). GPS ve Ps-Insar Yöntemleri Kullanılarak Koyulhisar (Sivas) Heyelanlarının İzlenmesi: İlk Sonuçlar. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 4(2). google scholar
  • Hellström, T. (2007). Critical infrastructure and systemic vulnerability: Towards a planning framework. Safety science, 45(3), 415-430. https://doi.org/https://doi.org/10.1016/j.ssci.2006.07.007 google scholar
  • Howe, E. (1909). Landslides in the San Juan Mountains, Colorado: including a consideration of their causes and their classification. US Government Printing Office. google scholar
  • Iverson, R. M., Schilling, S. P., & Vallance, J. W. (1998). Objective delineation of lahar-inundation hazard zones. Geological Society of America Bulletin, 110(8), 972-984. https://doi.org/https://doi. org/10.1130/0016-7606(1998)110%3C0972:ODOLIH%3E2.3.CO;2 google scholar
  • Jones, F. O. (1961). Landslides along the Columbia river valley, Northeastern Washington. US Government Printing Office. google scholar
  • Juang, C., Lee, D., & Sheu, C. (1992). Mapping slope failure potential using fuzzy sets. Journal of geotechnical engineering, 118(3), 475-494. google scholar
  • Kanungo, D., Arora, M., Sarkar, S., & Gupta, R. (2006). A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas. Engineering Geology, 85(3), 347-366. https://doi.org/https://doi.org/10.1016/j.enggeo.2006.03.004 google scholar
  • Kappes, M. S., Papathoma-Koehle, M., & Keiler, M. (2012). Assessing physical vulnerability for multi-hazards using an indicator-based methodology. Applied Geography, 32(2), 577-590. https://doi.org/ https://doi.org/10.1016/j.apgeog.2011.07.002 google scholar
  • Keçer, M. v. T., K. (1986). Kuzey Anadolu Fayına Bağlı Olarak Neotektonik Dönemde Oluşan Suşehri Havzası’nın Evrimi. Jeomorfoloji Dergisi, 14, 57-63, Ankara. google scholar
  • Malamud, B. D., Turcotte, D. L., Guzzetti, F., & Reichenbach, P. (2004). Landslide inventories and their statistical properties. Earth Surface Processes and Landforms, 29(6), 687-711. https://doi.org/https:// doi.org/10.1002/esp.1064 google scholar
  • Menoni, S., Molinari, D., Parker, D., Ballio, F., & Tapsell, S. (2012). Assessing multifaceted vulnerability and resilience in order to design risk-mitigation strategies. Natural hazards, 64(3), 2057-2082. google scholar
  • Menoni, S., Pergalani, F., Boni, M., & Petrini, V. (2002). Lifelines earthquake vulnerability assessment: a systemic approach. Soil Dynamics and Earthquake Engineering, 22(9), 1199- 1208. https:// doi.org/https://doi.org/10.1016/S0267-7261(02)00148-3 google scholar
  • MTA. (2005). Kuzulu (Sivas-Koyulhisar) Heyelanı. google scholar
  • Nandi, A., & Shakoor, A. (2010). A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Engineering Geology, 110(1), 11-20. https://doi.org/https://doi. org/10.1016/j.enggeo.2009.10.001 google scholar
  • Okay, A. I. (2008). Geology of Turkey: a synopsis. Anschnitt, 21, 1942. google scholar
  • Pachauri, A., Gupta, P., & Chander, R. (1998). Landslide zoning in a part of the Garhwal Himalayas. Environmental Geology, 36(3), 325-334. google scholar
  • Pachauri, A., & Pant, M. (1992). Landslide hazard mapping based on geological attributes. Engineering Geology, 32(1-2), 81-100. https://doi.org/https://doi.org/10.1016/0013- 7952(92)90020-Y google scholar
  • Papathoma, M., Kappes, M., Keiler, M., & Glade, T. (2011). Physical vulnerability assessment for alpine hazards: state of the art and future needs. Natural hazards, 58(2), 645-680. google scholar
