Araştırma Makalesi
BibTex RIS Kaynak Göster

Anadolu’da Konifer Ağaçların Yayılış Alanlarındaki Değişimler

Yıl 2022, , 81 - 95, 08.07.2022
https://doi.org/10.26650/JGEOG2022-974433

Öz

Bu çalışmanın amacı, Anadolu’da Cedrus libani, Abies cilicica ve Juniperus drupacea’nın Son Buzul Maksimumu, günümüz ve gelecekte iklim değişikliklerine olan/olacak tepkilerini tahmin etmektir. Bu amaç kapsamında ele alınan konifer türlerin, küresel iklim değişim senaryolarına bağlı model sonuçlarına göre Anadolu’da zamansal ve mekânsal dağılışları ortaya koyulmuştur. İncelenen türlerin zamansal ve mekânsal dağılışlarında tahminlerde bulunmak üzere fosil polen verileri, günümüz dağılış verileri ve WorldClim’den temin edilen 19 biyoiklimsel değişken kullanılmıştır. Bu değişkenlere PCA yöntemi uygulanmış ve tür dağılış modelleri için 8 değişken belirlenmiştir. Modeller CCSM4 modeli ve gelecek projeksiyonları için RCP 8.5 senaryosu ile üretilmiştir. Modellerin üretilmesi için MaxEnt 3.4.1 ve ArcGIS 10.5 yazılımı kullanılmıştır. Projeksiyonların doğruluklarını ölçen AUC test değerleri ise 0,90’nın üzerindedir. 8 biyoiklimsel değişken içinde modellere en fazla katkı sağlayan değişkenler; Cedrus libani için BIO14 %32,3, BIO8 %23,7, BIO15 %19,2; Abies cilicica için BIO8 %30,5, BIO14 %24,1, BIO15 %19,5; Juniperus drupacea için BIO15 %38,1, BIO12 %30,9, BIO4 %13,1’dir. Elde edilen sonuçlara göre Cedrus libani, Abies cilicica ve Juniperus drupacea Son Buzul Maksimumu’nda Anadolu’nun güneyinde uygun yaşam alanı bulmuştur. Holosen’den itibaren dağılış sahalarını daraltarak günümüz sınırlarına ulaşmışlardır. Gelecekte ise Cedrus libani, Abies cilicica ve Juniperus drupacea’nın ekolojik isteklerinden bir kısmının kaybolacağı ve alanlarını daraltacağı öngörülebilir. 

Destekleyen Kurum

İstanbul Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Proje Numarası

32478

Teşekkür

Bu çalışma İstanbul Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından desteklenmiştir. Proje numarası: 32478

