Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, Cilt: 80 Sayı: 2, 145 - 153, 17.12.2021

Öz

Destekleyen Kurum

İstanbul Üniversitesi Bilimsel Araştırmalar Projeleri

Proje Numarası

22859

Teşekkür

Makalenin oluşturulmasındaki faydalı tartışmaları ve değerli görüşleri için Prof. Dr. Hülya Yılmaz Aydoğan ve Prof. Dr. Oğuz Öztürk'e, kütle spektrometresi deneylerinde verdiği destek için ise Emel Akgün'e teşekkür ederiz.

Kaynakça

  • 1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71: 209-49.
  • 2. Rodríguez-García C, Sánchez-Quesada C, J Gaforio J. Dietary Flavonoids as Cancer Chemopreventive Agents: An Updated Review of Human Studies. Antioxidants 2019; 8(5): 137.
  • 3. Toreti VC, Sato HH, Pastore GM, Park YK, Recent progress of propolis for its biological and chemical compositions and its botanical origin, Evid Based Complement Alternat Med 2013; 697390.
  • 4. Banskota AH, Tezuka Y, Kadota S. Recent progress in pharmacological research of propolis. Phytother Res 2001; 15(7): 561-71.
  • 5. Peeters PH, Keinan-Boker L, van der Schouw YT, Grobbee DE. Phytoestrogens and breast cancer risk: Review of the epidemiological evidence. Breast Cancer Res Treat 2003; 77: 171-83.
  • 6. Lim DW, Giannakeas V, Narod SA. Survival Differences in Chinese Versus White Women With Breast Cancer in the United States: A SEER-Based Analysis. JCO Glob Oncol 2020; 6: 1582-92.
  • 7. Rupasinghe HP, Ronalds CM, Rathgeber B, Robinson RA. Absorption and tissue distribution of dietary quercetin and quercetin glycosides of apple skin in broiler chickens. J Sci Food Agric 2010; 90(7): 1172-8.
  • 8. Gonzales GB, Smagghe G, Grootaert C, Zotti M, Raes K, Van Camp J. Flavonoid interactions during digestion, absorption, distribution and metabolism: a sequential structure-activity/property relationship- based approach in the study of bioavailability and bioactivity. Drug Metab Rev 2015; 47(2): 175-90.
  • 9. Seyhan MF, Yılmaz E, Timirci-Kahraman Ö, Saygılı N, Kısakesen Hİ, Gazioğlu S, et al. Different propolis samples, phenolic content, and breast cancer cell lines: Variable cytotoxicity ranging from ineffective to potent. IUBMB Life 2019; 71(5): 619-31.
  • 10. Bonofiglio D, Giordano C, De Amicis F, Lanzino M, Andò S. Natural Products as Promising Antitumoral Agents in Breast Cancer: Mechanisms of Action and Molecular Targets. Mini Rev Med Chem 2016; 16(8): 596-604.
  • 11. Pal S, Konkimalla VB. Hormetic Potential of Sulforaphane (SFN) in Switching Cells’ Fate Towards Survival or Death. Mini Rev Med Chem 2016; 16(12): 980-95.
  • 12. Son TG, Camandola S, Mattson MP. Hormetic dietary phytochemicals. Neuromolecular Med 2008; 10(4): 236-46.
  • 13. Jodynis-Liebert J, Kujawska M. Biphasic Dose-Response Induced by Phytochemicals: Experimental Evidence. Journal of Clinical Medicine 2020; 9(3): 718.
  • 14. Narter F, Diren A, Kafkasli A, Eronat AP, Seyhan MF, Yilmaz-Aydogan H, et al. Anatolian Propolis Prevents Oxalate Kidney Stones: Dramatic Reduction of Crystal Deposition in Ethylene-Glycol-Induced Rat Model. Rec Nat Prod 2018; 12(5): 445-59.
  • 15. Huang KT, Chen YH, Walker AM. Inaccuracies in MTS assays: major distorting effects of medium, serum albumin, and fatty acids. Biotechniques 2004 Sep; 37(3): 406, 408, 410-2.
  • 16. Wiśniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Methods 2009; 6(5): 359-62.
  • 17. Akgun E, Tuzuner MB, Sahin B, Kilercik M, Kulah C, Cakiroglu HN, et al. Proteins associated with neutrophil degranulation are upregulated in nasopharyngeal swabs from SARS-CoV-2 patients. PLoS One 2020; 15(10): e0240012
  • 18. Carbon S, Ireland A, Mungall CJ, Shu S, Marshall B, Lewis S, AmiGO Hub; Web Presence Working Group. AmiGO: online access to ontology and annotation data. Bioinformatics 2009; 25(2): 288-9.
  • 19. Batra P, Sharma AK. Anti-cancer potential of flavonoids: recent trends and future perspectives. 3 Biotech 2013; 3(6): 439-59.
  • 20. Coller HA. Is cancer a metabolic disease? Am J Pathol 2014; 184(1): 4-17.
  • 21. Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism. Cell Metab 2016; 23(1): 27-47.
  • 22. Liberti MV, Locasale JW. The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci 2016; 41(3): 211-8.
  • 23. Richardson AD, Yang C, Osterman A, Smith JW. Central carbon metabolism in the progression of mammary carcinoma. Breast Cancer Res Treat 2008; 110(2): 297-307.
  • 24. Samec M, Liskova A, Koklesova L, Samuel SM, Zhai K, Buhrmann C, et al. Flavonoids against the Warburg phenotype-concepts of predictive, preventive and personalised medicine to cut the Gordian knot of cancer cell metabolism. EPMA J 2020; 11(3): 377-98.