  • Pascale, S., Sdao, F., & Sole, A. (2010). A model for assessing the systemic vulnerability in landslide prone areas. Natural Hazards and Earth System Sciences, 10(7), 1575-1590. https://doi.org/ https://doi.org/10.5194/nhess-10-1575-2010 google scholar
  • Pelling, M. (2003). The vulnerability of cities: natural disasters and social resilience. Earthscan. google scholar
  • Raddatz, C. E. (2009). The wrath of God: macroeconomic costs of natural disasters. World Bank Policy Research Working Paper No. 5039, 30. google scholar
  • Ruff, M., & Czurda, K. (2008). Landslide susceptibility analysis with a heuristic approach in the Eastern Alps (Vorarlberg, Austria). Geomorphology, 94(3), 314-324. https://doi.org/https://doi.org/10.1016/j.geomorph.2006.10.032 google scholar
  • Seymen, İ. (1975). Kelkit vadisi kesiminde Kuzey Anadolu Fay zonunun tektonik özelliği İTÜ]. google scholar
  • Tatar, O., Poyraz, F., Gursoy, H., Cakir, Z., Ergintav, S., Akpınar, Z., Kocbulut, F., Sezen, F., Turk, T., & Hastaoglu, K. Ö. (2012). Crustal deformation and kinematics of the Eastern Part of the North Anatolian Fault Zone (Turkey) from GPS measurements. Tectonophysics, 518. https://doi.org/https://doi.org/10.1016/j. tecto.2011.11.010 google scholar
  • Toprak, V. (1989). Tectonic and stratigraphic characteristics of the Koyulhisar segment of the North Anatolian Fault Zone (Sivas, Turkey) PhD thesis, Middle East Technical University, Ankara]. google scholar
  • Van Westen. (2017). Multi-hazard risk assessment and decision making. In N. Dalezios (Ed.), Environmental Hazards Methodologies for Risk Assessment and Management (pp. 31-91). IWA Publishing. google scholar
  • Van Westen, Van Asch, & Soeters, R. (2006). Landslide hazard and risk zonation—why is it still so difficult? Bulletin of Engineering Geology and the Environment, 65(2), 167-184. google scholar
  • Van Westen, C., Van Asch, T. W., & Soeters, R. (2006). Landslide hazard and risk zonation—why is it still so difficult? Bulletin of Engineering Geology and the Environment, 65(2), 167-184. google scholar
  • Varnes, D. J. (1958). Landslide types and processes. Landslides and engineering practice, 24, 20-47. google scholar
  • Varnes, D. J. (1978). Slope movement types and processes. Special report, 176, 11-33. google scholar
  • Wachal, D. J., & Hudak, P. F. (2000). Mapping landslide susceptibility in Travis County, Texas, USA. GeoJournal, 51(3), 245-253. google scholar
  • Van Westen, C. v., & Terlien, M. (1996). An approach towards deterministic landslide hazard analysis in GIS. A case study from Manizales (Colombia). Earth Surface Processes and Landforms, 21(9), 853-868. https://doi.org/https://doi.org/10.1002/(SICI)1096-9837(199609)21:9%3C853::AID-ESP676%3E3.0.CO;2-C google scholar
  • Wieczorek, G. F. (1984). Preparing a detailed landslide-inventory map for hazard evaluation and reduction. Bull Assoc Eng Geol, 21(3), 337-342. google scholar
  • Wieczorek, G. F., Wilson, R. C., & Harp, E. L. (1985). Map showing slope stability during earthquakes in San Mateo County, California. google scholar
  • Yesilnacar, E., & Topal, T. (2005). Landslide susceptibility mapping: A comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Engineering Geology, 79(3-4), 251-266. https://doi.org/https://doi.org/10.1016/j.enggeo.2005.02.002 google scholar