Kaynakça

  • Ackerly, D. D., Loarie, S. R., Cornwell, W. K., Weiss, S. B., Hamilton, H., Branciforte, R., & Kraft, N. J. B. (2010). The geography of climate change: implications for conservation biogeography. Diversity and Distributions, 16, 476-487. google scholar
  • Adams, R. (2014). Juniperus of the World, The Genus Juniperus. Bloomington: Trafford Publishing Co. USA. google scholar
  • Aitken, S. N., Yeaman, S., Holliday, J. A., Wang, T., & Curtis-McLane, S. (2008). Adaptation, migration or extirpation: climate change outcomes for tree populations. Evolutionary Applications, 1(1), 95-111. google scholar
  • Akkemik, Ü., Arslan, M., Poole, I., Tosun, S., Köse, N., Kılıç, N. K., & Aydın, A. (2016). Silicified woods from two previously undescribed early Miocene forest sites near Seben, northwest Turkey. Review of Palaeobotany and Palynology, 235, 31-50. google scholar
  • Akkemik, Ü. (2020a). Pinaceae. Ü. Akkemik (Ed.), Doğal-Egzotik Ağaçlar ve Çalılar kitabı içinde, (s. 161-213). İstanbul: Türkiye İş Bankası Kültür Yayınları. google scholar
  • Akkemik, Ü. (2020b). A new fossil Cedrus species from the early Miocene of northwestern Turkey and its possible affinities. Palaeoworld, https://doi.org/10.1016/j.palwor.2020.12.003. google scholar
  • Araûjo, M. B., Alagador, D., Cabeza, M., Nogues-Bravo, D., & Thuiller, W. (2011). Climate change threatens European conservation areas. Ecology Letters, 14, 484-492. google scholar
  • Arenas, M., Ray, N. Currat, M. & Excoffier, L. (2012). Consequences of range contractions and range shifts on molecular diversity. Molecular Biology and Evolution, 29(1), 207-218. google scholar
  • Avcı, M. (2005). Çeşitlilik ve endemizm açısından Türkiye’nin bitki örtüsü. İstanbul Üniversitesi Edebiyat Fakültesi Coğrafya Bölümü Coğrafya Dergisi, 13, 27-55. google scholar
  • Avcı, M. (2014). Paleocoğrafya. A. Güner & T. Ekim (Ed.), Resimli Türkiye Florası Cilt I kitabı içinde (s. 49-77). İstanbul: Türkiye İş Bankası Kültür Yayınları. google scholar
  • Avcı, M., & Avcı, S. (2014a). Yer şekilleri. A. Güner & T. Ekim (Ed.), Resimli Türkiye Florası Cilt I. kitabı içinde (s. 17-27). İstanbul: Türkiye İş Bankası Kültür Yayınları. google scholar
  • Avcı, M., & Avcı, S. (2014b). İklim. A. Güner & T. Ekim (Ed.), Resimli Türkiye Florası Cilt I. kitabı içinde (s. 107-115). İstanbul: Türkiye İş Bankası Kültür Yayınları. google scholar
  • Behroozian, M., Ejtehadi, H., Peterson, A. T., Memariani, F., & Mesdaghi, M. (2020). Climate change influences on the potential distribution of Dianthus polylepis Bien. ex Boiss. (Caryophyllaceae), an endemic species in the Irano-Turanian region. PLoS ONE, 15(8), e0237527. google scholar
  • Beridze, B., Walas, L., Iszkulo, G., Jasinska, A. K., Kosinski, P., Sçkiewicz, K., ... & Dering, M. (2021). Demographic history and range modelling of the East Mediterranean Abies cilicica. Plant and Fungal Systematics, 66(2), 122-132. google scholar
  • Beton, D. (2011). Effects of Climate Change on Biodiversity: A Case Study on Four Plant Species Using Distribution Models. (Doktora Tezi), Ortadoğu Teknik Üniversitesi Fen Bilimleri Enstitüsü, Ankara. google scholar
  • Biltekin, D., Popescu, S. M., Suc, J. P., Quezel, P., Jimenez-Moreno, G., Yavuz, N., & Çağatay, M. N. (2015). Anatolia: A long-time plant refuge area documented by pollen records over the last 23 million years. Review of Palaeobotany and Palynology, 215, 1-22. google scholar
  • Biltekin, D. (2018). Palynomorphs from a lacustrine sequence provide evidence for palaeoenvironmental changes during the early Miocene in Central Anatolia, Turkey. Canadian Journal of Earth Sciences, 55(5), 505-513. google scholar
  • Bottema, S., & Woldring, H. (1984). Late Quaternary vegetation and climate of southwestern Turkey. Part II. Palaeohistoria, 26, 123-149. google scholar
  • Bottema, S. (1987). Chronology and climatic phases in the near east from 16,000 to 10,000 BP. Chronologies in the Near East. Oxford: British Archaeological Reports, 295310. google scholar
  • Bottema, S., Woldring, H., & Aytuğ, B. (1993). Late Quaternary vegetation history of northern Turkey. Palaeohistoria, 35/36, 13-72. google scholar
  • Booth, T. H. (2018). Species distribution modelling tools and databases to assist managing forests under climate change. Forest Ecology and Management, 430, 196-203. google scholar
  • Boydak, M. (2003). Regeneration of Lebanon cedar (Cedrus libani A. Rich.) on karstic lands in Turkey. Forest Ecology and Management, 178(3), 231-243. google scholar
  • Bozkuş H. F. (1986). Toros Göknarı (Abies cilicica Carr.)’nın Türkiye’deki doğal yayılış ve silvikültürel özellikleri. (Doktora Tezi). İstanbul Üniversitesi Orman Fakültesi, İstanbul. google scholar
  • Bystriakova, N., Peregrym, M., Erkens, R. H., Bezsmertna, O., & Schneider, H. (2012). Sampling bias in geographic and environmental space and its effect on the predictive power of species distribution models. Systematics and Biodiversity, 10(3), 305-315. google scholar
  • CEPF. (2017). Ecosystem Profile-Mediterranean Basin Biodiversity Hotspot. (https://www.cepf.net/our-work/biodiversity-hotspots/ mediterranean-basin). (Erişim 17.04.2021). google scholar
  • CEPF (2021). https://www.cepf.net/our-work/biodiversity-hotspots. (Erişim 17.04.2021). google scholar
  • CI, (2016). http://www.conservation.org/how/pages/hotspots.aspx (Erişim 17.04.2021). google scholar
  • Coode, M., & Cullen, J. (1965a). Cedrus L. In P. Davis, M. Coode, & J. Cullen (Eds.), Flora of Turkey and the East Aegean Islands Vol.I (pp. 71-72). Edinburgh: Edinburgh University Press. google scholar
  • Coode, M., & Cullen, J. (1965b). Juniperus L. In P.Davis, M. Coode, & J. Cullen (Eds.), Flora of Turkey and the East Aegean Islands Vol.I (pp. 78-84). Edinburgh: Edinburgh University Press. google scholar
  • Coode, M., & Cullen, J. (1965c) Abies Miller. In P. Davis, M. Coode, & J. Cullen (Eds.), Flora of Turkey and the East Aegean Islands Vol.I (pp. 67-70). Edinburgh: Edinburgh University Press. google scholar
  • Cuena-Lombrana, A., Fois, M., Fenu, G., Cogoni, D., & Bacchetta, G. (2018). The impact of climatic variations on the reproductive success of Gentiana lutea L. in a Mediterranean mountain area. International Journal of Biometeorology, 62(7), 1283-1295. google scholar
  • Dagtekin D., Şahan E. A., Denk T, Köse N., & Dalfes H. N. (2020). Past, present and future distributions of Oriental beech (Fagus orientalis) under climate change projections. PloS One, 15(11), e0242280 google scholar
  • DeLeo, J. M. (1993, April). Receiver operating characteristic laboratory (ROCLAB): software for developing decision strategies that account for uncertainty. In 1993 (2nd) International Symposium on Uncertainty Modeling and Analysis. (pp. 318-325). google scholar
  • Duan R. Y., Kong X. Q., Huang M. Y., Fan W. Y., & Wang, Z. G. (2014). The predictive performance and stability of six species distribution models. PloS One, 9(11): e112764 google scholar
  • Elibüyük, M. ve Yılmaz, E. (2010). Türkiye’nin coğrafi bölge ve bölümlerine göre yükselti basamakları ve eğim grupları. Coğrafî Bilimler Dergisi, 8(1), 27-55. google scholar
  • Elith, J. (2000). Quantitative methods for modeling species habitat: comparative performance and an application to Australian plants. In F. Scott, & B. Mark (Eds.), Quantitative methods for conservation biology (pp. 39-58). New York: Springer. google scholar
  • Erinç, S. (1984). Klimatoloji ve Metodları. İstanbul: İstanbul Üniversitesi Yayını. google scholar
  • EUFORGEN (2021). European forest genetic resources programme, http://www.euforgen.org/species/abies-cilicica/. Erişim (13.07.2021). google scholar
  • EUFORGEN (2021). European forest genetic resources programme, http://www.euforgen.org/species/cedrus-libani/. Erişim (13.07.2021). google scholar
  • Fady, B. (2005). Is there really more biodiversity in Mediterranean forest ecosystems?. Taxon, 54(4), 905-910. google scholar
  • Fady, B., Lefevre, F., Vendramin, G. G., Ambert, A., Regnier, C., & Bariteau, M. (2008). Genetic consequences of past climate and human impact on eastern Mediterranean Cedrus libani forests. Implications for their conservation. Conservation Genetics, 9(1), 85-95. google scholar
  • Farjon, A. (2010). A Handbook of the World’s Conifers (Vol. 1-2). Leiden-Boston: Brill. google scholar
  • Flantua, S. G. A., & Hooghiemstra, H. (2018). Historical connectivity and mountain biodiversity. In C. Hoorn, A. Perrigo, & A. Antonelli (Eds.), Mountains, climate and biodiversity 1st ed. (pp.171-185). Oxford, UK: Wiley-Blackwell. google scholar
  • Gardner, M. (2013). Cedrus libani var. libani. The IUCN Red List of Threatened Species 2013: e.T42305A2970821. https://dx.doi. org/10.2305/IUCN.UK.2013-1.RLTS.T42305A2970821.en. Downloaded on 15 May 2021. google scholar
  • Gardner, M., & Knees, S. (2013). Abies cilicica subsp isaurica. The IUCN Red List of Threatened Species 2013: e.T33002A2829405. https://dx.doi.org/10.2305/IUCN.UK.2013-1.RLTS. T33002A2829405.en. Downloaded on 15 May 2021. google scholar
  • GBIF.org (2021a) GBIF Occurrence Download https://doi.org/10.15468/ dl.gzu48d (Erişim: 09 Temmuz 2021). google scholar
  • GBIF.org (2021b) GBIF Occurrence Download https://doi. org/10.15468/dl.sh8f5r ((Erişim: 09 Temmuz 2021). google scholar
  • GBIF.org (2021c) GBIF Occurrence Download https://doi.org/10.15468/ dl.v3rnu7 (Erişim: 09 Temmuz 2021). google scholar
  • Günal, N. (1997). Türkiye’de Başlıca Ağaç Türlerinin Coğrafi Dağılışları, Ekolojik ve Floristik Özellikleri. İstanbul: Çantay Kitabevi. google scholar
  • Günal, N. (2013). Türkiye’de iklimin doğal bitki örtüsü üzerindeki etkileri. Acta Turcica Çevrimiçi Tematik Türkoloji Dergisi, 1, 1-22. google scholar
  • Güner, A., Aslan, S., Ekim, T., Vural, M., & Babac, M. T. (2012). Turkiye bitkileri listesi (damarli bitkiler). İstanbul: Nezahat Gökyigit Botanik Bahçesi Yayinlari Flora Dizisi I. google scholar
  • Hajar, L., Khater, C., & Cheddadi, R. (2008). Vegetation changes during the late Pleistocene and Holocene in Lebanon: a pollen record from the Bekaa Valley. The Holocene, 18, 1089-1099. google scholar
  • Hajar, L., François, L., Khater, C., Jomaa, I., Deque, M., & Cheddadi, R. (2010). Cedrus libani (A. Rich) distribution in Lebanon: Past, present and future. Comptes Rendus Biologies, 333(8), 622-630. google scholar
  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15), 19651978. google scholar
  • Hrivnak, M., Paule, L., Krajmerova, D., Kulaç, Ş., Şevik, H., Turna, İ., ... & Gömöry, D. (2017). Genetic variation in Tertiary relics: The case of eastern-Mediterranean Abies (Pinaceae). Ecology and Evolution, 7(23), 10018-10030. google scholar
  • IPCC. (2018). Summary for Policymakers. In: Global Warming of 1. 0C. An IPCC Special Report on the impacts of global warming of 1.50C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (Masson-Delmotte, V., P. Zhai, H. Pörtner,...&T. Waterfield (Eds.). WMO, Geneva, Switzerland, 32 pp. google scholar
  • İpekdal, K., & Beton, D. (2014). Model predicts a future pine processionary moth risk in Artvin and adjacent regions. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 15(2), 85-95. google scholar
  • Knees, S., & Gardner, M. (2013). Abies cilicica subsp. cilicica. The IUCN Red List of Threatened Species 2013: e.T195504A2382755. https://dx.doi.org/10.2305/IUCN.UK.2013-1.RLTS. T195504A2382755.en. (Erişim: 17 April 2021). google scholar
  • Knees, S., & Gardner, M. 2013. Abies cilicica subsp.cilicica. The IUCN Red List of Threatened Species 2013: e.T195504A2382755. https:// dx.doi.org/10.2305/IUCN.UK.2013- 1.RLTS.T195504A2382755. en. (Erişim:15 May 2021). google scholar