  • 25. Zang HY, Gong LG, Li SY, Hao JG. Inhibition of α-enolase affects the biological activity of breast cancer cells by attenuating PI3K/Akt signaling pathway. Eur Rev Med Pharmacol Sci 2020; 24(1): 249-57.
  • 26. Locasale JW. Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev Cancer 2013; 13: 572-83.
  • 27. Possemato R, Marks KM, Shaul YD, Pacold ME, Kim D, Birsoy K, et al. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 2011; 476(7360): 346-50.
  • 28. Liu C, Wang L, Liu X, Tan Y, Tao L, Xiao Y, et al. Cytoplasmic SHMT2 drives the progression and metastasis of colorectal cancer by inhibiting β-catenin degradation. Theranostics 2021; 11(6): 2966-86.
  • 29. Maniatis T, Reed R. An extensive network of coupling among gene expression machines. Nature 2002; 416: 499-506.
  • 30. Millevoi S, Vagner S. Molecular mechanisms of eukaryotic pre-mRNA 3’ end processing regulation. Nucleic Acids Res 2009; 38: 2757- 74.
  • 31. Orphanides G, Reinberg D. A unified theory of gene expression. Cell 2002; 108: 439-51.
  • 32. Scotti MM, Swanson MS. RNA mis-splicing in disease. Nat Rev Genet 2016; 17(1): 19-32.
  • 33. Kurata M, Fujiwara N, Fujita KI, Yamanaka Y, Seno S, Kobayashi H, et al. Food-Derived Compounds Apigenin and Luteolin Modulate mRNA Splicing of Introns with Weak Splice Sites. iScience 2019; 22: 336-52.
  • 34. Geuens T, Bouhy D, Timmerman V. The hnRNP family: insights into their role in health and disease. Hum Genet 2016; 135(8): 851-67.
  • 35. Silipo M, Gautrey H, Tyson-Capper A. Deregulation of splicing factors and breast cancer development. J Mol Cell Biol 2015; 7(5): 388- 401.
  • 36. Calderwood SK, Gong J. Heat Shock Proteins Promote Cancer: It’s a Protection Racket. Trends Biochem Sci 2016; 41(4): 311-23.
  • 37. Hosokawa N, Hirayoshi K, Nakai A, Hosokawa Y, Marui N, Yoshida M, et al. Flavonoids inhibit the expression of heat shock proteins. Cell Struct Funct 1990; 15(6): 393-401.
  • 38. Wadhwa R, Yaguchi T, Hasan MK, Mitsui Y, Reddel RR, Kaul SC. Hsp70 family member, mot-2/mthsp70/GRP75, binds to the cytoplasmic sequestration domain of the p53 protein. Exp Cell Res 2002; 274(2): 246-53.
  • 39. Wadhwa R, Takano S, Kaur K, Deocaris CC, Pereira-Smith OM, Reddel RR, et al. Upregulation of mortalin/mthsp70/Grp75 contributes to human carcinogenesis. Int J Cancer 2006; 118(12): 2973-80.
  • 40. Na Y, Kaul SC, Ryu J, Lee JS, Ahn HM, Kaul Z et al. Stress chaperone mortalin contributes to epithelial-mesenchymal transition and cancer metastasis. Cancer Res 2016; 76(9): 2754-65.
  • 41. Zhang R, Meng Z, Wu X, Zhang M, Zhang S, Jin T. Mortalin promotes breast cancer malignancy. Exp Mol Pathol 2021;118:104593.
  • 42. Huang TC, Chang HY, Hsu CH, Kuo WH, Chang KJ, Juan HF. Targeting therapy for breast carcinoma by ATP synthase inhibitor aurovertin B. J Proteome Res 2008; 7: 1433-44.
  • 43. Pan J, Sun LC, Tao YF, Zhou Z, Du XL, Peng L, et al. ATP synthase ecto-alpha subunit: a novel therapeutic target for breast cancer. J Transl Med 2011; 9: 211.
  • 44. Isidoro A, Casado E, Redondo A, Acebo P, Espinosa E, Alonso AM, et al. Breast carcinomas fulfill the Warburg hypothesis and provide metabolic markers of cancer prognosis. Carcinogenesis 2005; 26: 2095-104.
  • 45. Willers IM, Cuezva JM. Post-transcriptional regulation of the mitochondrial H(+)-ATP synthase: a key regulator of the metabolic phenotype in cancer. Biochim Biophys Acta 2011; 1807: 543-51.
  • 46. Cuezva JM, Krajewska M, de Heredia ML, Krajewski S, Santamaría G, Kim H, et al. The bioenergetic signature of cancer: a marker of tumor progression. Cancer Res 2002; 62: 6674-81.
  • 47. Zheng SQ, Li YX, Zhang Y, Li X, Tang H. MiR-101 regulates HSV-1 replication by targeting ATP5B. Antiviral Res 2011; 89: 219-26.
  • 48. Bilanges B, Stokoe D. Mechanism of translational deregulation in human tumors and therapeutic intervention strategies. Oncogene 2007; 26: 5973-90.
  • 49. Hassan MK, Kumar D, Naik M, Dixit M. The expression profile and prognostic significance of eukaryotic translation elongation factors in different cancers. PLoS One 2018; 13(1): e0191377.
  • 50. Meric-Bernstam F, Chen H, Akcakanat A, Do KA, Lluch A, Hennessy BT, Hortobagyi GN, Mills GB, et al. Aberrations in translational regulation are associated with poor prognosis in hormone receptor- positive breast cancer. Breast Cancer Res 2012; 14: R138.
  • 51. Yao N, Chen CY, Wu CY, Motonishi K, Kung HJ, Lam KS. Novel flavonoids with antiproliferative activities against breast cancer cells. J Med Chem 2011; 54(13): 4339-49.
  • 52. Xu L, Wang L, Jiang C, Zhu Q, Chen R, Wang J, et al. Biological effect of ribosomal protein L32 on human breast cancer cell behavior. Mol Med Rep 2020; 22(3): 2478-86.