  • Yıldırım, A. (2006). Koyulhisar-Kuzulu (Sivas) Heyelanının Jeomorfolojik Etüdü. Doğu Coğrafya Dergisi, 11(15). google scholar
  • Yilmaz, A., Oral, A., & Bilgic, T. (1985). Yukarı Kelkit Çayı yöresi ve güneyinin temel jeoloji özellikleri ve sonuçları (MTA raporu, Issue. google scholar
  • Yilmaz, I. (2009). A case study from Koyulhisar (Sivas-Turkey) for landslide susceptibility mapping by artificial neural networks. Bulletin of Engineering Geology and the Environment, 68(3), 297306. google scholar

Landslide Risk Assessment Using a Geomorphological Approach: A Case Study of the Kelkit River Valley Downstream

Yıl 2022, , 61 - 80, 08.07.2022
https://doi.org/10.26650/JGEOG2022-971673

Öz

Sharp lithological transitions, high topographic features, and climatic and tectonic features cause periodic landslides downstream of the Kelkit Creek Valley. Thus, the hazards and risks of landslides in the area were evaluated using a geomorphological approach to reduce the losses that may occur therein. It was determined that 462 landslides in the study area were distributed according to certain topographic features and lithologies. The landslides were triggered by rapid snow melting in the upper parts of the valley in the north and by paleo-landslide topography and precipitation in the south. The morphological evolution and spatial persistence of areas with high landslide activity were interpreted from very-high-resolution to high-resolution satellite images (1and 5 m) and stereo aerial photos (1:16,000–1:35,000 scale) between 1958 and 2021. The landslide activities showed temporal and spatial differences with multitemporary landslide inventories determined using geographic information system and uncertainty analysis tools. Risks were evaluated according to the physical, social, systemic, and economic vulnerabilities in four regions with high activity and elements of risk. It was determined that the population and settlement densified during periods when landslide hazards increased. The risk elements and therefore the risk levels were high in the northwestern and southern parts of Koyulhisar and in the accumulation zone of the Sugozu, Gokdere, and Boyalı landslides.

Kaynakça

  • Adrianto, L., & Matsuda, Y. (2002). Developing economic vulnerability indices of environmental disasters in small island regions. Environmental Impact Assessment Review, 22(4), 393-414. https:// doi.org/https://doi.org/10.1016/S0195-9255(02)00012-4 google scholar
  • AFAD. (2020). Afet Yönetimi Kapsamında 2019 Yılına Bakış ve Doğa Kaynaklı Olay İstatistikleri Raporu. google scholar
  • Alcantara-Ayala, I. (2002). Geomorphology, natural hazards, vulnerability and prevention of natural disasters in developing countries. Geomorphology, 47(2), 107-124. https://doi.org/https:// doi.org/10.1016/S0169-555X(02)00083-1 google scholar
  • Atkinson, P. M., & Massari, R. (1998). Generalised linear modelling of susceptibility to landsliding in the central Apennines, Italy. Computers & Geosciences, 24(4), 373-385. https://doi.org/https:// doi.org/10.1016/S0098-3004(97)00117-9 google scholar
  • Ayenew, T., & Barbieri, G. (2005). Inventory of landslides and susceptibility mapping in the Dessie area, northern Ethiopia. Engineering Geology, 77(1-2), 1-15. https://doi.Org/https://doi. org/10.1016/j.enggeo.2004.07.002 google scholar