  • Koç, D. E. (2016). Bolkar Dağları’nın bitki örtüsü ve iklim değişikliği. (Doktora Tezi). İstanbul Üniversitesi Sosyal Bilimler Enstitüsü, İstanbul. google scholar
  • Koc, D. E., Svenning, J. C., & Avci, M. (2018). Climate change impacts on the potential distribution of Taxus baccata L. in the Eastern Mediterranean and the Bolkar Mountains (Turkey) from last glacial maximum to the future. Eurasian Journal of Forest Science, 6(3), 69-82. google scholar
  • Koç, D. E., Biltekin, D., & Ustaoğlu, B. (2021). Modelling potential distribution of Carpinus betulus in Anatolia and its surroundings from the Last Glacial Maximum to the future. Arabian Journal of Geosciences, 14(12), 1-13. google scholar
  • Kuhn, E., & Gegout, J. C. (2019). Highlighting declines of cold-demanding plant species in lowlands under climate warming. Ecography, 42, 36-44. google scholar
  • Kumar, P. (2012). Assessment of impact of climate change on Rhododendrons in Sikkim Himalayas using Maxent modelling: limitations and challenges. Biodiversity and Conservation, 21(5), 1251-1266. google scholar
  • Kuzucuoğlu, C. (2019). The physical geography of Turkey: an outline. In C. Kuzucuoğlu, A. Çiner, & N. Kazancı (Eds.), Landscapes and landforms of Turkey (pp. 7-15). Switzerland: Springer Nature. google scholar
  • Kuzucuoğlu, C., Çiner, A., & Kazancı, N. (2019a). Introduction to landscapes and landforms of Turkey. In C. Kuzucuoğlu, A. Çiner, & N. Kazancı (Eds.), Landscapes and landforms of Turkey (pp. 3-5). Switzerland: Springer Nature. google scholar
  • Kuzucuoğlu, C., Çiner, A. & Kazancı, N. (2019b). The geomorphological regions of Turkey. In C. Kuzucuoğlu, A. Çiner, & N. Kazancı (Eds.), Landscapes and landforms of Turkey (pp. 41-178). Switzerland: Springer Nature. google scholar
  • Liepelt, S., Mayland-Quellhorst, E., Lahme, M., & Ziegenhagen, B. (2010). Contrasting geographical patterns of ancient and modern genetic lineages in Mediterranean Abies species. Plant Systematics and Evolution, 284, 141-151. google scholar
  • Linares, J. C. (2011). Biogeography and evolution of Abies (Pinaceae) in the Mediterranean Basin: the roles of long-term climatic change and glacial refugia. Journal of Biogeography, 38(4), 619-630. google scholar
  • Lindner, M., Fitzgerald, J. B., Zimmermann, N. E., Reyer, C., Delzon, S., van der Maaten, E., ... & Hanewinkel, M. (2014). Climate change and European forests: what do we know, what are the uncertainties, and what are the implications for forest management?. Journal of Environmental Management, 146, 69-83. google scholar
  • Litt, T., & Anselmetti, F. S. (2014). Lake Van deep drilling project PALEOVAN. Quaternary Science Reviews, 104, 1-7. google scholar
  • Litt, T., Pickarski, N., Heumann, G., Stockhecke, M., & Tzedakis, P. C. (2014). A 600,000 year long continental pollen record from Lake Van, eastern Anatolia (Turkey). Quaternary Science Reviews, 104, 30-41. google scholar
  • Liu, T. S. (1971). A monograph of the genus Abies. Taiwan: Department of Forestry, National Taiwan University. google scholar
  • Ma, B., & Sun, J. (2018). Predicting the distribution of Stipa purpurea across the Tibetan Plateau via the MaxEnt model. BMC Ecology, 18(1), 1-12. google scholar
  • Mao, K., Hao, G., Liu, J., Adams, R. P., & Milne, R. I. (2010). Diversification and biogeography of Juniperus (Cupressaceae): variable diversification rates and multiple intercontinental dispersals. New Phytologist, 188(1), 254-272. google scholar
  • Medail, F., & Diadema, K. (2009). Glacial refugia influence plant diversity patterns in the Mediterranean Basin. Journal of Biogeography, 36(7), 1333-1345. google scholar
  • Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853-858. google scholar
  • Nabout, J. C., Magalhâes, M. R., de Amorim Gomes, M. A., & Da Cunha, H. F. (2016). The impact of global climate change on the geographic distribution and sustainable harvest of Hancornia speciosa Gomes (Apocynaceae) in Brazil. Environmental Management, 57(4), 814-821. google scholar
  • Neotoma Paleoecology Database and Community (2021) https://www. neotomadb.org/ (Erişim: 1 Mayıs 2021). google scholar
  • Oliveira, M. D., Hamilton, S. K., Calheiros, D. F., Jacobi, C. M., & Latini, R. O. (2010). Modeling the potential distribution of the invasive golden mussel Limnoperna fortunei in the Upper Paraguay River system using limnological variables. Brazilian Journal of Biology, 70(3), 831-840. google scholar
  • Özdemir, S., Gülsoy, S., & Ahmet, M. (2020). Predicting the effect of climate change on the potential distribution of Crimean Juniper. Kastamonu University Journal of Forestry Faculty, 20(2), 133-142. google scholar
  • Palamarev, E. (1989). Paleobotanical evidences of the Tertiary history and origin of the Mediterranean sclerophyll dendroflora. In Woody Plants-Evolution and Distribution Since the Tertiary (pp. 93-107). Vienna: Springer. google scholar
  • Pearson, R. G., Raxworthy, C. J., Nakamura, M., & Townsend Peterson, A. (2007). Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography, 34(1), 102-117. google scholar
  • Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3-4), 231-259. google scholar
  • Phillips, S. J., & Dudık, M. (2008). Modeling of species distributions with MaxEnt: new extensions and a comprehensive evaluation. Ecography, 31(2), 161-175. google scholar
  • Phillips, S. J., Dudık, M., & Schapire, R. E. (2016). Internet. Maxent software for modeling species niches and distributions (Version 3.4. 1). https://biodiversityinformatics.amnh.org/open_source/maxent/ (Erişim 20 Temmuz 2020). google scholar
  • Pignatti, S. (1978). Evolutionary trends in Mediterranean flora and vegetation. In E. van der MaarelMarinus J. A. Werger Plant Species and Plant Communities (pp. 157-167). Dordrecht: Springer. google scholar
  • Popescu, S. M., Biltekin, D., Winter, H., Suc, J. P., Melinte-Dobrinescu, M. C., Klotz, S., ... & Deaconu, F. (2010). Pliocene and Lower Pleistocene vegetation and climate changes at the European scale: Long pollen records and climatostratigraphy. Quaternary International, 219(1-2), 152-167. google scholar
  • Qin, A., Liu, B., Guo, Q., Bussmann, R. W., Ma, F., Jian, Z., ... & Pei, S. (2017). Maxent modeling for predicting impacts of climate change on the potential distribution of Thuja sutchuenensis Franch., an extremely endangered conifer from southwestern China. Global Ecology and Conservation, 10, 139-146. google scholar
  • Rebelo, H ve Jones, G. (2010). Ground validation of presence-only modelling with rare species: a case study on barbastelles Barbastella barbastellus Chiroptera: Vespertilionidae). Journal of Applied Ecology, 47, 410-420. google scholar
  • Rhoden, C. M., Peterman, W. E., & Taylor, C.A. (2017). Maxent-directed field surveys identify new populations of narrowly endemic habitat specialists. PeerJ, 5, e3632. google scholar
  • Sarıkaya, M. A., & Çiner, A. (2017). The late Quaternary glaciation in the Eastern Mediterranean. In P. Hughes & J. Woodward (Eds.), Quaternary Glaciation in the Mediterranean Mountains. (pp. 289305). Londra: The Geological Society. google scholar
  • Serra-Diaz, J. M., & Franklin, J. (2019). What’s hot in conservation biogeography in a changing climate? Going beyond species range dynamics. Diversity and Distribution, 25, 492- 498. google scholar
  • Sobierajska, K., Boratynska, K., Jasinska, A., Dering, M., Ok, T., Douaihy, B., ... & Boratynski, A. (2016). Effect of the Aegean Sea barrier between Europe and Asia on differentiation in Juniperus drupacea (Cupressaceae). Botanical Journal of the Linnean Society, 180(3), 365-385. google scholar
  • Su, H., Bista, M., & Li, M. (2021). Mapping habitat suitability for Asiatic black bear and red panda in Makalu Barun National Park of Nepal from Maxent and GARP models. Scientific Reports, 11(1), 1-14. google scholar
  • Suc, J. P., Fauquette, S., Bessedik, M., Bertini, A., Zheng, Z., Clauzon, G., ... & Clet, M. (1999). Neogene vegetation changes in West European and West circum-Mediterranean areas. In J. Agusti, L. Rook & Andrews P (Eds.), Hominid Evolution and Climatic Change in Europe, Vol. 1: Climatic and Environmental Change in the Neogene of Europe (pp.378-388), Cambridge University Press. google scholar
  • Svenning, J. C., Normand, S., & Kageyama, M. (2008). Glacial refugia of temperate trees in Europe: insights from species distribution modelling. Journal of Ecology, 96(6), 1117- 1127. google scholar
  • Türkeş, M., & Erlat, E. (2003). Precipitation changes and variability in Turkey linked to the North Atlantic Oscillation during the period 1930-2000. International Journal of Climatology: A Journal of the Royal Meteorological Society, 23(14), 1771-1796. google scholar
  • Türkeş, M. (2010). Klimatoloji ve Meteoroloji. İstanbul: Kriter Yayınevi. google scholar
  • Ülker, E. D., Tavşanoğlu, Ç., & Perktaş, U. (2018). Ecological niche modelling of pedunculate oak (Quercus robur) supports the ‘expansion-contraction’model of Pleistocene biogeography. Biological Journal of the Linnean Society, 123(2), 338-347. google scholar
  • Ünal, Y., Şentürk, Ö., Kavgaci, A., Süel, H., Gülsoy, S., & Oğurlu, I. (2021). Modeling habitat suitability and utilization of the last surviving populations of fallow deer (Dama dama Linnaeus, 1758). Journal of Forestry Research, 1-10. https://doi.org/10.1007/s11676-021-01391-z google scholar
  • Van Zeist, W., Woldring, H., & Stapert, D. (1975). Late Quaternary vegetation and climate of southwestern Turkey. Palaeohistoria, 17:53-144. google scholar
  • Van Zeist, W., & Woldring, H. (1978). A postglacial pollen diagram from Lake Van in East Anatolia. Review of Palaeobotany and Palynology, 26(1-4), 249-276. google scholar
  • Walas, L., Sobierajska, K., Ok, T., Dönmez, A. A., Kanoğlu, S. S., Dagher-Kharrat, M. B., ... & Boratynski, A. (2019). Past, present, and future geographic range of an oro-Mediterranean Tertiary relict: The Juniperus drupacea case study. Regional Environmental Change, 19(5), 1507-1520. google scholar
  • Wick, L., Lemcke, G., & Sturm, M. (2003). Evidence of Lateglacial and Holocene climatic change and human impact in eastern Anatolia: high-resolution pollen, charcoal, isotopic and geochemical records from the laminated sediments of Lake Van, Turkey. The Holocene, 13(5), 665-675. google scholar
  • Workie, T. G., & Debella; H. J. (2018). Climate change and its effects on vegetation phenology across ecoregions of Ethiopia, Global Ecology and Conservation, 13, e00366, https://doi.org/10.1016/j. gecco.2017.e00366. google scholar
  • WorldClim (2021). https://www.worldclim.org/data/v1.4/worldclim14. html (Erişim: 15 Ocak 2021). google scholar
  • Xu D., Zhuo Z., Wang R., Ye M., & Pu B. (2019). Modeling the distribution of Zanthoxylum armatum in China with MaxEnt modeling. Global Ecology and Conservation, 19, art. no. e00691 google scholar
  • Yackulic, C. B., Chandler, R., Zipkin, E. F., Royle, J. A., Nichols, J. D., Campbell Grant, E. H., & Veran, S. (2013). Presence-only modelling using MAXENT: when can we trust the inferences?. Methods in Ecology and Evolution, 4(3), 236-243. google scholar
  • Yaltırık, F. & Efe, A. (2000). Dendroloji Ders Kitabı. İstanbul: Çantay Kitabevi. google scholar
  • Yi, Y., Cheng, X., Yang, Z., Wieprecht, S., Zhang, S., & Wu, Y. (2017). Evaluating the ecological influence of hydraulic projects: A review of aquatic habitat suitability models. Renewable and Sustainable Energy Reviews, 68, 748-762. google scholar

