Research Article
BibTex RIS Cite

Effect of Different Oryzalin and Colchicine Applications in Liquid Medium on Tetraploid Plant Production in Eggplant

Year 2017, Volume: 11 Issue: 3, 42 - 47, 31.12.2017

Abstract

The objective of this study is to investigate the effects of different concentrations of oryzalin and colchicine that were applied in the in vitro liquid medium on the tetraploid plant production in eggplant cultivars, Karnaz F1 and Faselis F1. In the study, 2.5 or 3.75 mM of colchicine for 8, 16 or 32 hours; and 28.8 or 43.2 μM of oryzalin for 12, 24 or 36 hours were applied to the shoot tips and stem buds in the regeneration medium that composed of liquid MS medium supplemented with 0.5 mg/l BA and 10 g/l sucrose. The explants were shaken at 100 rpm under light intensity of 20-30 μmol/m2s over a 12/12 h (light/dark) photoperiod, and were placed on the regeneration medium without colchicine and oryzalin. Ploidy levels of the regenerated plantlets were determined by flow cytometry. The experimental design consisted of a completely randomized factorial design with three replicates per treatment.

In the Karnaz F1 and Faselis F1 cultivars, tetraploid plants could not be obtained from colchicine applications. However, tet- raploid plant was produced from the application of 28.8 μM oryzalin for 24 hours in Faselis F1, though the plant died during acclimatization. In Karnaz F1, the highest number of tetraploid plants were obtained from the treatment of 43.2 μM oryzalin for 12 hours or of 28.8 μM oryzalin for 36 hours. The pollen viability and germination percentages of these plants were 76.80% and 22.50%, respectively.