  • Brabb, E. E., & Pampeyan, E. H. (1972). Preliminary map of landslide deposits in San Mateo County, California. google scholar
  • Cannon, S. H., & Ellen, S. (1985). Rainfall conditions for abundant debris avalanches, San Francisco Bay region, California. California geology, 38(12), 267-272. google scholar
  • Cardinali, M., Galli, M., Ardizzone, F., Guzzetti, F., & Reichenbach, P. (2007). Comparing landslide rates in the northern and central Apennines, Italy. Geophysical Research Abstracts, google scholar
  • Cardinali, M., Reichenbach, P., Guzzetti, F., Ardizzone, F., Antonini, G., Galli, M., Cacciano, M., Castellani, M., & Salvati, P. (2002). A geomorphological approach to the estimation of landslide hazards and risks in Umbria, Central Italy. Natural Hazards and Earth System Science, 2(1/2), 57-72. https://doi.org/https://doi.org/10.5194/nhess-2-57-2002 google scholar
  • Carrara, A., Cardinali, M., Detti, R., Guzzetti, F., Pasqui, V., & Reichenbach, P. (1991). GIS techniques and statistical models in evaluating landslide hazard. Earth Surface Processes and Landforms, 16(5), 427-445. https://doi.org/https://doi.org/10.1002/ esp.3290160505 google scholar
  • Chau, K., Sze, Y., Fung, M., Wong, W., Fong, E., & Chan, L. (2004). Landslide hazard analysis for Hong Kong using landslide inventory and GIS. Computers & Geosciences, 30(4), 429- 443. https://doi. org/https://doi.org/10.1016/j.cageo.2003.08.013 google scholar
  • Cihangir, M. E. (2018). Kelkit Çayı Vadisinde (Umurca-Koyulhisar Arası) Heyelan Riskinin Belirlenmesi (Publication Number 522001) [Unpublished PhD thesis, Istanbul University]. Istanbul. google scholar
  • Cihangir, M. E., & Gorum, T. (2016). Kelkit Vadisinin Aşağı Çığrında Gelişmiş Heyelanların Dağılım Deseni ve Oluşumlarını Kontrol Eden Faktörler. Türk Cografya Dergisi, 0(66). https://doi.org/ https://doi.org/10.17211/tcd.84731 google scholar
  • Cihangir, M. E., & Görüm, T. (2016). Kelkit vadisinin aşağı çığırında gelişmiş heyelanların dağılım deseni ve oluşumlarını kontrol eden faktörler. Türk Cografya Dergisi, (66), 19-28. google scholar
  • Cihangir, M. E., Görüm, T., & Nefeslioğlu, H. A. (2018). Heyelan tetikleyici faktörlerine bağlı mekânsal hassasiyet değerlendirmesi. Türk Cografya Dergisi, (70), 133-142. https://doi.org/https://doi. org/10.17211/tcd.410998 google scholar
  • Cotecchia, F., Lollino, P., Santaloia, F., Vitone, C., & Mitaritonna, G. (2009). A research project for deterministic landslide risk assessment in Southern Italy: methodological approach and preliminary results. Geotechnical risk and safety. Taylor & Francis Group, London, 363-370. google scholar
  • Crozier, M. J., & Glade, T. (2005). Landslide hazard and risk: issues, concepts and approach. Landslide hazard and risk, 1-40. google scholar
  • Cruden, D., & Varnes, D. (1996). Landslide types and processes., In, Landslides: investigation and mitigation., Edited by, A. K. Turner and R. L. Schuster. Transportation Research Board, Special Report 247, pp. 36-75. google scholar
  • Cruden, D., & Varnes, D. (1996). Landslides: investigation and mitigation. Chapter 3-Landslide types and processes. Transportation research board special report (247). google scholar
  • Cruden, D. M., & Fell, R. (1997). Landslide risk assessment. AA Balkema Rotterdam. google scholar
  • Cutter, S. L., Boruff, B. J., & Shirley, W. L. (2003). Social vulnerability to environmental hazards. Social science quarterly, 84(2), 242-261. https://doi.org/https://doi.org/10.1111/1540- 6237.8402002 google scholar