Changes in the Distribution Areas of Conifer Trees in Anatolia

Yıl 2022, , 81 - 95, 08.07.2022
https://doi.org/10.26650/JGEOG2022-974433

Öz

This study aims to estimate the responses of Cedrus libani, Abies cilicica, and Juniperus drupacea to the Last Glacial Maximum (LGM), present and future climate changes in Anatolia. For this purpose, the temporal and spatial distributions of these conifer species were modeled, based on global climate change scenarios. Accordingly, the temporal and spatial distributions of the studied species are predicted and back-projected using fossil pollen data, occurrence data, and 19 bioclimatic variables collected from the WorldClim database. The principal component analysis (PCA) method was applied to these variables, resulting in the identification of 8 variables for the species distribution model. Past and future climate information is based on CCSM4 and RCP 8.5 scenario was assumed for future projections. Furthermore, both MaxEnt 3.4.1 and ArcGIS 10.5 were utilized to develop the models. At every instance, the area under curve (AUC) test values that determine the accuracy of the projections is >0,90. Among the 8 bioclimatic variables, those that contributed the most to the models were as follows: Cedrus libani, BIO14 (%32,3), BIO8 (%23,7), BIO15 (%19,2); Abies cilicica BIO8 (%30,5), BIO14 (%24,1), BIO15 (%19,5); Juniperus drupacea, BIO15 (%38,1), BIO12 (%30,9), and BIO4 (%13,1). Cedrus libani, Abies cilicica, and Juniperus drupacea found suitable habitats in the south of Anatolia during the LGM, according to the results. From the Holocene onward, their distribution areas narrowed and reached the present-day borders. Future predictions indicate that some of the ecological conditions of the species will be lost, and their areas will narrow.

Proje Numarası

32478

Kaynakça

  • Ackerly, D. D., Loarie, S. R., Cornwell, W. K., Weiss, S. B., Hamilton, H., Branciforte, R., & Kraft, N. J. B. (2010). The geography of climate change: implications for conservation biogeography. Diversity and Distributions, 16, 476-487. google scholar
  • Adams, R. (2014). Juniperus of the World, The Genus Juniperus. Bloomington: Trafford Publishing Co. USA. google scholar
  • Aitken, S. N., Yeaman, S., Holliday, J. A., Wang, T., & Curtis-McLane, S. (2008). Adaptation, migration or extirpation: climate change outcomes for tree populations. Evolutionary Applications, 1(1), 95-111. google scholar
  • Akkemik, Ü., Arslan, M., Poole, I., Tosun, S., Köse, N., Kılıç, N. K., & Aydın, A. (2016). Silicified woods from two previously undescribed early Miocene forest sites near Seben, northwest Turkey. Review of Palaeobotany and Palynology, 235, 31-50. google scholar
  • Akkemik, Ü. (2020a). Pinaceae. Ü. Akkemik (Ed.), Doğal-Egzotik Ağaçlar ve Çalılar kitabı içinde, (s. 161-213). İstanbul: Türkiye İş Bankası Kültür Yayınları. google scholar
  • Akkemik, Ü. (2020b). A new fossil Cedrus species from the early Miocene of northwestern Turkey and its possible affinities. Palaeoworld, https://doi.org/10.1016/j.palwor.2020.12.003. google scholar
  • Araûjo, M. B., Alagador, D., Cabeza, M., Nogues-Bravo, D., & Thuiller, W. (2011). Climate change threatens European conservation areas. Ecology Letters, 14, 484-492. google scholar
  • Arenas, M., Ray, N. Currat, M. & Excoffier, L. (2012). Consequences of range contractions and range shifts on molecular diversity. Molecular Biology and Evolution, 29(1), 207-218. google scholar
  • Avcı, M. (2005). Çeşitlilik ve endemizm açısından Türkiye’nin bitki örtüsü. İstanbul Üniversitesi Edebiyat Fakültesi Coğrafya Bölümü Coğrafya Dergisi, 13, 27-55. google scholar
  • Avcı, M. (2014). Paleocoğrafya. A. Güner & T. Ekim (Ed.), Resimli Türkiye Florası Cilt I kitabı içinde (s. 49-77). İstanbul: Türkiye İş Bankası Kültür Yayınları. google scholar
  • Avcı, M., & Avcı, S. (2014a). Yer şekilleri. A. Güner & T. Ekim (Ed.), Resimli Türkiye Florası Cilt I. kitabı içinde (s. 17-27). İstanbul: Türkiye İş Bankası Kültür Yayınları. google scholar
  • Avcı, M., & Avcı, S. (2014b). İklim. A. Güner & T. Ekim (Ed.), Resimli Türkiye Florası Cilt I. kitabı içinde (s. 107-115). İstanbul: Türkiye İş Bankası Kültür Yayınları. google scholar
  • Behroozian, M., Ejtehadi, H., Peterson, A. T., Memariani, F., & Mesdaghi, M. (2020). Climate change influences on the potential distribution of Dianthus polylepis Bien. ex Boiss. (Caryophyllaceae), an endemic species in the Irano-Turanian region. PLoS ONE, 15(8), e0237527. google scholar
  • Beridze, B., Walas, L., Iszkulo, G., Jasinska, A. K., Kosinski, P., Sçkiewicz, K., ... & Dering, M. (2021). Demographic history and range modelling of the East Mediterranean Abies cilicica. Plant and Fungal Systematics, 66(2), 122-132. google scholar
  • Beton, D. (2011). Effects of Climate Change on Biodiversity: A Case Study on Four Plant Species Using Distribution Models. (Doktora Tezi), Ortadoğu Teknik Üniversitesi Fen Bilimleri Enstitüsü, Ankara. google scholar
  • Biltekin, D., Popescu, S. M., Suc, J. P., Quezel, P., Jimenez-Moreno, G., Yavuz, N., & Çağatay, M. N. (2015). Anatolia: A long-time plant refuge area documented by pollen records over the last 23 million years. Review of Palaeobotany and Palynology, 215, 1-22. google scholar
  • Biltekin, D. (2018). Palynomorphs from a lacustrine sequence provide evidence for palaeoenvironmental changes during the early Miocene in Central Anatolia, Turkey. Canadian Journal of Earth Sciences, 55(5), 505-513. google scholar
  • Bottema, S., & Woldring, H. (1984). Late Quaternary vegetation and climate of southwestern Turkey. Part II. Palaeohistoria, 26, 123-149. google scholar
  • Bottema, S. (1987). Chronology and climatic phases in the near east from 16,000 to 10,000 BP. Chronologies in the Near East. Oxford: British Archaeological Reports, 295310. google scholar
  • Bottema, S., Woldring, H., & Aytuğ, B. (1993). Late Quaternary vegetation history of northern Turkey. Palaeohistoria, 35/36, 13-72. google scholar
  • Booth, T. H. (2018). Species distribution modelling tools and databases to assist managing forests under climate change. Forest Ecology and Management, 430, 196-203. google scholar
  • Boydak, M. (2003). Regeneration of Lebanon cedar (Cedrus libani A. Rich.) on karstic lands in Turkey. Forest Ecology and Management, 178(3), 231-243. google scholar
  • Bozkuş H. F. (1986). Toros Göknarı (Abies cilicica Carr.)’nın Türkiye’deki doğal yayılış ve silvikültürel özellikleri. (Doktora Tezi). İstanbul Üniversitesi Orman Fakültesi, İstanbul. google scholar
  • Bystriakova, N., Peregrym, M., Erkens, R. H., Bezsmertna, O., & Schneider, H. (2012). Sampling bias in geographic and environmental space and its effect on the predictive power of species distribution models. Systematics and Biodiversity, 10(3), 305-315. google scholar
  • CEPF. (2017). Ecosystem Profile-Mediterranean Basin Biodiversity Hotspot. (https://www.cepf.net/our-work/biodiversity-hotspots/ mediterranean-basin). (Erişim 17.04.2021). google scholar
  • CEPF (2021). https://www.cepf.net/our-work/biodiversity-hotspots. (Erişim 17.04.2021). google scholar
  • CI, (2016). http://www.conservation.org/how/pages/hotspots.aspx (Erişim 17.04.2021). google scholar
  • Coode, M., & Cullen, J. (1965a). Cedrus L. In P. Davis, M. Coode, & J. Cullen (Eds.), Flora of Turkey and the East Aegean Islands Vol.I (pp. 71-72). Edinburgh: Edinburgh University Press. google scholar
  • Coode, M., & Cullen, J. (1965b). Juniperus L. In P.Davis, M. Coode, & J. Cullen (Eds.), Flora of Turkey and the East Aegean Islands Vol.I (pp. 78-84). Edinburgh: Edinburgh University Press. google scholar
  • Coode, M., & Cullen, J. (1965c) Abies Miller. In P. Davis, M. Coode, & J. Cullen (Eds.), Flora of Turkey and the East Aegean Islands Vol.I (pp. 67-70). Edinburgh: Edinburgh University Press. google scholar
  • Cuena-Lombrana, A., Fois, M., Fenu, G., Cogoni, D., & Bacchetta, G. (2018). The impact of climatic variations on the reproductive success of Gentiana lutea L. in a Mediterranean mountain area. International Journal of Biometeorology, 62(7), 1283-1295. google scholar
  • Dagtekin D., Şahan E. A., Denk T, Köse N., & Dalfes H. N. (2020). Past, present and future distributions of Oriental beech (Fagus orientalis) under climate change projections. PloS One, 15(11), e0242280 google scholar
  • DeLeo, J. M. (1993, April). Receiver operating characteristic laboratory (ROCLAB): software for developing decision strategies that account for uncertainty. In 1993 (2nd) International Symposium on Uncertainty Modeling and Analysis. (pp. 318-325). google scholar
  • Duan R. Y., Kong X. Q., Huang M. Y., Fan W. Y., & Wang, Z. G. (2014). The predictive performance and stability of six species distribution models. PloS One, 9(11): e112764 google scholar
  • Elibüyük, M. ve Yılmaz, E. (2010). Türkiye’nin coğrafi bölge ve bölümlerine göre yükselti basamakları ve eğim grupları. Coğrafî Bilimler Dergisi, 8(1), 27-55. google scholar
  • Elith, J. (2000). Quantitative methods for modeling species habitat: comparative performance and an application to Australian plants. In F. Scott, & B. Mark (Eds.), Quantitative methods for conservation biology (pp. 39-58). New York: Springer. google scholar
  • Erinç, S. (1984). Klimatoloji ve Metodları. İstanbul: İstanbul Üniversitesi Yayını. google scholar
  • EUFORGEN (2021). European forest genetic resources programme, http://www.euforgen.org/species/abies-cilicica/. Erişim (13.07.2021). google scholar