References

  • [1] Kashyap V, Kumar SV, Collonier C, Fusari F, Haciour R, Rotino GL, Sihachakr D, Rajam MV. 2003. Biotecnology of eggplant. Sci. Hort. 97: 1-25.
  • [2] Singh AK, Singh M, Singh AK, Singh R, Kumar S, Kallo G. 2006. Genetic diversity within the genus Solanum (Solanaceae) as revealed by RAPD markers. Curr. Sci. 90 (5): 711-716.
  • [3] Daunay MC, 2008. Eggplant. (J. Prohens, F. Nuez, Editors). In: Handbook of crop breeding vegetables II: Fabaceae, Liliaceae, Umbelliferae and Solanacaea. Springer. pp. 163-220, New York, USA.
  • [4] FAO (Food and Agriculture Organization of the United Nations), http://faostat3.fao.org/faostat-gateway/go/ to/download/Q/QC/E. Lass accessed date: 23.07.2017.
  • [5] Collonnier C, Fock I, Kashyap V, Rotino GL, Daunay MC, Lian Y, Mariska IK, Rajam MV, Servaes A, Ducreux G, Sihachakr D. 2001. Applications of biotechnology in egg- plant. Plant Cell, Tissue and Organ Cult.65: 91-107.
  • [6] Asensio IC, Prohens J, Gisbert C. 2014. Vigor for in vitro culture traits in S. melongena x S. aethiopicum hybrids with potential as rootstocks for eggplant. Sci. World J. ID 702071:1–8.
  • [7] Hanudin H, Hanafiah Goas MA. 1992. Screening of eggplant accessions for resistance to bacterial wilt. In: Hart- man GL, A.C. Hayward (Eds.), Bacterial Wilt, ACIAR Pro- ceedings, Taiwan, 45: 191– 192.
  • [8] Gousset C, Collonnier C, Mulya K, Mariska I, Ro- tino GL, Besse P, Servaes A, Sihachakr D. 2005. Solanum torvum, as a useful source of resistance against bacterial and fungal diseases for improvement of eggplant (S. melongena L.). Plant Sci. 168: 319–327.
  • [9] Bletsos F, Thanassoulopoulos C, Roupakias D, 2003. Effect of grafting on growth, yield and Verticillium wilt of eggplant. HortScience. 38: 183-186.
  • [10] Daunay MC, Hazra P. 2012. Eggplant. In: Peter KV, Hazra P. (Eds.), Handbook of Vegetables. Studium Press, Houston, TX, USA, pp. 257–322.
  • [11] Collonnier C, Fock I, Mariska I, Servaes A, Vedel F, Siljak-Yakovlev S, Souvannavong V, Sihachakr D. 2003. GISH confirmation of somatic hybrids between Solanum melongena and S. torvum: assessment of resistance to both fungal and bacterial wilts. Plant Physiol. Biochem. 41: 459– 470.
  • [12] Kumchai J, Wei YC, Lee CY, Chen FC, Chin SW. 2013. Production of interspecific hybrids between commer- cial cultivars of the eggplant (Solanum melongena L.) and its wild relative S. torvum. Genet. Mol. Res. 12 (1): 755-764.
  • [13] Plazas M, Vilanova S, Gramazio P, Rodriguez Burruezo A, Fita A, Herraiz FJ, Ranil R, Fonseka R, Niran L, Fonseka H. 2016. Interspecific hybridization between eggplant and wild relatives from different genepools. J. Am. Soc. Hortic. Sci. 141: 34-41.
  • [14] Jansky S. 2006. Overcoming hybridization barriers in potato. Plant Breed. 125: 1-12.
  • [15] Ramanna MS, HermsenJG. Th. 1981. Structural hybridity in the series Etuberosa of the genus Solanum and its bearing on crossability. Euphytica. 30: 15-31.
  • [16] Chavez R, Brown CR, Iwanaga M. 1988. Applica- tion of interspecific sesquiploidy to introgression of PLRV resistance from non-tuber-bearing Solanum etuberosum to cultivated potato germplasm. Theor. Appl. Genet. 76: 497- 500.
  • [17] Khan MMR, Hasnunnahar M, Isshiki S. 2013. Pro- duction of amphidiploids of the hybrids between Solanum macrocarpon and eggplant. HortScience. 48(4): 422–424.
  • [18] Ali M, Okubo H, Fujieda K, 1992. Production and characterization of Solanum amphidiploids and their resis- tance to bacterial wilt. Sci. Hort. 49: 181-196.