  • Dai, F., & Lee, C. (2002). Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology, 42(3), 213-228. https://doi.org/https://doi.org/10.1016/S0169-555X(01)00087-3 google scholar
  • Dai, F., Lee, C., & Ngai, Y. Y. (2002). Landslide risk assessment and management: an overview. Engineering Geology, 64(1), 65-87. https://doi.org/https://doi.org/10.1016/S0013- 7952(01)00093-X google scholar
  • Demir, G. (2018). Coğrafi Bilgi Sistemleri ile Suşehri (Sivas) Heyelan Duyarlılık Analizi. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(1), 96-112. google scholar
  • Demirel, M., Tatar, O., & Koçbulut, F. (2016). Kuzey Anadolu Fay Zonu Üzerinde Koyulhisar (Sivas) ve Yakın Çevresindeki Fayların Kinematik Özellikleri. Türkiye Jeoloji Bülteni, 59(3), 357-370. google scholar
  • Douglas, J. (2007). Physical vulnerability modelling in natural hazard risk assessment. Natural Hazards and Earth System Science, 7(2), 283-288. https://doi.org/https://doi.org/10.5194/nhess-7-283-2007 google scholar
  • Duman, T. Y., Can, T., Gokceoglu, C., Nefeslioglu, H. A., & Sonmez, H. (2006). Application of logistic regression for landslide susceptibility zoning of Cekmece Area, Istanbul, Turkey. Environmental Geology, 51(2), 241-256. https://doi.org/10.1007/s00254-006-0322-1 google scholar
  • Dwyer, A., Zoppou, C., Nielsen, O., Day, S., & Roberts, S. (2004). Quantifying social vulnerability: a methodology for identifying those at risk to natural hazards. Geoscience Australia Canberra. google scholar
  • Ercanoglu, M., & Gokceoglu, C. (2002). Assessment of landslide susceptibility for a landslide-prone area (north of Yenice, NW Turkey) by fuzzy approach. Environmental Geology, 41(6). https:// doi.org/DOI 10.1007/s00254-001-0454-2 google scholar
  • Ercanoglu, M., & Gokceoglu, C. (2004). Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (West Black Sea Region, Turkey). Engineering Geology, 75(3-4), 229250. https://doi.org/https://doi.org/10.1016/j.enggeo.2004.06.001 google scholar
  • Erdem, F. (1987). Kelkit Havzasında Sediment Erozyon İlişkileri. Jeomorfoloji Dergisi,, 15, 65-73, Ankara. google scholar
  • Galli, M., & Guzzetti, F. (2007). Landslide vulnerability criteria: a case study from Umbria, Central Italy. Environmental management, 40(4), 649-665. google scholar
  • Glade, T., Anderson, M. G., & Crozier, M. J. (2006). Landslide hazard and risk. John Wiley & Sons. google scholar
  • Gokceoglu, C., Sonmez, H., Nefeslioglu, H. A., Duman, T. Y., & Can, T. (2005). The 17 March 2005 Kuzulu landslide (Sivas, Turkey) and landslide-susceptibility map of its near vicinity. Engineering Geology, 81(1), 65-83. google scholar
  • Gökceoglu, C., & Aksoy, H. (1996). Landslide susceptibility mapping of the slopes in the residual soils of the Mengen region (Turkey) by deterministic stability analyses and image processing techniques. Engineering Geology, 44(1-4), 147-161. https://doi.Org/https://doi. org/10.1016/S0013-7952(97)81260-4 google scholar
  • Guzzetti, F. (2006). Landslide hazard and risk assessment Universitats-und Landesbibliothek Bonn]. google scholar
  • Guzzetti, F., Ardizzone, F., Cardinali, M., Rossi, M., & Valigi, D. (2009). Landslide volumes and landslide mobilization rates in Umbria, central Italy. Earth and Planetary Science Letters, 279(3), 222-229. https://doi.org/https://doi.org/10.1016/j.epsl.2009.01.005 google scholar
  • Guzzetti, F., Carrara, A., Cardinali, M., & Reichenbach, P. (1999). Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology, 31(1), 181-216. https://doi.org/https://doi.org/10.1016/S0169-555X(99)00078-1 google scholar
  • Guzzetti, F., Reichenbach, P., Cardinali, M., Galli, M., & Ardizzone, F. (2005). Probabilistic landslide hazard assessment at the basin scale. Geomorphology, 72(1-4), 272-299. google scholar
  • Gürsoy, H., Tatar, O., Koçbulut, F., Mesci, B. L., Akpınar, Z., Tunçer D, & Yaman, S. (2006). “Kuzulu (Sugözü-KoyulhiSAR, Sivas) heyelan bölgesinin temel jeolojik özellikleri: heyelan sahasında gözlenen tektonik yapıların heyelanın gelişiminde rolü var mı? ATAG10 -Aktif Tektonik Araştırma Grubu 10. Toplantısı, google scholar
  • Hastaoğlu, K., Poyraz, F., Türk, T., Koçbulut, F., Şanlı, D., Yılmaz, I., Balık Şanlı, F., Kuçak, R., Demirel, M., & Gürsoy, Ö. (2014). GPS ve Ps-Insar Yöntemleri Kullanılarak Koyulhisar (Sivas) Heyelanlarının İzlenmesi: İlk Sonuçlar. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 4(2). google scholar
  • Hellström, T. (2007). Critical infrastructure and systemic vulnerability: Towards a planning framework. Safety science, 45(3), 415-430. https://doi.org/https://doi.org/10.1016/j.ssci.2006.07.007 google scholar
  • Howe, E. (1909). Landslides in the San Juan Mountains, Colorado: including a consideration of their causes and their classification. US Government Printing Office. google scholar
  • Iverson, R. M., Schilling, S. P., & Vallance, J. W. (1998). Objective delineation of lahar-inundation hazard zones. Geological Society of America Bulletin, 110(8), 972-984. https://doi.org/https://doi. org/10.1130/0016-7606(1998)110%3C0972:ODOLIH%3E2.3.CO;2 google scholar
  • Jones, F. O. (1961). Landslides along the Columbia river valley, Northeastern Washington. US Government Printing Office. google scholar
  • Juang, C., Lee, D., & Sheu, C. (1992). Mapping slope failure potential using fuzzy sets. Journal of geotechnical engineering, 118(3), 475-494. google scholar
  • Kanungo, D., Arora, M., Sarkar, S., & Gupta, R. (2006). A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas. Engineering Geology, 85(3), 347-366. https://doi.org/https://doi.org/10.1016/j.enggeo.2006.03.004 google scholar
  • Kappes, M. S., Papathoma-Koehle, M., & Keiler, M. (2012). Assessing physical vulnerability for multi-hazards using an indicator-based methodology. Applied Geography, 32(2), 577-590. https://doi.org/ https://doi.org/10.1016/j.apgeog.2011.07.002 google scholar
  • Keçer, M. v. T., K. (1986). Kuzey Anadolu Fayına Bağlı Olarak Neotektonik Dönemde Oluşan Suşehri Havzası’nın Evrimi. Jeomorfoloji Dergisi, 14, 57-63, Ankara. google scholar
  • Malamud, B. D., Turcotte, D. L., Guzzetti, F., & Reichenbach, P. (2004). Landslide inventories and their statistical properties. Earth Surface Processes and Landforms, 29(6), 687-711. https://doi.org/https:// doi.org/10.1002/esp.1064 google scholar
  • Menoni, S., Molinari, D., Parker, D., Ballio, F., & Tapsell, S. (2012). Assessing multifaceted vulnerability and resilience in order to design risk-mitigation strategies. Natural hazards, 64(3), 2057-2082. google scholar
  • Menoni, S., Pergalani, F., Boni, M., & Petrini, V. (2002). Lifelines earthquake vulnerability assessment: a systemic approach. Soil Dynamics and Earthquake Engineering, 22(9), 1199- 1208. https:// doi.org/https://doi.org/10.1016/S0267-7261(02)00148-3 google scholar