Proteomic Analysis Revealed Underlying Biological Pathways Associated with Hormetic Response of Hormone- Positive Breast Cancer Cell Line Exposed to Low-Dose Flavonoid Mixture

Yıl 2021, Cilt: 80 Sayı: 2, 145 - 153, 17.12.2021

Öz

Objective: A considerable level of evidence has accumulated about the breast cancer risk-reducing effect of consuming specific flavonoids, through the increasing amount of research and epidemiologic studies. Different flavonoids may have different cellular bioavailability and favor, i.e., the occurrence of a hormetic effect, thus it is important to evaluate breast cancer cells’ response to different doses of flavonoids. This study aims to investigate the alterations of the biological pathways in a hormone-positive (HR+) breast cancer cell line as a resemblance for the most common breast cancer subtype, related to the low-dose exposure of the flavonoids.

Materials and Methods: Different levels of doses were applied to MCF-7 breast cancer cells. In order to determine cellular proliferation, WST-1 analysis was conducted. The highest proliferation was observed with cell lines exposed to a low-dose flavonoid mixture and these were selected for further analysis. Intracellular protein expression were investigated by peptide analysis on a nano LC-MS/MS platform. A protein-protein interaction network and pathway analysis were conducted for the proteins expressed differently between the groups.

Results: A total of 214 proteins were identified and 36 proteins with significant alterations (≥1.2-fold change, p≤0.05) were detected. Significant changes were observed in the pathways related to carbon metabolism, amino acid biosynthesis, splicing mechanism, mitochondrial protein import and translation elongation pathways.

Conclusion: Our study demonstrated that flavonoids can have a hormetic effect which can initially alter metabolic pathways vital for cell proliferation and survival. These pathways may include potential targets for enhancing the anticancer activity of the flavonoids.

Proje Numarası

22859

Kaynakça

  • 1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71: 209-49.
  • 2. Rodríguez-García C, Sánchez-Quesada C, J Gaforio J. Dietary Flavonoids as Cancer Chemopreventive Agents: An Updated Review of Human Studies. Antioxidants 2019; 8(5): 137.
  • 3. Toreti VC, Sato HH, Pastore GM, Park YK, Recent progress of propolis for its biological and chemical compositions and its botanical origin, Evid Based Complement Alternat Med 2013; 697390.
  • 4. Banskota AH, Tezuka Y, Kadota S. Recent progress in pharmacological research of propolis. Phytother Res 2001; 15(7): 561-71.
  • 5. Peeters PH, Keinan-Boker L, van der Schouw YT, Grobbee DE. Phytoestrogens and breast cancer risk: Review of the epidemiological evidence. Breast Cancer Res Treat 2003; 77: 171-83.
  • 6. Lim DW, Giannakeas V, Narod SA. Survival Differences in Chinese Versus White Women With Breast Cancer in the United States: A SEER-Based Analysis. JCO Glob Oncol 2020; 6: 1582-92.
  • 7. Rupasinghe HP, Ronalds CM, Rathgeber B, Robinson RA. Absorption and tissue distribution of dietary quercetin and quercetin glycosides of apple skin in broiler chickens. J Sci Food Agric 2010; 90(7): 1172-8.
  • 8. Gonzales GB, Smagghe G, Grootaert C, Zotti M, Raes K, Van Camp J. Flavonoid interactions during digestion, absorption, distribution and metabolism: a sequential structure-activity/property relationship- based approach in the study of bioavailability and bioactivity. Drug Metab Rev 2015; 47(2): 175-90.
  • 9. Seyhan MF, Yılmaz E, Timirci-Kahraman Ö, Saygılı N, Kısakesen Hİ, Gazioğlu S, et al. Different propolis samples, phenolic content, and breast cancer cell lines: Variable cytotoxicity ranging from ineffective to potent. IUBMB Life 2019; 71(5): 619-31.
  • 10. Bonofiglio D, Giordano C, De Amicis F, Lanzino M, Andò S. Natural Products as Promising Antitumoral Agents in Breast Cancer: Mechanisms of Action and Molecular Targets. Mini Rev Med Chem 2016; 16(8): 596-604.
  • 11. Pal S, Konkimalla VB. Hormetic Potential of Sulforaphane (SFN) in Switching Cells’ Fate Towards Survival or Death. Mini Rev Med Chem 2016; 16(12): 980-95.
  • 12. Son TG, Camandola S, Mattson MP. Hormetic dietary phytochemicals. Neuromolecular Med 2008; 10(4): 236-46.
  • 13. Jodynis-Liebert J, Kujawska M. Biphasic Dose-Response Induced by Phytochemicals: Experimental Evidence. Journal of Clinical Medicine 2020; 9(3): 718.
  • 14. Narter F, Diren A, Kafkasli A, Eronat AP, Seyhan MF, Yilmaz-Aydogan H, et al. Anatolian Propolis Prevents Oxalate Kidney Stones: Dramatic Reduction of Crystal Deposition in Ethylene-Glycol-Induced Rat Model. Rec Nat Prod 2018; 12(5): 445-59.
  • 15. Huang KT, Chen YH, Walker AM. Inaccuracies in MTS assays: major distorting effects of medium, serum albumin, and fatty acids. Biotechniques 2004 Sep; 37(3): 406, 408, 410-2.
  • 16. Wiśniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Methods 2009; 6(5): 359-62.
  • 17. Akgun E, Tuzuner MB, Sahin B, Kilercik M, Kulah C, Cakiroglu HN, et al. Proteins associated with neutrophil degranulation are upregulated in nasopharyngeal swabs from SARS-CoV-2 patients. PLoS One 2020; 15(10): e0240012
  • 18. Carbon S, Ireland A, Mungall CJ, Shu S, Marshall B, Lewis S, AmiGO Hub; Web Presence Working Group. AmiGO: online access to ontology and annotation data. Bioinformatics 2009; 25(2): 288-9.
  • 19. Batra P, Sharma AK. Anti-cancer potential of flavonoids: recent trends and future perspectives. 3 Biotech 2013; 3(6): 439-59.
  • 20. Coller HA. Is cancer a metabolic disease? Am J Pathol 2014; 184(1): 4-17.
  • 21. Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism. Cell Metab 2016; 23(1): 27-47.
  • 22. Liberti MV, Locasale JW. The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci 2016; 41(3): 211-8.
  • 23. Richardson AD, Yang C, Osterman A, Smith JW. Central carbon metabolism in the progression of mammary carcinoma. Breast Cancer Res Treat 2008; 110(2): 297-307.
  • 24. Samec M, Liskova A, Koklesova L, Samuel SM, Zhai K, Buhrmann C, et al. Flavonoids against the Warburg phenotype-concepts of predictive, preventive and personalised medicine to cut the Gordian knot of cancer cell metabolism. EPMA J 2020; 11(3): 377-98.
  • 25. Zang HY, Gong LG, Li SY, Hao JG. Inhibition of α-enolase affects the biological activity of breast cancer cells by attenuating PI3K/Akt signaling pathway. Eur Rev Med Pharmacol Sci 2020; 24(1): 249-57.
  • 26. Locasale JW. Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev Cancer 2013; 13: 572-83.
  • 27. Possemato R, Marks KM, Shaul YD, Pacold ME, Kim D, Birsoy K, et al. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 2011; 476(7360): 346-50.
  • 28. Liu C, Wang L, Liu X, Tan Y, Tao L, Xiao Y, et al. Cytoplasmic SHMT2 drives the progression and metastasis of colorectal cancer by inhibiting β-catenin degradation. Theranostics 2021; 11(6): 2966-86.
  • 29. Maniatis T, Reed R. An extensive network of coupling among gene expression machines. Nature 2002; 416: 499-506.
  • 30. Millevoi S, Vagner S. Molecular mechanisms of eukaryotic pre-mRNA 3’ end processing regulation. Nucleic Acids Res 2009; 38: 2757- 74.
  • 31. Orphanides G, Reinberg D. A unified theory of gene expression. Cell 2002; 108: 439-51.
  • 32. Scotti MM, Swanson MS. RNA mis-splicing in disease. Nat Rev Genet 2016; 17(1): 19-32.
  • 33. Kurata M, Fujiwara N, Fujita KI, Yamanaka Y, Seno S, Kobayashi H, et al. Food-Derived Compounds Apigenin and Luteolin Modulate mRNA Splicing of Introns with Weak Splice Sites. iScience 2019; 22: 336-52.
  • 34. Geuens T, Bouhy D, Timmerman V. The hnRNP family: insights into their role in health and disease. Hum Genet 2016; 135(8): 851-67.
  • 35. Silipo M, Gautrey H, Tyson-Capper A. Deregulation of splicing factors and breast cancer development. J Mol Cell Biol 2015; 7(5): 388- 401.
  • 36. Calderwood SK, Gong J. Heat Shock Proteins Promote Cancer: It’s a Protection Racket. Trends Biochem Sci 2016; 41(4): 311-23.
  • 37. Hosokawa N, Hirayoshi K, Nakai A, Hosokawa Y, Marui N, Yoshida M, et al. Flavonoids inhibit the expression of heat shock proteins. Cell Struct Funct 1990; 15(6): 393-401.
  • 38. Wadhwa R, Yaguchi T, Hasan MK, Mitsui Y, Reddel RR, Kaul SC. Hsp70 family member, mot-2/mthsp70/GRP75, binds to the cytoplasmic sequestration domain of the p53 protein. Exp Cell Res 2002; 274(2): 246-53.