  • EUFORGEN (2021). European forest genetic resources programme, http://www.euforgen.org/species/cedrus-libani/. Erişim (13.07.2021). google scholar
  • Fady, B. (2005). Is there really more biodiversity in Mediterranean forest ecosystems?. Taxon, 54(4), 905-910. google scholar
  • Fady, B., Lefevre, F., Vendramin, G. G., Ambert, A., Regnier, C., & Bariteau, M. (2008). Genetic consequences of past climate and human impact on eastern Mediterranean Cedrus libani forests. Implications for their conservation. Conservation Genetics, 9(1), 85-95. google scholar
  • Farjon, A. (2010). A Handbook of the World’s Conifers (Vol. 1-2). Leiden-Boston: Brill. google scholar
  • Flantua, S. G. A., & Hooghiemstra, H. (2018). Historical connectivity and mountain biodiversity. In C. Hoorn, A. Perrigo, & A. Antonelli (Eds.), Mountains, climate and biodiversity 1st ed. (pp.171-185). Oxford, UK: Wiley-Blackwell. google scholar
  • Gardner, M. (2013). Cedrus libani var. libani. The IUCN Red List of Threatened Species 2013: e.T42305A2970821. https://dx.doi. org/10.2305/IUCN.UK.2013-1.RLTS.T42305A2970821.en. Downloaded on 15 May 2021. google scholar
  • Gardner, M., & Knees, S. (2013). Abies cilicica subsp isaurica. The IUCN Red List of Threatened Species 2013: e.T33002A2829405. https://dx.doi.org/10.2305/IUCN.UK.2013-1.RLTS. T33002A2829405.en. Downloaded on 15 May 2021. google scholar
  • GBIF.org (2021a) GBIF Occurrence Download https://doi.org/10.15468/ dl.gzu48d (Erişim: 09 Temmuz 2021). google scholar
  • GBIF.org (2021b) GBIF Occurrence Download https://doi. org/10.15468/dl.sh8f5r ((Erişim: 09 Temmuz 2021). google scholar
  • GBIF.org (2021c) GBIF Occurrence Download https://doi.org/10.15468/ dl.v3rnu7 (Erişim: 09 Temmuz 2021). google scholar
  • Günal, N. (1997). Türkiye’de Başlıca Ağaç Türlerinin Coğrafi Dağılışları, Ekolojik ve Floristik Özellikleri. İstanbul: Çantay Kitabevi. google scholar
  • Günal, N. (2013). Türkiye’de iklimin doğal bitki örtüsü üzerindeki etkileri. Acta Turcica Çevrimiçi Tematik Türkoloji Dergisi, 1, 1-22. google scholar
  • Güner, A., Aslan, S., Ekim, T., Vural, M., & Babac, M. T. (2012). Turkiye bitkileri listesi (damarli bitkiler). İstanbul: Nezahat Gökyigit Botanik Bahçesi Yayinlari Flora Dizisi I. google scholar
  • Hajar, L., Khater, C., & Cheddadi, R. (2008). Vegetation changes during the late Pleistocene and Holocene in Lebanon: a pollen record from the Bekaa Valley. The Holocene, 18, 1089-1099. google scholar
  • Hajar, L., François, L., Khater, C., Jomaa, I., Deque, M., & Cheddadi, R. (2010). Cedrus libani (A. Rich) distribution in Lebanon: Past, present and future. Comptes Rendus Biologies, 333(8), 622-630. google scholar
  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15), 19651978. google scholar
  • Hrivnak, M., Paule, L., Krajmerova, D., Kulaç, Ş., Şevik, H., Turna, İ., ... & Gömöry, D. (2017). Genetic variation in Tertiary relics: The case of eastern-Mediterranean Abies (Pinaceae). Ecology and Evolution, 7(23), 10018-10030. google scholar
  • IPCC. (2018). Summary for Policymakers. In: Global Warming of 1. 0C. An IPCC Special Report on the impacts of global warming of 1.50C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (Masson-Delmotte, V., P. Zhai, H. Pörtner,...&T. Waterfield (Eds.). WMO, Geneva, Switzerland, 32 pp. google scholar
  • İpekdal, K., & Beton, D. (2014). Model predicts a future pine processionary moth risk in Artvin and adjacent regions. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 15(2), 85-95. google scholar
  • Knees, S., & Gardner, M. (2013). Abies cilicica subsp. cilicica. The IUCN Red List of Threatened Species 2013: e.T195504A2382755. https://dx.doi.org/10.2305/IUCN.UK.2013-1.RLTS. T195504A2382755.en. (Erişim: 17 April 2021). google scholar
  • Knees, S., & Gardner, M. 2013. Abies cilicica subsp.cilicica. The IUCN Red List of Threatened Species 2013: e.T195504A2382755. https:// dx.doi.org/10.2305/IUCN.UK.2013- 1.RLTS.T195504A2382755. en. (Erişim:15 May 2021). google scholar
  • Koç, D. E. (2016). Bolkar Dağları’nın bitki örtüsü ve iklim değişikliği. (Doktora Tezi). İstanbul Üniversitesi Sosyal Bilimler Enstitüsü, İstanbul. google scholar
  • Koc, D. E., Svenning, J. C., & Avci, M. (2018). Climate change impacts on the potential distribution of Taxus baccata L. in the Eastern Mediterranean and the Bolkar Mountains (Turkey) from last glacial maximum to the future. Eurasian Journal of Forest Science, 6(3), 69-82. google scholar
  • Koç, D. E., Biltekin, D., & Ustaoğlu, B. (2021). Modelling potential distribution of Carpinus betulus in Anatolia and its surroundings from the Last Glacial Maximum to the future. Arabian Journal of Geosciences, 14(12), 1-13. google scholar
  • Kuhn, E., & Gegout, J. C. (2019). Highlighting declines of cold-demanding plant species in lowlands under climate warming. Ecography, 42, 36-44. google scholar
  • Kumar, P. (2012). Assessment of impact of climate change on Rhododendrons in Sikkim Himalayas using Maxent modelling: limitations and challenges. Biodiversity and Conservation, 21(5), 1251-1266. google scholar
  • Kuzucuoğlu, C. (2019). The physical geography of Turkey: an outline. In C. Kuzucuoğlu, A. Çiner, & N. Kazancı (Eds.), Landscapes and landforms of Turkey (pp. 7-15). Switzerland: Springer Nature. google scholar
  • Kuzucuoğlu, C., Çiner, A., & Kazancı, N. (2019a). Introduction to landscapes and landforms of Turkey. In C. Kuzucuoğlu, A. Çiner, & N. Kazancı (Eds.), Landscapes and landforms of Turkey (pp. 3-5). Switzerland: Springer Nature. google scholar
  • Kuzucuoğlu, C., Çiner, A. & Kazancı, N. (2019b). The geomorphological regions of Turkey. In C. Kuzucuoğlu, A. Çiner, & N. Kazancı (Eds.), Landscapes and landforms of Turkey (pp. 41-178). Switzerland: Springer Nature. google scholar
  • Liepelt, S., Mayland-Quellhorst, E., Lahme, M., & Ziegenhagen, B. (2010). Contrasting geographical patterns of ancient and modern genetic lineages in Mediterranean Abies species. Plant Systematics and Evolution, 284, 141-151. google scholar
  • Linares, J. C. (2011). Biogeography and evolution of Abies (Pinaceae) in the Mediterranean Basin: the roles of long-term climatic change and glacial refugia. Journal of Biogeography, 38(4), 619-630. google scholar
  • Lindner, M., Fitzgerald, J. B., Zimmermann, N. E., Reyer, C., Delzon, S., van der Maaten, E., ... & Hanewinkel, M. (2014). Climate change and European forests: what do we know, what are the uncertainties, and what are the implications for forest management?. Journal of Environmental Management, 146, 69-83. google scholar
  • Litt, T., & Anselmetti, F. S. (2014). Lake Van deep drilling project PALEOVAN. Quaternary Science Reviews, 104, 1-7. google scholar
  • Litt, T., Pickarski, N., Heumann, G., Stockhecke, M., & Tzedakis, P. C. (2014). A 600,000 year long continental pollen record from Lake Van, eastern Anatolia (Turkey). Quaternary Science Reviews, 104, 30-41. google scholar
  • Liu, T. S. (1971). A monograph of the genus Abies. Taiwan: Department of Forestry, National Taiwan University. google scholar
  • Ma, B., & Sun, J. (2018). Predicting the distribution of Stipa purpurea across the Tibetan Plateau via the MaxEnt model. BMC Ecology, 18(1), 1-12. google scholar
  • Mao, K., Hao, G., Liu, J., Adams, R. P., & Milne, R. I. (2010). Diversification and biogeography of Juniperus (Cupressaceae): variable diversification rates and multiple intercontinental dispersals. New Phytologist, 188(1), 254-272. google scholar
  • Medail, F., & Diadema, K. (2009). Glacial refugia influence plant diversity patterns in the Mediterranean Basin. Journal of Biogeography, 36(7), 1333-1345. google scholar
  • Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853-858. google scholar
  • Nabout, J. C., Magalhâes, M. R., de Amorim Gomes, M. A., & Da Cunha, H. F. (2016). The impact of global climate change on the geographic distribution and sustainable harvest of Hancornia speciosa Gomes (Apocynaceae) in Brazil. Environmental Management, 57(4), 814-821. google scholar
  • Neotoma Paleoecology Database and Community (2021) https://www. neotomadb.org/ (Erişim: 1 Mayıs 2021). google scholar
  • Oliveira, M. D., Hamilton, S. K., Calheiros, D. F., Jacobi, C. M., & Latini, R. O. (2010). Modeling the potential distribution of the invasive golden mussel Limnoperna fortunei in the Upper Paraguay River system using limnological variables. Brazilian Journal of Biology, 70(3), 831-840. google scholar
  • Özdemir, S., Gülsoy, S., & Ahmet, M. (2020). Predicting the effect of climate change on the potential distribution of Crimean Juniper. Kastamonu University Journal of Forestry Faculty, 20(2), 133-142. google scholar
  • Palamarev, E. (1989). Paleobotanical evidences of the Tertiary history and origin of the Mediterranean sclerophyll dendroflora. In Woody Plants-Evolution and Distribution Since the Tertiary (pp. 93-107). Vienna: Springer. google scholar
  • Pearson, R. G., Raxworthy, C. J., Nakamura, M., & Townsend Peterson, A. (2007). Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography, 34(1), 102-117. google scholar
  • Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3-4), 231-259. google scholar
  • Phillips, S. J., & Dudık, M. (2008). Modeling of species distributions with MaxEnt: new extensions and a comprehensive evaluation. Ecography, 31(2), 161-175. google scholar
  • Phillips, S. J., Dudık, M., & Schapire, R. E. (2016). Internet. Maxent software for modeling species niches and distributions (Version 3.4. 1). https://biodiversityinformatics.amnh.org/open_source/maxent/ (Erişim 20 Temmuz 2020). google scholar
  • Pignatti, S. (1978). Evolutionary trends in Mediterranean flora and vegetation. In E. van der MaarelMarinus J. A. Werger Plant Species and Plant Communities (pp. 157-167). Dordrecht: Springer. google scholar
  • Popescu, S. M., Biltekin, D., Winter, H., Suc, J. P., Melinte-Dobrinescu, M. C., Klotz, S., ... & Deaconu, F. (2010). Pliocene and Lower Pleistocene vegetation and climate changes at the European scale: Long pollen records and climatostratigraphy. Quaternary International, 219(1-2), 152-167. google scholar
  • Qin, A., Liu, B., Guo, Q., Bussmann, R. W., Ma, F., Jian, Z., ... & Pei, S. (2017). Maxent modeling for predicting impacts of climate change on the potential distribution of Thuja sutchuenensis Franch., an extremely endangered conifer from southwestern China. Global Ecology and Conservation, 10, 139-146. google scholar
  • Rebelo, H ve Jones, G. (2010). Ground validation of presence-only modelling with rare species: a case study on barbastelles Barbastella barbastellus Chiroptera: Vespertilionidae). Journal of Applied Ecology, 47, 410-420. google scholar
  • Rhoden, C. M., Peterman, W. E., & Taylor, C.A. (2017). Maxent-directed field surveys identify new populations of narrowly endemic habitat specialists. PeerJ, 5, e3632. google scholar
  • Sarıkaya, M. A., & Çiner, A. (2017). The late Quaternary glaciation in the Eastern Mediterranean. In P. Hughes & J. Woodward (Eds.), Quaternary Glaciation in the Mediterranean Mountains. (pp. 289305). Londra: The Geological Society. google scholar
  • Serra-Diaz, J. M., & Franklin, J. (2019). What’s hot in conservation biogeography in a changing climate? Going beyond species range dynamics. Diversity and Distribution, 25, 492- 498. google scholar
  • Sobierajska, K., Boratynska, K., Jasinska, A., Dering, M., Ok, T., Douaihy, B., ... & Boratynski, A. (2016). Effect of the Aegean Sea barrier between Europe and Asia on differentiation in Juniperus drupacea (Cupressaceae). Botanical Journal of the Linnean Society, 180(3), 365-385. google scholar
  • Su, H., Bista, M., & Li, M. (2021). Mapping habitat suitability for Asiatic black bear and red panda in Makalu Barun National Park of Nepal from Maxent and GARP models. Scientific Reports, 11(1), 1-14. google scholar
  • Suc, J. P., Fauquette, S., Bessedik, M., Bertini, A., Zheng, Z., Clauzon, G., ... & Clet, M. (1999). Neogene vegetation changes in West European and West circum-Mediterranean areas. In J. Agusti, L. Rook & Andrews P (Eds.), Hominid Evolution and Climatic Change in Europe, Vol. 1: Climatic and Environmental Change in the Neogene of Europe (pp.378-388), Cambridge University Press. google scholar
  • Svenning, J. C., Normand, S., & Kageyama, M. (2008). Glacial refugia of temperate trees in Europe: insights from species distribution modelling. Journal of Ecology, 96(6), 1117- 1127. google scholar
  • Türkeş, M., & Erlat, E. (2003). Precipitation changes and variability in Turkey linked to the North Atlantic Oscillation during the period 1930-2000. International Journal of Climatology: A Journal of the Royal Meteorological Society, 23(14), 1771-1796. google scholar
  • Türkeş, M. (2010). Klimatoloji ve Meteoroloji. İstanbul: Kriter Yayınevi. google scholar
  • Ülker, E. D., Tavşanoğlu, Ç., & Perktaş, U. (2018). Ecological niche modelling of pedunculate oak (Quercus robur) supports the ‘expansion-contraction’model of Pleistocene biogeography. Biological Journal of the Linnean Society, 123(2), 338-347. google scholar
  • Ünal, Y., Şentürk, Ö., Kavgaci, A., Süel, H., Gülsoy, S., & Oğurlu, I. (2021). Modeling habitat suitability and utilization of the last surviving populations of fallow deer (Dama dama Linnaeus, 1758). Journal of Forestry Research, 1-10. https://doi.org/10.1007/s11676-021-01391-z google scholar
  • Van Zeist, W., Woldring, H., & Stapert, D. (1975). Late Quaternary vegetation and climate of southwestern Turkey. Palaeohistoria, 17:53-144. google scholar
  • Van Zeist, W., & Woldring, H. (1978). A postglacial pollen diagram from Lake Van in East Anatolia. Review of Palaeobotany and Palynology, 26(1-4), 249-276. google scholar
  • Walas, L., Sobierajska, K., Ok, T., Dönmez, A. A., Kanoğlu, S. S., Dagher-Kharrat, M. B., ... & Boratynski, A. (2019). Past, present, and future geographic range of an oro-Mediterranean Tertiary relict: The Juniperus drupacea case study. Regional Environmental Change, 19(5), 1507-1520. google scholar
  • Wick, L., Lemcke, G., & Sturm, M. (2003). Evidence of Lateglacial and Holocene climatic change and human impact in eastern Anatolia: high-resolution pollen, charcoal, isotopic and geochemical records from the laminated sediments of Lake Van, Turkey. The Holocene, 13(5), 665-675. google scholar
  • Workie, T. G., & Debella; H. J. (2018). Climate change and its effects on vegetation phenology across ecoregions of Ethiopia, Global Ecology and Conservation, 13, e00366, https://doi.org/10.1016/j. gecco.2017.e00366. google scholar
  • WorldClim (2021). https://www.worldclim.org/data/v1.4/worldclim14. html (Erişim: 15 Ocak 2021). google scholar
  • Xu D., Zhuo Z., Wang R., Ye M., & Pu B. (2019). Modeling the distribution of Zanthoxylum armatum in China with MaxEnt modeling. Global Ecology and Conservation, 19, art. no. e00691 google scholar
  • Yackulic, C. B., Chandler, R., Zipkin, E. F., Royle, J. A., Nichols, J. D., Campbell Grant, E. H., & Veran, S. (2013). Presence-only modelling using MAXENT: when can we trust the inferences?. Methods in Ecology and Evolution, 4(3), 236-243. google scholar
  • Yaltırık, F. & Efe, A. (2000). Dendroloji Ders Kitabı. İstanbul: Çantay Kitabevi. google scholar
  • Yi, Y., Cheng, X., Yang, Z., Wieprecht, S., Zhang, S., & Wu, Y. (2017). Evaluating the ecological influence of hydraulic projects: A review of aquatic habitat suitability models. Renewable and Sustainable Energy Reviews, 68, 748-762. google scholar
Toplam 111 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makalesi
Yazarlar

Derya Evrim Koç 0000-0001-5542-6533

H. Nüzhet Dalfes Bu kişi benim 0000-0002-2522-8381

Meral Avcı 0000-0003-4367-3021

Proje Numarası 32478
Yayımlanma Tarihi 8 Temmuz 2022
Gönderilme Tarihi 30 Temmuz 2021
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Koç, D. E., Dalfes, H. N., & Avcı, M. (2022). Anadolu’da Konifer Ağaçların Yayılış Alanlarındaki Değişimler. Journal of Geography(44), 81-95. https://doi.org/10.26650/JGEOG2022-974433
AMA Koç DE, Dalfes HN, Avcı M. Anadolu’da Konifer Ağaçların Yayılış Alanlarındaki Değişimler. Journal of Geography. Temmuz 2022;(44):81-95. doi:10.26650/JGEOG2022-974433
Chicago Koç, Derya Evrim, H. Nüzhet Dalfes, ve Meral Avcı. “Anadolu’da Konifer Ağaçların Yayılış Alanlarındaki Değişimler”. Journal of Geography, sy. 44 (Temmuz 2022): 81-95. https://doi.org/10.26650/JGEOG2022-974433.
EndNote Koç DE, Dalfes HN, Avcı M (01 Temmuz 2022) Anadolu’da Konifer Ağaçların Yayılış Alanlarındaki Değişimler. Journal of Geography 44 81–95.
IEEE D. E. Koç, H. N. Dalfes, ve M. Avcı, “Anadolu’da Konifer Ağaçların Yayılış Alanlarındaki Değişimler”, Journal of Geography, sy. 44, ss. 81–95, Temmuz 2022, doi: 10.26650/JGEOG2022-974433.
ISNAD Koç, Derya Evrim vd. “Anadolu’da Konifer Ağaçların Yayılış Alanlarındaki Değişimler”. Journal of Geography 44 (Temmuz 2022), 81-95. https://doi.org/10.26650/JGEOG2022-974433.
JAMA Koç DE, Dalfes HN, Avcı M. Anadolu’da Konifer Ağaçların Yayılış Alanlarındaki Değişimler. Journal of Geography. 2022;:81–95.
MLA Koç, Derya Evrim vd. “Anadolu’da Konifer Ağaçların Yayılış Alanlarındaki Değişimler”. Journal of Geography, sy. 44, 2022, ss. 81-95, doi:10.26650/JGEOG2022-974433.
Vancouver Koç DE, Dalfes HN, Avcı M. Anadolu’da Konifer Ağaçların Yayılış Alanlarındaki Değişimler. Journal of Geography. 2022(44):81-95.