  • MTA. (2005). Kuzulu (Sivas-Koyulhisar) Heyelanı. google scholar
  • Nandi, A., & Shakoor, A. (2010). A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Engineering Geology, 110(1), 11-20. https://doi.org/https://doi. org/10.1016/j.enggeo.2009.10.001 google scholar
  • Okay, A. I. (2008). Geology of Turkey: a synopsis. Anschnitt, 21, 1942. google scholar
  • Pachauri, A., Gupta, P., & Chander, R. (1998). Landslide zoning in a part of the Garhwal Himalayas. Environmental Geology, 36(3), 325-334. google scholar
  • Pachauri, A., & Pant, M. (1992). Landslide hazard mapping based on geological attributes. Engineering Geology, 32(1-2), 81-100. https://doi.org/https://doi.org/10.1016/0013- 7952(92)90020-Y google scholar
  • Papathoma, M., Kappes, M., Keiler, M., & Glade, T. (2011). Physical vulnerability assessment for alpine hazards: state of the art and future needs. Natural hazards, 58(2), 645-680. google scholar
  • Pascale, S., Sdao, F., & Sole, A. (2010). A model for assessing the systemic vulnerability in landslide prone areas. Natural Hazards and Earth System Sciences, 10(7), 1575-1590. https://doi.org/ https://doi.org/10.5194/nhess-10-1575-2010 google scholar
  • Pelling, M. (2003). The vulnerability of cities: natural disasters and social resilience. Earthscan. google scholar
  • Raddatz, C. E. (2009). The wrath of God: macroeconomic costs of natural disasters. World Bank Policy Research Working Paper No. 5039, 30. google scholar
  • Ruff, M., & Czurda, K. (2008). Landslide susceptibility analysis with a heuristic approach in the Eastern Alps (Vorarlberg, Austria). Geomorphology, 94(3), 314-324. https://doi.org/https://doi.org/10.1016/j.geomorph.2006.10.032 google scholar
  • Seymen, İ. (1975). Kelkit vadisi kesiminde Kuzey Anadolu Fay zonunun tektonik özelliği İTÜ]. google scholar
  • Tatar, O., Poyraz, F., Gursoy, H., Cakir, Z., Ergintav, S., Akpınar, Z., Kocbulut, F., Sezen, F., Turk, T., & Hastaoglu, K. Ö. (2012). Crustal deformation and kinematics of the Eastern Part of the North Anatolian Fault Zone (Turkey) from GPS measurements. Tectonophysics, 518. https://doi.org/https://doi.org/10.1016/j. tecto.2011.11.010 google scholar
  • Toprak, V. (1989). Tectonic and stratigraphic characteristics of the Koyulhisar segment of the North Anatolian Fault Zone (Sivas, Turkey) PhD thesis, Middle East Technical University, Ankara]. google scholar
  • Van Westen. (2017). Multi-hazard risk assessment and decision making. In N. Dalezios (Ed.), Environmental Hazards Methodologies for Risk Assessment and Management (pp. 31-91). IWA Publishing. google scholar
  • Van Westen, Van Asch, & Soeters, R. (2006). Landslide hazard and risk zonation—why is it still so difficult? Bulletin of Engineering Geology and the Environment, 65(2), 167-184. google scholar
  • Van Westen, C., Van Asch, T. W., & Soeters, R. (2006). Landslide hazard and risk zonation—why is it still so difficult? Bulletin of Engineering Geology and the Environment, 65(2), 167-184. google scholar
  • Varnes, D. J. (1958). Landslide types and processes. Landslides and engineering practice, 24, 20-47. google scholar
  • Varnes, D. J. (1978). Slope movement types and processes. Special report, 176, 11-33. google scholar
  • Wachal, D. J., & Hudak, P. F. (2000). Mapping landslide susceptibility in Travis County, Texas, USA. GeoJournal, 51(3), 245-253. google scholar
  • Van Westen, C. v., & Terlien, M. (1996). An approach towards deterministic landslide hazard analysis in GIS. A case study from Manizales (Colombia). Earth Surface Processes and Landforms, 21(9), 853-868. https://doi.org/https://doi.org/10.1002/(SICI)1096-9837(199609)21:9%3C853::AID-ESP676%3E3.0.CO;2-C google scholar
  • Wieczorek, G. F. (1984). Preparing a detailed landslide-inventory map for hazard evaluation and reduction. Bull Assoc Eng Geol, 21(3), 337-342. google scholar
  • Wieczorek, G. F., Wilson, R. C., & Harp, E. L. (1985). Map showing slope stability during earthquakes in San Mateo County, California. google scholar
  • Yesilnacar, E., & Topal, T. (2005). Landslide susceptibility mapping: A comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Engineering Geology, 79(3-4), 251-266. https://doi.org/https://doi.org/10.1016/j.enggeo.2005.02.002 google scholar
  • Yıldırım, A. (2006). Koyulhisar-Kuzulu (Sivas) Heyelanının Jeomorfolojik Etüdü. Doğu Coğrafya Dergisi, 11(15). google scholar
  • Yilmaz, A., Oral, A., & Bilgic, T. (1985). Yukarı Kelkit Çayı yöresi ve güneyinin temel jeoloji özellikleri ve sonuçları (MTA raporu, Issue. google scholar
  • Yilmaz, I. (2009). A case study from Koyulhisar (Sivas-Turkey) for landslide susceptibility mapping by artificial neural networks. Bulletin of Engineering Geology and the Environment, 68(3), 297306. google scholar
Toplam 78 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makalesi
Yazarlar

Mehmet Emin Cihangir 0000-0001-8881-5308

Yayımlanma Tarihi 8 Temmuz 2022
Gönderilme Tarihi 18 Temmuz 2021
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Cihangir, M. E. (2022). Jeomorfolojik Yaklaşıma Bağlı Heyelan Risk Değerlendirmesi: Kelkit Çayı Vadisi Aşağı Çığırı Örneği. Journal of Geography(44), 61-80. https://doi.org/10.26650/JGEOG2022-971673
AMA Cihangir ME. Jeomorfolojik Yaklaşıma Bağlı Heyelan Risk Değerlendirmesi: Kelkit Çayı Vadisi Aşağı Çığırı Örneği. Journal of Geography. Temmuz 2022;(44):61-80. doi:10.26650/JGEOG2022-971673
Chicago Cihangir, Mehmet Emin. “Jeomorfolojik Yaklaşıma Bağlı Heyelan Risk Değerlendirmesi: Kelkit Çayı Vadisi Aşağı Çığırı Örneği”. Journal of Geography, sy. 44 (Temmuz 2022): 61-80. https://doi.org/10.26650/JGEOG2022-971673.
EndNote Cihangir ME (01 Temmuz 2022) Jeomorfolojik Yaklaşıma Bağlı Heyelan Risk Değerlendirmesi: Kelkit Çayı Vadisi Aşağı Çığırı Örneği. Journal of Geography 44 61–80.
IEEE M. E. Cihangir, “Jeomorfolojik Yaklaşıma Bağlı Heyelan Risk Değerlendirmesi: Kelkit Çayı Vadisi Aşağı Çığırı Örneği”, Journal of Geography, sy. 44, ss. 61–80, Temmuz 2022, doi: 10.26650/JGEOG2022-971673.
ISNAD Cihangir, Mehmet Emin. “Jeomorfolojik Yaklaşıma Bağlı Heyelan Risk Değerlendirmesi: Kelkit Çayı Vadisi Aşağı Çığırı Örneği”. Journal of Geography 44 (Temmuz 2022), 61-80. https://doi.org/10.26650/JGEOG2022-971673.
JAMA Cihangir ME. Jeomorfolojik Yaklaşıma Bağlı Heyelan Risk Değerlendirmesi: Kelkit Çayı Vadisi Aşağı Çığırı Örneği. Journal of Geography. 2022;:61–80.
MLA Cihangir, Mehmet Emin. “Jeomorfolojik Yaklaşıma Bağlı Heyelan Risk Değerlendirmesi: Kelkit Çayı Vadisi Aşağı Çığırı Örneği”. Journal of Geography, sy. 44, 2022, ss. 61-80, doi:10.26650/JGEOG2022-971673.
Vancouver Cihangir ME. Jeomorfolojik Yaklaşıma Bağlı Heyelan Risk Değerlendirmesi: Kelkit Çayı Vadisi Aşağı Çığırı Örneği. Journal of Geography. 2022(44):61-80.