  • 39. Wadhwa R, Takano S, Kaur K, Deocaris CC, Pereira-Smith OM, Reddel RR, et al. Upregulation of mortalin/mthsp70/Grp75 contributes to human carcinogenesis. Int J Cancer 2006; 118(12): 2973-80.
  • 40. Na Y, Kaul SC, Ryu J, Lee JS, Ahn HM, Kaul Z et al. Stress chaperone mortalin contributes to epithelial-mesenchymal transition and cancer metastasis. Cancer Res 2016; 76(9): 2754-65.
  • 41. Zhang R, Meng Z, Wu X, Zhang M, Zhang S, Jin T. Mortalin promotes breast cancer malignancy. Exp Mol Pathol 2021;118:104593.
  • 42. Huang TC, Chang HY, Hsu CH, Kuo WH, Chang KJ, Juan HF. Targeting therapy for breast carcinoma by ATP synthase inhibitor aurovertin B. J Proteome Res 2008; 7: 1433-44.
  • 43. Pan J, Sun LC, Tao YF, Zhou Z, Du XL, Peng L, et al. ATP synthase ecto-alpha subunit: a novel therapeutic target for breast cancer. J Transl Med 2011; 9: 211.
  • 44. Isidoro A, Casado E, Redondo A, Acebo P, Espinosa E, Alonso AM, et al. Breast carcinomas fulfill the Warburg hypothesis and provide metabolic markers of cancer prognosis. Carcinogenesis 2005; 26: 2095-104.
  • 45. Willers IM, Cuezva JM. Post-transcriptional regulation of the mitochondrial H(+)-ATP synthase: a key regulator of the metabolic phenotype in cancer. Biochim Biophys Acta 2011; 1807: 543-51.
  • 46. Cuezva JM, Krajewska M, de Heredia ML, Krajewski S, Santamaría G, Kim H, et al. The bioenergetic signature of cancer: a marker of tumor progression. Cancer Res 2002; 62: 6674-81.
  • 47. Zheng SQ, Li YX, Zhang Y, Li X, Tang H. MiR-101 regulates HSV-1 replication by targeting ATP5B. Antiviral Res 2011; 89: 219-26.
  • 48. Bilanges B, Stokoe D. Mechanism of translational deregulation in human tumors and therapeutic intervention strategies. Oncogene 2007; 26: 5973-90.
  • 49. Hassan MK, Kumar D, Naik M, Dixit M. The expression profile and prognostic significance of eukaryotic translation elongation factors in different cancers. PLoS One 2018; 13(1): e0191377.
  • 50. Meric-Bernstam F, Chen H, Akcakanat A, Do KA, Lluch A, Hennessy BT, Hortobagyi GN, Mills GB, et al. Aberrations in translational regulation are associated with poor prognosis in hormone receptor- positive breast cancer. Breast Cancer Res 2012; 14: R138.
  • 51. Yao N, Chen CY, Wu CY, Motonishi K, Kung HJ, Lam KS. Novel flavonoids with antiproliferative activities against breast cancer cells. J Med Chem 2011; 54(13): 4339-49.
  • 52. Xu L, Wang L, Jiang C, Zhu Q, Chen R, Wang J, et al. Biological effect of ribosomal protein L32 on human breast cancer cell behavior. Mol Med Rep 2020; 22(3): 2478-86.
Toplam 52 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makaleleri
Yazarlar

Mete Bora Tüzüner 0000-0001-8924-4850

Ayşe Begüm Ceviz 0000-0002-3635-8421

Proje Numarası 22859
Yayımlanma Tarihi 17 Aralık 2021
Gönderilme Tarihi 2 Kasım 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 80 Sayı: 2

Kaynak Göster

AMA Tüzüner MB, Ceviz AB. Proteomic Analysis Revealed Underlying Biological Pathways Associated with Hormetic Response of Hormone- Positive Breast Cancer Cell Line Exposed to Low-Dose Flavonoid Mixture. Eur J Biol. Aralık 2021;80(2):145-153.