  • [19] Greplova M, Polzerova H, Domkarova J. 2009. In- tra- and inter-specific crosses of Solanum materials after mitoticpolyploidization in vitro. Plant Breed. 128: 651-657.
  • [20] Praça MM, Carvalho CP, Clarindo WR. 2009. A practical and reliable procedure for in vitro induction of tet-raploid tomato. Sci. Hort. 122: 501–505.
  • [21] Robledo-Torres V, Ramírez-Godina F, Forough- bakhck PR, Benavides–Mendoza A, Hernández-Guzmán G, Reyes-Valdes MH. 2011. Development of tomatillo (Phys- alis ixocarpa Brot.) autotetraploids and their chromosome and phenotypic characterization. Breed. Sci.61: 288-293.
  • [22] Mears JA. 1980. Chemistry of polyploids: a sum- mary with comments on Parthenium (Asteraceae-Ambrosi- inae). In: Lewis WH (ed) Polyploidy: biological relevance, Plenum Press, New York, 13: 77-102.
  • [23] Tal M. 1980. Physiology of polyploids. In: Lewis WH (ed) Polyploidy: biological relevance, Plenum Press, New York, 13: 61-76.
  • [24] Al Hakimi A, Monneveaux P, Nachit MM. 1998. Direct and indirect selection for drought tolerance in alien tetraploid wheat x durum wheat crosses. Euphytica, 100: 287–294.
  • [25] Riddle NC, Kato A, Birchler JA. 2006. Genetic variation for the response to ploidy change in Zea mays L. Theor. Appl. Genet. 114:101–111.
  • [26] Dhooghe E, Van Laere K, Eeckhaut T, Leus L, Van Huylenbroeck J. 2011. Mitotic chromosome doubling of plant tissues in vitro. Plant Cell Tissue Organ Cult. 104: 359–373.
  • [27] Sakhanokho HF, Islam-Faridi MN. 2014. Sponta- neous autotetraploidy and its impact on morphological traits and pollen viability in Solanum aethiopicum. HortScience. 49 (8): 997-1002.
  • [28] Kulkarni M, Borse T. 2010. Induced polyploidy with gigas expression for root traits in Capsicum annuum (L.). Plant Breed. 129(4): 461-464.
  • [29] Murashige T, Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant. 15: 473-497.
  • [30] Savaş TG, Keleş H, Göçmen D, Güleryüz V, Nizam İ, Cabi E, Yazıcı A, Çakal Ş, Tuna M. 2016. Flow Sitometri ile çok yıllık buğdaygil yem bitkisi genetik kaynaklarının karakterizasyonu. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi, 25: 7-12.
  • [31] Khan MD. MR, Isshiki S. 2008. Development of a male sterile eggplant by utilizing the cytoplasm of Solanum virginianum and a biparental transmission of chloroplast DNA in backcrossing. Sci. Hort. 117: 316–320.
  • [32] Chauvin JE, Souchet C, Dantec JP, Ellisse`che D. 2003. Chromosome doubling of 2x Solanum species by oryzalin: method development and comparison with spontaneous chromosome doubling in vitro. Plant Cell, Tissue and Organ Cult. 73: 65–73.
  • [33] Barandalla L, Ritter E, Galarreta JIRD. 2006. Ory- zalin treatment of potato diploids yields tetraploid and chi- meric plants from which euploids could be derived by callus induction. Potato Res. 49: 143-154.
  • [34] Tome LGO, Silva AB, Pinto CABP, Davide LC, Pereira DS, Carvalho CR. 2016. Colchicine and oryzalin ef- fects on tetraploid induction and leaf anatomy of Solanum commersonii ssp. Ciencia Rural, Santa Maria, 46 (11): 1973- 1979.
  • [35] Xiong YC, Li FM, Zhang T. 2006. Performance of wheat crops with different chromosome ploidy: root-sourced signals, drought tolerance, and yield performance. Planta, 224: 710-718.
  • [36] Osborn TC, Pires JC, Birchler JA, Auger DL, Chen ZJ, Lee HS, Comai L, Madlung A, Doerge RW, Colot V, Martienssen RA. 2003. Understanding mechanisms of novel gene expression in polyploids. Trends Genet. 19: 141–147.
Year 2017, Volume: 11 Issue: 3, 42 - 47, 31.12.2017

Abstract

References

  • [1] Kashyap V, Kumar SV, Collonier C, Fusari F, Haciour R, Rotino GL, Sihachakr D, Rajam MV. 2003. Biotecnology of eggplant. Sci. Hort. 97: 1-25.
  • [2] Singh AK, Singh M, Singh AK, Singh R, Kumar S, Kallo G. 2006. Genetic diversity within the genus Solanum (Solanaceae) as revealed by RAPD markers. Curr. Sci. 90 (5): 711-716.
  • [3] Daunay MC, 2008. Eggplant. (J. Prohens, F. Nuez, Editors). In: Handbook of crop breeding vegetables II: Fabaceae, Liliaceae, Umbelliferae and Solanacaea. Springer. pp. 163-220, New York, USA.
  • [4] FAO (Food and Agriculture Organization of the United Nations), http://faostat3.fao.org/faostat-gateway/go/ to/download/Q/QC/E. Lass accessed date: 23.07.2017.
  • [5] Collonnier C, Fock I, Kashyap V, Rotino GL, Daunay MC, Lian Y, Mariska IK, Rajam MV, Servaes A, Ducreux G, Sihachakr D. 2001. Applications of biotechnology in egg- plant. Plant Cell, Tissue and Organ Cult.65: 91-107.
  • [6] Asensio IC, Prohens J, Gisbert C. 2014. Vigor for in vitro culture traits in S. melongena x S. aethiopicum hybrids with potential as rootstocks for eggplant. Sci. World J. ID 702071:1–8.
  • [7] Hanudin H, Hanafiah Goas MA. 1992. Screening of eggplant accessions for resistance to bacterial wilt. In: Hart- man GL, A.C. Hayward (Eds.), Bacterial Wilt, ACIAR Pro- ceedings, Taiwan, 45: 191– 192.
  • [8] Gousset C, Collonnier C, Mulya K, Mariska I, Ro- tino GL, Besse P, Servaes A, Sihachakr D. 2005. Solanum torvum, as a useful source of resistance against bacterial and fungal diseases for improvement of eggplant (S. melongena L.). Plant Sci. 168: 319–327.
  • [9] Bletsos F, Thanassoulopoulos C, Roupakias D, 2003. Effect of grafting on growth, yield and Verticillium wilt of eggplant. HortScience. 38: 183-186.
  • [10] Daunay MC, Hazra P. 2012. Eggplant. In: Peter KV, Hazra P. (Eds.), Handbook of Vegetables. Studium Press, Houston, TX, USA, pp. 257–322.
  • [11] Collonnier C, Fock I, Mariska I, Servaes A, Vedel F, Siljak-Yakovlev S, Souvannavong V, Sihachakr D. 2003. GISH confirmation of somatic hybrids between Solanum melongena and S. torvum: assessment of resistance to both fungal and bacterial wilts. Plant Physiol. Biochem. 41: 459– 470.
  • [12] Kumchai J, Wei YC, Lee CY, Chen FC, Chin SW. 2013. Production of interspecific hybrids between commer- cial cultivars of the eggplant (Solanum melongena L.) and its wild relative S. torvum. Genet. Mol. Res. 12 (1): 755-764.
  • [13] Plazas M, Vilanova S, Gramazio P, Rodriguez Burruezo A, Fita A, Herraiz FJ, Ranil R, Fonseka R, Niran L, Fonseka H. 2016. Interspecific hybridization between eggplant and wild relatives from different genepools. J. Am. Soc. Hortic. Sci. 141: 34-41.
  • [14] Jansky S. 2006. Overcoming hybridization barriers in potato. Plant Breed. 125: 1-12.
  • [15] Ramanna MS, HermsenJG. Th. 1981. Structural hybridity in the series Etuberosa of the genus Solanum and its bearing on crossability. Euphytica. 30: 15-31.
  • [16] Chavez R, Brown CR, Iwanaga M. 1988. Applica- tion of interspecific sesquiploidy to introgression of PLRV resistance from non-tuber-bearing Solanum etuberosum to cultivated potato germplasm. Theor. Appl. Genet. 76: 497- 500.
  • [17] Khan MMR, Hasnunnahar M, Isshiki S. 2013. Pro- duction of amphidiploids of the hybrids between Solanum macrocarpon and eggplant. HortScience. 48(4): 422–424.
  • [18] Ali M, Okubo H, Fujieda K, 1992. Production and characterization of Solanum amphidiploids and their resis- tance to bacterial wilt. Sci. Hort. 49: 181-196.
  • [19] Greplova M, Polzerova H, Domkarova J. 2009. In- tra- and inter-specific crosses of Solanum materials after mitoticpolyploidization in vitro. Plant Breed. 128: 651-657.
  • [20] Praça MM, Carvalho CP, Clarindo WR. 2009. A practical and reliable procedure for in vitro induction of tet-raploid tomato. Sci. Hort. 122: 501–505.
  • [21] Robledo-Torres V, Ramírez-Godina F, Forough- bakhck PR, Benavides–Mendoza A, Hernández-Guzmán G, Reyes-Valdes MH. 2011. Development of tomatillo (Phys- alis ixocarpa Brot.) autotetraploids and their chromosome and phenotypic characterization. Breed. Sci.61: 288-293.
  • [22] Mears JA. 1980. Chemistry of polyploids: a sum- mary with comments on Parthenium (Asteraceae-Ambrosi- inae). In: Lewis WH (ed) Polyploidy: biological relevance, Plenum Press, New York, 13: 77-102.
  • [23] Tal M. 1980. Physiology of polyploids. In: Lewis WH (ed) Polyploidy: biological relevance, Plenum Press, New York, 13: 61-76.
  • [24] Al Hakimi A, Monneveaux P, Nachit MM. 1998. Direct and indirect selection for drought tolerance in alien tetraploid wheat x durum wheat crosses. Euphytica, 100: 287–294.
  • [25] Riddle NC, Kato A, Birchler JA. 2006. Genetic variation for the response to ploidy change in Zea mays L. Theor. Appl. Genet. 114:101–111.
  • [26] Dhooghe E, Van Laere K, Eeckhaut T, Leus L, Van Huylenbroeck J. 2011. Mitotic chromosome doubling of plant tissues in vitro. Plant Cell Tissue Organ Cult. 104: 359–373.
  • [27] Sakhanokho HF, Islam-Faridi MN. 2014. Sponta- neous autotetraploidy and its impact on morphological traits and pollen viability in Solanum aethiopicum. HortScience. 49 (8): 997-1002.
  • [28] Kulkarni M, Borse T. 2010. Induced polyploidy with gigas expression for root traits in Capsicum annuum (L.). Plant Breed. 129(4): 461-464.
  • [29] Murashige T, Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant. 15: 473-497.
  • [30] Savaş TG, Keleş H, Göçmen D, Güleryüz V, Nizam İ, Cabi E, Yazıcı A, Çakal Ş, Tuna M. 2016. Flow Sitometri ile çok yıllık buğdaygil yem bitkisi genetik kaynaklarının karakterizasyonu. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi, 25: 7-12.
  • [31] Khan MD. MR, Isshiki S. 2008. Development of a male sterile eggplant by utilizing the cytoplasm of Solanum virginianum and a biparental transmission of chloroplast DNA in backcrossing. Sci. Hort. 117: 316–320.
  • [32] Chauvin JE, Souchet C, Dantec JP, Ellisse`che D. 2003. Chromosome doubling of 2x Solanum species by oryzalin: method development and comparison with spontaneous chromosome doubling in vitro. Plant Cell, Tissue and Organ Cult. 73: 65–73.
  • [33] Barandalla L, Ritter E, Galarreta JIRD. 2006. Ory- zalin treatment of potato diploids yields tetraploid and chi- meric plants from which euploids could be derived by callus induction. Potato Res. 49: 143-154.
  • [34] Tome LGO, Silva AB, Pinto CABP, Davide LC, Pereira DS, Carvalho CR. 2016. Colchicine and oryzalin ef- fects on tetraploid induction and leaf anatomy of Solanum commersonii ssp. Ciencia Rural, Santa Maria, 46 (11): 1973- 1979.
  • [35] Xiong YC, Li FM, Zhang T. 2006. Performance of wheat crops with different chromosome ploidy: root-sourced signals, drought tolerance, and yield performance. Planta, 224: 710-718.
  • [36] Osborn TC, Pires JC, Birchler JA, Auger DL, Chen ZJ, Lee HS, Comai L, Madlung A, Doerge RW, Colot V, Martienssen RA. 2003. Understanding mechanisms of novel gene expression in polyploids. Trends Genet. 19: 141–147.
There are 36 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

İlknur Külahlıoğlu

Sebahattin Çürük

Publication Date December 31, 2017
Published in Issue Year 2017 Volume: 11 Issue: 3

Cite

APA Külahlıoğlu, İ., & Çürük, S. (2017). Effect of Different Oryzalin and Colchicine Applications in Liquid Medium on Tetraploid Plant Production in Eggplant. Journal of Applied Biological Sciences, 11(3), 42-47.
AMA Külahlıoğlu İ, Çürük S. Effect of Different Oryzalin and Colchicine Applications in Liquid Medium on Tetraploid Plant Production in Eggplant. J.appl.biol.sci. December 2017;11(3):42-47.
Chicago Külahlıoğlu, İlknur, and Sebahattin Çürük. “Effect of Different Oryzalin and Colchicine Applications in Liquid Medium on Tetraploid Plant Production in Eggplant”. Journal of Applied Biological Sciences 11, no. 3 (December 2017): 42-47.
EndNote Külahlıoğlu İ, Çürük S (December 1, 2017) Effect of Different Oryzalin and Colchicine Applications in Liquid Medium on Tetraploid Plant Production in Eggplant. Journal of Applied Biological Sciences 11 3 42–47.
IEEE İ. Külahlıoğlu and S. Çürük, “Effect of Different Oryzalin and Colchicine Applications in Liquid Medium on Tetraploid Plant Production in Eggplant”, J.appl.biol.sci., vol. 11, no. 3, pp. 42–47, 2017.
ISNAD Külahlıoğlu, İlknur - Çürük, Sebahattin. “Effect of Different Oryzalin and Colchicine Applications in Liquid Medium on Tetraploid Plant Production in Eggplant”. Journal of Applied Biological Sciences 11/3 (December 2017), 42-47.
JAMA Külahlıoğlu İ, Çürük S. Effect of Different Oryzalin and Colchicine Applications in Liquid Medium on Tetraploid Plant Production in Eggplant. J.appl.biol.sci. 2017;11:42–47.
MLA Külahlıoğlu, İlknur and Sebahattin Çürük. “Effect of Different Oryzalin and Colchicine Applications in Liquid Medium on Tetraploid Plant Production in Eggplant”. