Araştırma Makalesi
BibTex RIS Kaynak Göster

İMKB-50’de yer alan şirketlerin yönetim kurulu yapılanmaları

Yıl 2010, Cilt: 39 Sayı: 2, 258 - 275, 02.12.2009

Öz

Bu araştırmada, 2009 yılının üçüncü çeyreğinde İMKB-50 endeksinde yer alan şirketlerin yönetim kurulu yapılanmaları incelenmiştir. Gerekli bilgiler için şirketlere ait internet sitelerinden toplanmış, ulaşılan veriler tanımlayıcı analizler aracılığıyla anlamlandırılmıştır. Şirketlerde yönetim kurulu üye sayılarının düşük olduğu, yönetim kurulu başkanı ve icra kurulu başkanının farklı kişiler olduğu, yönetim kurullarında icrada görevli olmayan üye sayısının yüksek olduğu, bağımsız üye sayısının yeterli olmadığı, yönetim kurulu alt komitelerinin yaygın olmadığı, komite başkanlarının önemli oranda bağımsız olmadığı, komite üyelerinin çoğunluğunun icrada görevli olduğu ve yönetim kurulu üyelerinin genellikle birden fazla komitede görev aldığı görülmüştür. 

Kaynakça

  • Z. Akal, İşletmelerde Performans Ölçüm ve Denetimi Çok Yönlü Performans Göstergeleri, MPM Yayınları, No.473, 2. Basım, Ankara, 2002.
  • İstanbul Sanayi Odası, Türkiye’nin 500 Büyük Sanayi Kuruluşu İçinde Otomotiv Sanayi, Rapor 2009/7, 2009.
  • İstanbul Sanayi Odası, Türkiye’nin 500 Büyük Sanayi Kuruluşu İçinde Otomotiv Sanayi, Rapor 2008/4, 2008.
  • E. Deliktaş, Türkiye Özel Sektör İmalat Sanayinda Etkinlik ve Toplam Faktör Verimliliği Analizi. ODTÜ Gelişme Dergisi. 29, 247–284 (2002).
  • C. Yılmaz, v.d., Seçilmiş İşletmelerin Toplam Etkinliklerinin Veri Zarflama Yöntemi İle Ölçülmesi. Manas Üniversitesi Sosyal Bilimler Dergisi, Kırgızistan Türkiye Manas Üniversitesi Yayınları: 20, Süreli Yayınlar Dizisi: 6, Sayı 4, Bişkek, 174–183 (2002). [6] F. Bakırcı, Sektörel Bazda Bir Etkinlik Ölçümü: VZA ile Bir Analiz. Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, 20 (2), 199–217 (2006).
  • A. Yıldız, Otomotiv Sektörü Performansının Değerlendirmesi. Muğla Üniversitesi Sosyal Bilimler Enstitüsü Dergisi (İlke), Sayı 16, (2006).
  • O. Çoban, Türk Otomotiv Sanayiinde Endüstriyel Verimlilik ve Etkinlik. Erciyes Üniversitesi, İ.İ.B.F. Dergisi, 29, Temmuz-Aralık, (2007).
  • T.Y. Ayan, S. Perçin, Measuring Efficiency of Turkish Automtive Firms with the Fuzzy DEA Model. Hacettepe Üniversitesi, İ.İ.B.F. Dergisi, 26, 1, 99–119 (2008).
  • A.İ. Özdemir, R. Düzgün, Türkiye’deki Otomotiv Firmalarının Sermaye Yapısına Göre Etkinlik Analizi. Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, 23, 1, 147– 164 (2009).
  • W.W. Cooper, et al., Using DEA to Improve the Management of Congestion in Chinese Industries (1981–1997). Socio-Economic Planning Science, 35, 4, 227–242 (2001).
  • M.B. Lieberman, R. Dhawan, Assessing the Resource Base of Japanese and U.S. Auto Producers: A Stochastic Frontier Production Function Approach. Management Science, 51, 7, 1060–1075 (2005).
  • A. Karaduman, Data Envelopment Analysis and Malmquist Total Factor Productivity (TFP) Index: An Application to Turkish Automotive Industry. Y.L. Tezi, ODTÜ, Fen Bilimleri Enst., 2006.
  • B.C. Xie, J.X. Wang, DEA Malmquist Productivity Measure with an Application to Special Automobile Industry, Service Systems and Service Management. ICSSSM’09,6 th International Conference on, (2009).
  • G.R. Eslami, et.al., Efficiency Measurement of Multi-Component Decision Making Units Using Data Enveleopment Analysis. Applied Matehemetical Sciences, 3, 52, 2575–2595 (2009).
  • Ö. Yaylacı, An Empirical Analysis of Efficiency And Productivity Change in the Global Automotive Industry: A Malmquist Productivity Index Approach. Y.L.Tezi, Bilkent Üniversitesi, Sosyal Bilimler Enst., 2009.
  • K. Yalçıner, et al., Finansal Oranlarla Hisse Senedi Getirileri Arasındaki İlişki. MUFAD, 3, 27 (2005).
  • S. Cingi, Ş. A. Tarım, Türk Banka Sisteminde Performans Ölçümü: DEA-Malmquist TFP Endeksi Uygulaması. Türkiye Bankalar Birliği, Araştırma Tebliğleri Serisi, Sayı: 2000 – 01, 1–34 (2000).
  • R. Kök, et.al., Radikal ve Adımsal Teknolojiler İçerikli Endüstrilerde Bilgi Ekonomisi: Türkiye Endüstri İçi Ticaret Örneği, 6.Uluslararası Bilgi, Ekonomi ve Yönetim Kongresi, İstanbul, (2007). [20]
  • R. Färe, et al., Productiviy Growth, Technical Progress, and Efficiency Change in Industrialized Countries. The American Review, 84, 1, 66–83 (1994).
  • A.N. Rezitis, Productivity Growth in the Grek Banking Industry: A Nonparametric Approach. Journal of Applied Economics, IX, 1, 119–138 (2006).
  • R.Kök, N. Şimşek, Endüstri-içi Dış Ticaret, Patentler ve Uluslar arası Teknolojik Yayılma. UEK-TEK, Uluslar arası Ekonomi Konferansı, Türkiye Ekonomi Kurumu, Ankara, (2006).
  • I. Herrero, S. Pascoe, Analysing the effect of technical change on individual outputs using modified quasi-Malmquist indexes. Journal of the Operational Research Society, 55, 1081-1089 (2004).
  • A.C. Worthington, Technological Change in Australian Building Societies. Abacus, 36, 2, 180-197 (2000).
  • M. Boitumelo, et al., Identifying productivity change in Botswana’s financial institutions: an application of Malmquist productivity indices. University of Wollongong, Economics Working Paper Series, (2008).
  • L. Orea, A Parametric Decomposition of a Generalized Malmquist-Type Productivity Index. Journal of Productivity Analysis, 18, 5-22 (2002).
  • X. Xue, et al., Measuring the Productivity of the Construction Industry in China by Using DEA-Based Malmquist Productivity Indices. Journal of Construction Engineering & Management, 134, 1, 64-71 (2008).
  • A. Tarım, Veri Zarflama Analizi Matematiksel, Programlama Tabanlı Göreli Etkinlik Ölçümü Yaklaşımı, Sayıştay Yayın İşleri Müdürlüğü, 1, 2001.
  • P. Chandra, et.al., Using DEA to Evaluate 29 Canadian Textile Companies- Considering Returns to Scale. International of Production Economies, 54, 129-141 (1998).
  • M.A. Shammari, Optimization Modeling for Estimating and Enhancing Relative Efficiency with Application to Industrial Companies. European Journal of Operational Research, 115, 488-496 (1999).
  • J. Zhu, Multi-factor performance measure model with an application to Fortune 500 companies. European Journal of Operational Research, 123, 105–124 (2000).
  • A. Ulucan, İSO 500 Şirketlerinin Etkinliklerinin Ölçülmesinde Veri Zarflama Analizi Yaklaşımı: Farklı Girdi Çıktı Bileşenleri ve Ölçeğe Göre Getiri Yaklaşımları ile Değerlendirmeler. Ankara Üniversitesi, Siyasal Bilgiler Fakültesi Dergisi, Cilt 57–2, 185–202 (2002).
  • E. Düzakın, H. Düzakın, Measuring the Performance of Manufacturing Firms with Super Slack-based Model of Data Envelopment Analysis: An Application of 500 Major Industrial Enterprises in Turkey. European Journal of Operational Research, 182, 3, 1412–1432 (2007).
  • F. Lorcu, v.d., Türk Otomotiv Sanayinde Veri Zarflama Tekniği ile Etkinlik Değerlendirmesi, YA/EM 27. Ulusal Kongresi Bildiriler Kitabı, 594–600 (2007).
  • A. Yalama, M. Sayım, Veri Zarflama Analizi İle İmalat Sektörünün Performans Değerlendirmesi. Dokuz Eylül Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 23, 1, 89–107 (2008).
  • H. Saranga, The Indian auto component industry-estimation of operational efficiency and its determinants using DEA. European Journal of Operational Research, 196, 707–718 (2009). Invited Paper
  • A new class of information complexity (ICOMP) criteria with an
  • application to customer profiling and segmentation Hamparsum Bozdogan1
  • Department of Statistics, Operations and Management Science
  • The University of Tennessee, Knoxville, TN, U.S.A.
  • H. Bozdogan, Mixture-model cluster analysis using a new informational complexity and model selection criteria. In Multivariate Statistical Modeling, H. Bozdogan (Ed.), Vol. 2, Proceedings of the First US/Japan Conference on the Frontiers of Statistical Modeling: An Informational Approach, Kluwer Academic Publishers, the Netherlands, Dordrecht, 1994, pp.69-113.
  • H. Bozdogan, Akaike's information criterion and recent developments in information complexity. Journal of Mathematical Psychology. 44, 62-91 (2000).
  • H. Bozdogan, Statistical Modeling and Model Evaluation: A New Informational Approach. To appear (2004).
  • H. Bozdogan, Information Complexity and Multivariate Learning in High Dimensions in Data Mining. To appear (2011).
  • H. Akaike, Information theory and an extension of the maximum likelihood principle. In B.N. Petrov and F. Csáki (Eds.), Second international symposium on information theory, AcadémiaiKiadó, Budapest, 267-281 (1973).
  • M.H. van Emden, An Analysis of Complexity. Mathematical Centre Tracts, Amsterdam, 35 (1971).
  • J. Rissanen, Minmax entropy estimation of models for vector processes. In System Identification: R.K. Mehra and D.G. Lainiotis (Eds.), Academic Press, New York, 1976, pp.97-119. [10]
  • H. Bozdogan, Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical extensions. Psychometrika. 52, 3, 345-370 (1987).
  • H. Cramér, Mathematical Methods of Statistics. Princeton University Press, Princeton, NJ, 1946. [12]
  • C.R. Rao, Information and accuracy attainable in the estimation of statistical parameters. Bull. Calcutta Math Soc. 37, 81 (1945).
  • C.R. Rao, Minimum variance and the estimation of several parameters. Proc. Cam. Phil. Soc. 43, 280 (1947). [14]
  • C.R. Rao, Sufficient statistics and minimum variance estimates. Proc. Cam. Phil. Soc. 45, 213 (1948).
  • H. Bozdogan and D.M.A. Haughton, Informational complexity criteria for regression models. Computational Statistics and Data Analysis. 28, 51-76 (1998). [16]
  • H. Bozdogan and M. Ueno, A unified approach to information-theoretic and Bayesian model selection criteria. Invited paper presented in the Technical Session Track C on: Information Theoretic Methods and Bayesian Modeling at the 6th World Meeting of the International Society for Bayesian Analysis (ISBA), May 28-June 1, 2000, Hersonissos-Heraklion, Crete (2000).
  • H. Bozdogan and P. M. Bearse, Subset selection in vector autoregressive models using the genetic algorithm with informational complexity as the fitness function. Systems Analysis, Modeling, Simulation (SAMS) (1998).
  • S. Kullback, Information Theory and Statistics. Dover, New York, 1968.
  • C.J. Harris, An information theoretic approach to estimation. In M. J. Gregson (Ed.), Recent Theoretical Developments in Control, Academic Press, London, 1978, pp.563-590.
  • H. Theil and D.G. Fiebig, Exploiting Continuity: Maximum Entropy Estimation of Continuous Distributions. Ballinger Publishing Company, Cambridge, MA, (1984).
  • S. Kullback, and R. Leibler, On information and sufficiency. Ann. Math. Statist. 22, 79-86 (1951).
  • C.E. Shannon, A mathematical theory of communication. Bell Systems Technology Journal, 27, 1948, pp. 379-423.
  • S. Watanabe, Pattern Recognition: Human and Mechanical. John Wiley and Sons, New York, 1985.
  • J. Rissanen, Stochastic Complexity in Statistical Inquiry. World Scientific Publishing Company, Teaneck, NJ, 1989.
  • R.E. Blahut, Principles and Practice of Information Theory. Addison-Wesley Publishing Company, Reading, MA, 1987.
  • C.R. Rao, Linear Statistical Inference and Its Applications. John Wiley& Sons, New York, 1965, p. 532. [27]
  • S.A. Mulaik, Linear causal modeling with structural equations, CRC Press, A chapman and Hall Book, 2009, p. 368. [28]
  • S.A. Mustonen, measure of total variability in multivariate normal distribution. Comp. Statist. and Data Ana. 23, 321-334 (1997). [29]
  • S.D. Morgera, Information theoretic covariance complexity and its relation to pattern recognition. IEEE Trans. on Syst., Man, and Cybernetics. SMC 15, 608-619 (1985).
  • J.B. Conway, Functions of one complex variable I, Second edition, Springer-Verlag, 1995.
  • L. Ljung and J. Rissanen, On canonical forms, parameter identifiability and the concept of complexity. In Identification and System Parameter Estimation, N. S. Rajbman (Ed.), North-Holland, Amsterdam, 1415-1426 (1978). [32]
  • M. S. Maklad and T.Nichols, A new approach to model structure discrimination. IEEE Trans. on Syst., Man, and Cybernetics. SMC 10, 78-84 (1980).
  • D.S. Poskitt, Precision, Complexity and Bayesian model determination. J. Roy. Statist. Soc. 49, 199-208 (1987).
  • B.R. Frieden, Physics from fisher information, Cambridge University press, 1998.
  • J.Rissanen, Modeling by shortest data description. Automatica, 14, 465-471 (1978). G.Schwarz, Estimating the dimension of a model. Ann. Statist., 6, 461-464 (1978). A.D.R. McQuarie, and C-L. Tsai, Regression and Time Series Model Selection. World Scientific Publishing Company, Singapore, 1998.
  • K.P. Burnham and D. R. Anderson, Model Selection and Inference: A Practical Information-Theoretic Approach. Springer, New York, 1998.
  • D.V. Lindley, On a measure of information provided by an experiment, The Annals of Mathematical Statistics 27, 4, 986-1005 (1956).
  • K. Chaloner and I. Verdinelli, Bayesian experimental design a review. Statistical Science. 10, 3, 273-304 (1995).
  • R.E. Kass, L. Tierney, and J.B. Kadane, The validity of posterior expansions based on Laplace’s method. In: GEISSER, S. et al. (Ed.), Bayesian and likelihood methods in statistics and econometrics: essays in honor of George A. Barnard. Amsterdam: North-Holland, 1990. 473-488, 1990.
  • X. Chen, Model Selection in Nonlinear Regression Analysis. Unpublished Ph.D. Thesis, the University of Tennessee, Knoxville, TN, 1996.
  • K. Takeuchi, Distribution of information statistics and a criterion of model fitting. Suri-Kagaku. Mathematical Sciences. 153, 12-18 (1976).
  • J.R.M. Hosking, Language-multiplier tests of time-series models. Journal of the Royal Statistics Society. Series B, 42, 170-181 (1980).
  • R. Shibata, Statistical aspects of model selection. In J.C. Willems (Ed.), From the data to modeling, Berlin: Springer-Verlag, 1989, pp. 216-240.
  • A. Howe and H. Bozdogan, Regularized SVM classification with information complexity and the genetic algorithm, appear in multivariate high dimensional data mining forthcoming edited book, 2011.
  • V. Vapnik, The nature of statistical learning theory, springer-verlag, New York, 1995.
  • C. Hsu and C. Lin, A comparison of method for multiclass support vector machines. IEEE Transactions on Neural Networks. 13, 2 (2002).
  • F. Camillo, Personal correspondence, 2007.
  • F. Camillo, C. Liberati and K.A. Athappilly, Profiling of customer data base through a sample survey, unpublished report, 2009.
  • E. Wegman, hyperdimensional data analysis using parallel coordinates. Technical Report No.1. George Mason University Center for Computational Statistics (1986).
  • S.H. Baek and H. Bozdogan, Multi-class support vector machine recursive feature elimination using information complexity, working paper (2011).
  • Choosing the stratification boundaries: The elusive optima Jane M. Horgan1 School of Computing
  • Dublin City University, Dublin, Ireland
  • W.G. Cochran, Sampling Techniques, New York: Wiley, 1977.
  • T. Dalenius, and J.L. Hodges, Minimum Variance Stratification. Journal of the American Statistical Association. 88-101 (1959).
  • W.G. Cochran, Comparison of Methods for Determining Stratum Boundaries. Bulletin of the International Statistical Institute. 32, 2, 345-358 (1961).
  • D. Hedlin, A Procedure of Stratification by an Extended Ekman Rule. Journal of Official Statistics. 16, 15-29 (2000).
  • P. Lavallée, and M. Hidiroglou, On the Stratification of Skewed Populations. Survey Methodology. 14, 33-43 (1988).
  • V.K. Sethi, A Note on the Optimum Stratification of Populations for Estimating the Population Means. Australian Journal of Statistics. 5, 20-33 (1963).
  • R. Detlefsen, and L. Veum, Design issues for the Retail Trade Survey in the U.S. Bureau of the Census. Proceedings of the Research Method Section. American Accounting Association, 214-219 (1991).
  • J. Slanta, and T. Krenzke, Applying Lavallée and Hidiroglou Method to obtain Stratification Boundaries for the Census Bureau's Annual Capital Expenditure Survey. Survey Methodology. 22, 65-75 (1996).
  • M. Kozak, Optimal Stratification Using Random Search Method in Agricultural Surveys. Statistics in Transition. 6, 5, 797-806 (2004).
  • J. Neyman, On the Two Different Aspects of the Representative Method: The Method of Stratified Sampling and the Method of Purposive Selection. Journal of the Royal Statistics Society. 97, 558—606 (1934).
  • S. Baillargeon, and L.P. Rivest, Univariate Stratification of Survey Populations, R Package, available on the CRAN website at http://www.r-project.org/. 2010.
  • S. Baillargeon, and L.P. Rivest, A General Algorithm or Univariate Stratification. International Statistical Review. 77, 3, 331-344 (2009).
  • T. Keskinturk, and S. Er, A Genetic Algorithm Approach to Determine Stratum Boundaries and Sample Sizes of Each Stratum in Stratified Sampling. Computational Statistics and Data Analysis. 52, 1, 58-67 (2007).
  • M.G.M. Khan, N. Nand, and N. Ahmad, Determining the Optimum Stratum Boundary Points Using Dynamic Programming. Survey Methodology. 34, 205-214 (2008).
  • J. Brito, et al., An ILS Approach applied to Optimum Stratification Problem, 2009.
  • J. Brito, et al., An Exact Algorithm for the Stratification with Proportional Allocation. Optim Lett. 4, 185-195 (2010).
  • P. Gunning, and J.M. Horgan, A New Algorithm for the Construction of Stratum Boundaries in Skewed Populations. Survey Methodology. 2, 30, 159-166 (2004).
  • J.M. Horgan, Stratification of Skewed Populations: A Review. The International Statistics Review. 74, 67-76 (2006).
  • J.M. Horgan, A List Sequential Sampling Scheme with Applications in Financial Auditing. IMA Journal of Management Mathematics. 14, 1-18 (2003).
  • M. Evans, N.A.J. Hastings, and J.B. Peacock, Statistical Distributions. 3rd Edition, New York: Wiley, 2000.
  • P. Gunning, J.M Horgan, and G. Keogh, Efficient Pareto Stratification. Mathematical Proceedings of the Royal Irish Academy. 106, 2, 131-138 (2006). [22]
  • P. Gunning, and J.M. Horgan, Improving the \LH Algorithm for Stratification of Skewed Populations. Journal of Statistical Computation and Simulation. 4, 77, 277- 291 (2007).
  • P.Gunning, J.M, Horgan, and G. Keogh, An Implementation Strategy for Efficient Convergence of \LH Stratification. Journal of Official Statistics. 213-228 (2008).
  • M. Kozak, and M. Verma, Geometric versus Optimization to Stratification: A Comparison of Efficiency. Survey Methodology. 32, 2, 157-183 (2006).
  • C. Sarndal, B. Swensson, and J. Wretman, Model Assisted Survey Sampling. Springer, 1992.

The board structure of firms listed in ISE-50 index

Yıl 2010, Cilt: 39 Sayı: 2, 258 - 275, 02.12.2009

Öz

In this study, the board of directors structure of the firms listed in ISE-50 index in the 3rd quarter of 2009 is analyzed. Necessary information is gathered from firms’ websites and acquired information is processed and used for cumulative and descriptive statistics. Among the firms included in this study, it has been observed that the number of members in the board of directors was low, board of directors president and CEO were different persons, the number of non-executive members was high, the number of independent members was not sufficient, the presence of committees was not common, the heads of sub-committees were not comparably independent, the majority of the committee members were in fact executive members, and the board of directors members were involved in more than one committee. 

Kaynakça

  • Z. Akal, İşletmelerde Performans Ölçüm ve Denetimi Çok Yönlü Performans Göstergeleri, MPM Yayınları, No.473, 2. Basım, Ankara, 2002.
  • İstanbul Sanayi Odası, Türkiye’nin 500 Büyük Sanayi Kuruluşu İçinde Otomotiv Sanayi, Rapor 2009/7, 2009.
  • İstanbul Sanayi Odası, Türkiye’nin 500 Büyük Sanayi Kuruluşu İçinde Otomotiv Sanayi, Rapor 2008/4, 2008.
  • E. Deliktaş, Türkiye Özel Sektör İmalat Sanayinda Etkinlik ve Toplam Faktör Verimliliği Analizi. ODTÜ Gelişme Dergisi. 29, 247–284 (2002).
  • C. Yılmaz, v.d., Seçilmiş İşletmelerin Toplam Etkinliklerinin Veri Zarflama Yöntemi İle Ölçülmesi. Manas Üniversitesi Sosyal Bilimler Dergisi, Kırgızistan Türkiye Manas Üniversitesi Yayınları: 20, Süreli Yayınlar Dizisi: 6, Sayı 4, Bişkek, 174–183 (2002). [6] F. Bakırcı, Sektörel Bazda Bir Etkinlik Ölçümü: VZA ile Bir Analiz. Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, 20 (2), 199–217 (2006).
  • A. Yıldız, Otomotiv Sektörü Performansının Değerlendirmesi. Muğla Üniversitesi Sosyal Bilimler Enstitüsü Dergisi (İlke), Sayı 16, (2006).
  • O. Çoban, Türk Otomotiv Sanayiinde Endüstriyel Verimlilik ve Etkinlik. Erciyes Üniversitesi, İ.İ.B.F. Dergisi, 29, Temmuz-Aralık, (2007).
  • T.Y. Ayan, S. Perçin, Measuring Efficiency of Turkish Automtive Firms with the Fuzzy DEA Model. Hacettepe Üniversitesi, İ.İ.B.F. Dergisi, 26, 1, 99–119 (2008).
  • A.İ. Özdemir, R. Düzgün, Türkiye’deki Otomotiv Firmalarının Sermaye Yapısına Göre Etkinlik Analizi. Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, 23, 1, 147– 164 (2009).
  • W.W. Cooper, et al., Using DEA to Improve the Management of Congestion in Chinese Industries (1981–1997). Socio-Economic Planning Science, 35, 4, 227–242 (2001).
  • M.B. Lieberman, R. Dhawan, Assessing the Resource Base of Japanese and U.S. Auto Producers: A Stochastic Frontier Production Function Approach. Management Science, 51, 7, 1060–1075 (2005).
  • A. Karaduman, Data Envelopment Analysis and Malmquist Total Factor Productivity (TFP) Index: An Application to Turkish Automotive Industry. Y.L. Tezi, ODTÜ, Fen Bilimleri Enst., 2006.
  • B.C. Xie, J.X. Wang, DEA Malmquist Productivity Measure with an Application to Special Automobile Industry, Service Systems and Service Management. ICSSSM’09,6 th International Conference on, (2009).
  • G.R. Eslami, et.al., Efficiency Measurement of Multi-Component Decision Making Units Using Data Enveleopment Analysis. Applied Matehemetical Sciences, 3, 52, 2575–2595 (2009).
  • Ö. Yaylacı, An Empirical Analysis of Efficiency And Productivity Change in the Global Automotive Industry: A Malmquist Productivity Index Approach. Y.L.Tezi, Bilkent Üniversitesi, Sosyal Bilimler Enst., 2009.
  • K. Yalçıner, et al., Finansal Oranlarla Hisse Senedi Getirileri Arasındaki İlişki. MUFAD, 3, 27 (2005).
  • S. Cingi, Ş. A. Tarım, Türk Banka Sisteminde Performans Ölçümü: DEA-Malmquist TFP Endeksi Uygulaması. Türkiye Bankalar Birliği, Araştırma Tebliğleri Serisi, Sayı: 2000 – 01, 1–34 (2000).
  • R. Kök, et.al., Radikal ve Adımsal Teknolojiler İçerikli Endüstrilerde Bilgi Ekonomisi: Türkiye Endüstri İçi Ticaret Örneği, 6.Uluslararası Bilgi, Ekonomi ve Yönetim Kongresi, İstanbul, (2007). [20]
  • R. Färe, et al., Productiviy Growth, Technical Progress, and Efficiency Change in Industrialized Countries. The American Review, 84, 1, 66–83 (1994).
  • A.N. Rezitis, Productivity Growth in the Grek Banking Industry: A Nonparametric Approach. Journal of Applied Economics, IX, 1, 119–138 (2006).
  • R.Kök, N. Şimşek, Endüstri-içi Dış Ticaret, Patentler ve Uluslar arası Teknolojik Yayılma. UEK-TEK, Uluslar arası Ekonomi Konferansı, Türkiye Ekonomi Kurumu, Ankara, (2006).
  • I. Herrero, S. Pascoe, Analysing the effect of technical change on individual outputs using modified quasi-Malmquist indexes. Journal of the Operational Research Society, 55, 1081-1089 (2004).
  • A.C. Worthington, Technological Change in Australian Building Societies. Abacus, 36, 2, 180-197 (2000).
  • M. Boitumelo, et al., Identifying productivity change in Botswana’s financial institutions: an application of Malmquist productivity indices. University of Wollongong, Economics Working Paper Series, (2008).
  • L. Orea, A Parametric Decomposition of a Generalized Malmquist-Type Productivity Index. Journal of Productivity Analysis, 18, 5-22 (2002).
  • X. Xue, et al., Measuring the Productivity of the Construction Industry in China by Using DEA-Based Malmquist Productivity Indices. Journal of Construction Engineering & Management, 134, 1, 64-71 (2008).
  • A. Tarım, Veri Zarflama Analizi Matematiksel, Programlama Tabanlı Göreli Etkinlik Ölçümü Yaklaşımı, Sayıştay Yayın İşleri Müdürlüğü, 1, 2001.
  • P. Chandra, et.al., Using DEA to Evaluate 29 Canadian Textile Companies- Considering Returns to Scale. International of Production Economies, 54, 129-141 (1998).
  • M.A. Shammari, Optimization Modeling for Estimating and Enhancing Relative Efficiency with Application to Industrial Companies. European Journal of Operational Research, 115, 488-496 (1999).
  • J. Zhu, Multi-factor performance measure model with an application to Fortune 500 companies. European Journal of Operational Research, 123, 105–124 (2000).
  • A. Ulucan, İSO 500 Şirketlerinin Etkinliklerinin Ölçülmesinde Veri Zarflama Analizi Yaklaşımı: Farklı Girdi Çıktı Bileşenleri ve Ölçeğe Göre Getiri Yaklaşımları ile Değerlendirmeler. Ankara Üniversitesi, Siyasal Bilgiler Fakültesi Dergisi, Cilt 57–2, 185–202 (2002).
  • E. Düzakın, H. Düzakın, Measuring the Performance of Manufacturing Firms with Super Slack-based Model of Data Envelopment Analysis: An Application of 500 Major Industrial Enterprises in Turkey. European Journal of Operational Research, 182, 3, 1412–1432 (2007).
  • F. Lorcu, v.d., Türk Otomotiv Sanayinde Veri Zarflama Tekniği ile Etkinlik Değerlendirmesi, YA/EM 27. Ulusal Kongresi Bildiriler Kitabı, 594–600 (2007).
  • A. Yalama, M. Sayım, Veri Zarflama Analizi İle İmalat Sektörünün Performans Değerlendirmesi. Dokuz Eylül Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 23, 1, 89–107 (2008).
  • H. Saranga, The Indian auto component industry-estimation of operational efficiency and its determinants using DEA. European Journal of Operational Research, 196, 707–718 (2009). Invited Paper
  • A new class of information complexity (ICOMP) criteria with an
  • application to customer profiling and segmentation Hamparsum Bozdogan1
  • Department of Statistics, Operations and Management Science
  • The University of Tennessee, Knoxville, TN, U.S.A.
  • H. Bozdogan, Mixture-model cluster analysis using a new informational complexity and model selection criteria. In Multivariate Statistical Modeling, H. Bozdogan (Ed.), Vol. 2, Proceedings of the First US/Japan Conference on the Frontiers of Statistical Modeling: An Informational Approach, Kluwer Academic Publishers, the Netherlands, Dordrecht, 1994, pp.69-113.
  • H. Bozdogan, Akaike's information criterion and recent developments in information complexity. Journal of Mathematical Psychology. 44, 62-91 (2000).
  • H. Bozdogan, Statistical Modeling and Model Evaluation: A New Informational Approach. To appear (2004).
  • H. Bozdogan, Information Complexity and Multivariate Learning in High Dimensions in Data Mining. To appear (2011).
  • H. Akaike, Information theory and an extension of the maximum likelihood principle. In B.N. Petrov and F. Csáki (Eds.), Second international symposium on information theory, AcadémiaiKiadó, Budapest, 267-281 (1973).
  • M.H. van Emden, An Analysis of Complexity. Mathematical Centre Tracts, Amsterdam, 35 (1971).
  • J. Rissanen, Minmax entropy estimation of models for vector processes. In System Identification: R.K. Mehra and D.G. Lainiotis (Eds.), Academic Press, New York, 1976, pp.97-119. [10]
  • H. Bozdogan, Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical extensions. Psychometrika. 52, 3, 345-370 (1987).
  • H. Cramér, Mathematical Methods of Statistics. Princeton University Press, Princeton, NJ, 1946. [12]
  • C.R. Rao, Information and accuracy attainable in the estimation of statistical parameters. Bull. Calcutta Math Soc. 37, 81 (1945).
  • C.R. Rao, Minimum variance and the estimation of several parameters. Proc. Cam. Phil. Soc. 43, 280 (1947). [14]
  • C.R. Rao, Sufficient statistics and minimum variance estimates. Proc. Cam. Phil. Soc. 45, 213 (1948).
  • H. Bozdogan and D.M.A. Haughton, Informational complexity criteria for regression models. Computational Statistics and Data Analysis. 28, 51-76 (1998). [16]
  • H. Bozdogan and M. Ueno, A unified approach to information-theoretic and Bayesian model selection criteria. Invited paper presented in the Technical Session Track C on: Information Theoretic Methods and Bayesian Modeling at the 6th World Meeting of the International Society for Bayesian Analysis (ISBA), May 28-June 1, 2000, Hersonissos-Heraklion, Crete (2000).
  • H. Bozdogan and P. M. Bearse, Subset selection in vector autoregressive models using the genetic algorithm with informational complexity as the fitness function. Systems Analysis, Modeling, Simulation (SAMS) (1998).
  • S. Kullback, Information Theory and Statistics. Dover, New York, 1968.
  • C.J. Harris, An information theoretic approach to estimation. In M. J. Gregson (Ed.), Recent Theoretical Developments in Control, Academic Press, London, 1978, pp.563-590.
  • H. Theil and D.G. Fiebig, Exploiting Continuity: Maximum Entropy Estimation of Continuous Distributions. Ballinger Publishing Company, Cambridge, MA, (1984).
  • S. Kullback, and R. Leibler, On information and sufficiency. Ann. Math. Statist. 22, 79-86 (1951).
  • C.E. Shannon, A mathematical theory of communication. Bell Systems Technology Journal, 27, 1948, pp. 379-423.
  • S. Watanabe, Pattern Recognition: Human and Mechanical. John Wiley and Sons, New York, 1985.
  • J. Rissanen, Stochastic Complexity in Statistical Inquiry. World Scientific Publishing Company, Teaneck, NJ, 1989.
  • R.E. Blahut, Principles and Practice of Information Theory. Addison-Wesley Publishing Company, Reading, MA, 1987.
  • C.R. Rao, Linear Statistical Inference and Its Applications. John Wiley& Sons, New York, 1965, p. 532. [27]
  • S.A. Mulaik, Linear causal modeling with structural equations, CRC Press, A chapman and Hall Book, 2009, p. 368. [28]
  • S.A. Mustonen, measure of total variability in multivariate normal distribution. Comp. Statist. and Data Ana. 23, 321-334 (1997). [29]
  • S.D. Morgera, Information theoretic covariance complexity and its relation to pattern recognition. IEEE Trans. on Syst., Man, and Cybernetics. SMC 15, 608-619 (1985).
  • J.B. Conway, Functions of one complex variable I, Second edition, Springer-Verlag, 1995.
  • L. Ljung and J. Rissanen, On canonical forms, parameter identifiability and the concept of complexity. In Identification and System Parameter Estimation, N. S. Rajbman (Ed.), North-Holland, Amsterdam, 1415-1426 (1978). [32]
  • M. S. Maklad and T.Nichols, A new approach to model structure discrimination. IEEE Trans. on Syst., Man, and Cybernetics. SMC 10, 78-84 (1980).
  • D.S. Poskitt, Precision, Complexity and Bayesian model determination. J. Roy. Statist. Soc. 49, 199-208 (1987).
  • B.R. Frieden, Physics from fisher information, Cambridge University press, 1998.
  • J.Rissanen, Modeling by shortest data description. Automatica, 14, 465-471 (1978). G.Schwarz, Estimating the dimension of a model. Ann. Statist., 6, 461-464 (1978). A.D.R. McQuarie, and C-L. Tsai, Regression and Time Series Model Selection. World Scientific Publishing Company, Singapore, 1998.
  • K.P. Burnham and D. R. Anderson, Model Selection and Inference: A Practical Information-Theoretic Approach. Springer, New York, 1998.
  • D.V. Lindley, On a measure of information provided by an experiment, The Annals of Mathematical Statistics 27, 4, 986-1005 (1956).
  • K. Chaloner and I. Verdinelli, Bayesian experimental design a review. Statistical Science. 10, 3, 273-304 (1995).
  • R.E. Kass, L. Tierney, and J.B. Kadane, The validity of posterior expansions based on Laplace’s method. In: GEISSER, S. et al. (Ed.), Bayesian and likelihood methods in statistics and econometrics: essays in honor of George A. Barnard. Amsterdam: North-Holland, 1990. 473-488, 1990.
  • X. Chen, Model Selection in Nonlinear Regression Analysis. Unpublished Ph.D. Thesis, the University of Tennessee, Knoxville, TN, 1996.
  • K. Takeuchi, Distribution of information statistics and a criterion of model fitting. Suri-Kagaku. Mathematical Sciences. 153, 12-18 (1976).
  • J.R.M. Hosking, Language-multiplier tests of time-series models. Journal of the Royal Statistics Society. Series B, 42, 170-181 (1980).
  • R. Shibata, Statistical aspects of model selection. In J.C. Willems (Ed.), From the data to modeling, Berlin: Springer-Verlag, 1989, pp. 216-240.
  • A. Howe and H. Bozdogan, Regularized SVM classification with information complexity and the genetic algorithm, appear in multivariate high dimensional data mining forthcoming edited book, 2011.
  • V. Vapnik, The nature of statistical learning theory, springer-verlag, New York, 1995.
  • C. Hsu and C. Lin, A comparison of method for multiclass support vector machines. IEEE Transactions on Neural Networks. 13, 2 (2002).
  • F. Camillo, Personal correspondence, 2007.
  • F. Camillo, C. Liberati and K.A. Athappilly, Profiling of customer data base through a sample survey, unpublished report, 2009.
  • E. Wegman, hyperdimensional data analysis using parallel coordinates. Technical Report No.1. George Mason University Center for Computational Statistics (1986).
  • S.H. Baek and H. Bozdogan, Multi-class support vector machine recursive feature elimination using information complexity, working paper (2011).
  • Choosing the stratification boundaries: The elusive optima Jane M. Horgan1 School of Computing
  • Dublin City University, Dublin, Ireland
  • W.G. Cochran, Sampling Techniques, New York: Wiley, 1977.
  • T. Dalenius, and J.L. Hodges, Minimum Variance Stratification. Journal of the American Statistical Association. 88-101 (1959).
  • W.G. Cochran, Comparison of Methods for Determining Stratum Boundaries. Bulletin of the International Statistical Institute. 32, 2, 345-358 (1961).
  • D. Hedlin, A Procedure of Stratification by an Extended Ekman Rule. Journal of Official Statistics. 16, 15-29 (2000).
  • P. Lavallée, and M. Hidiroglou, On the Stratification of Skewed Populations. Survey Methodology. 14, 33-43 (1988).
  • V.K. Sethi, A Note on the Optimum Stratification of Populations for Estimating the Population Means. Australian Journal of Statistics. 5, 20-33 (1963).
  • R. Detlefsen, and L. Veum, Design issues for the Retail Trade Survey in the U.S. Bureau of the Census. Proceedings of the Research Method Section. American Accounting Association, 214-219 (1991).
  • J. Slanta, and T. Krenzke, Applying Lavallée and Hidiroglou Method to obtain Stratification Boundaries for the Census Bureau's Annual Capital Expenditure Survey. Survey Methodology. 22, 65-75 (1996).
  • M. Kozak, Optimal Stratification Using Random Search Method in Agricultural Surveys. Statistics in Transition. 6, 5, 797-806 (2004).
  • J. Neyman, On the Two Different Aspects of the Representative Method: The Method of Stratified Sampling and the Method of Purposive Selection. Journal of the Royal Statistics Society. 97, 558—606 (1934).
  • S. Baillargeon, and L.P. Rivest, Univariate Stratification of Survey Populations, R Package, available on the CRAN website at http://www.r-project.org/. 2010.
  • S. Baillargeon, and L.P. Rivest, A General Algorithm or Univariate Stratification. International Statistical Review. 77, 3, 331-344 (2009).
  • T. Keskinturk, and S. Er, A Genetic Algorithm Approach to Determine Stratum Boundaries and Sample Sizes of Each Stratum in Stratified Sampling. Computational Statistics and Data Analysis. 52, 1, 58-67 (2007).
  • M.G.M. Khan, N. Nand, and N. Ahmad, Determining the Optimum Stratum Boundary Points Using Dynamic Programming. Survey Methodology. 34, 205-214 (2008).
  • J. Brito, et al., An ILS Approach applied to Optimum Stratification Problem, 2009.
  • J. Brito, et al., An Exact Algorithm for the Stratification with Proportional Allocation. Optim Lett. 4, 185-195 (2010).
  • P. Gunning, and J.M. Horgan, A New Algorithm for the Construction of Stratum Boundaries in Skewed Populations. Survey Methodology. 2, 30, 159-166 (2004).
  • J.M. Horgan, Stratification of Skewed Populations: A Review. The International Statistics Review. 74, 67-76 (2006).
  • J.M. Horgan, A List Sequential Sampling Scheme with Applications in Financial Auditing. IMA Journal of Management Mathematics. 14, 1-18 (2003).
  • M. Evans, N.A.J. Hastings, and J.B. Peacock, Statistical Distributions. 3rd Edition, New York: Wiley, 2000.
  • P. Gunning, J.M Horgan, and G. Keogh, Efficient Pareto Stratification. Mathematical Proceedings of the Royal Irish Academy. 106, 2, 131-138 (2006). [22]
  • P. Gunning, and J.M. Horgan, Improving the \LH Algorithm for Stratification of Skewed Populations. Journal of Statistical Computation and Simulation. 4, 77, 277- 291 (2007).
  • P.Gunning, J.M, Horgan, and G. Keogh, An Implementation Strategy for Efficient Convergence of \LH Stratification. Journal of Official Statistics. 213-228 (2008).
  • M. Kozak, and M. Verma, Geometric versus Optimization to Stratification: A Comparison of Efficiency. Survey Methodology. 32, 2, 157-183 (2006).
  • C. Sarndal, B. Swensson, and J. Wretman, Model Assisted Survey Sampling. Springer, 1992.
Toplam 114 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Mine Fındıklı

Cem Arslantaş

Yayımlanma Tarihi 2 Aralık 2009
Yayımlandığı Sayı Yıl 2010 Cilt: 39 Sayı: 2

Kaynak Göster

APA Fındıklı, M., & Arslantaş, C. (2009). İMKB-50’de yer alan şirketlerin yönetim kurulu yapılanmaları. İstanbul Üniversitesi İşletme Fakültesi Dergisi, 39(2), 258-275.
AMA Fındıklı M, Arslantaş C. İMKB-50’de yer alan şirketlerin yönetim kurulu yapılanmaları. İstanbul Üniversitesi İşletme Fakültesi Dergisi. Aralık 2009;39(2):258-275.
Chicago Fındıklı, Mine, ve Cem Arslantaş. “İMKB-50’de Yer Alan şirketlerin yönetim Kurulu yapılanmaları”. İstanbul Üniversitesi İşletme Fakültesi Dergisi 39, sy. 2 (Aralık 2009): 258-75.
EndNote Fındıklı M, Arslantaş C (01 Aralık 2009) İMKB-50’de yer alan şirketlerin yönetim kurulu yapılanmaları. İstanbul Üniversitesi İşletme Fakültesi Dergisi 39 2 258–275.
IEEE M. Fındıklı ve C. Arslantaş, “İMKB-50’de yer alan şirketlerin yönetim kurulu yapılanmaları”, İstanbul Üniversitesi İşletme Fakültesi Dergisi, c. 39, sy. 2, ss. 258–275, 2009.
ISNAD Fındıklı, Mine - Arslantaş, Cem. “İMKB-50’de Yer Alan şirketlerin yönetim Kurulu yapılanmaları”. İstanbul Üniversitesi İşletme Fakültesi Dergisi 39/2 (Aralık 2009), 258-275.
JAMA Fındıklı M, Arslantaş C. İMKB-50’de yer alan şirketlerin yönetim kurulu yapılanmaları. İstanbul Üniversitesi İşletme Fakültesi Dergisi. 2009;39:258–275.
MLA Fındıklı, Mine ve Cem Arslantaş. “İMKB-50’de Yer Alan şirketlerin yönetim Kurulu yapılanmaları”. İstanbul Üniversitesi İşletme Fakültesi Dergisi, c. 39, sy. 2, 2009, ss. 258-75.
Vancouver Fındıklı M, Arslantaş C. İMKB-50’de yer alan şirketlerin yönetim kurulu yapılanmaları. İstanbul Üniversitesi İşletme Fakültesi Dergisi. 2009;39(2):258-75.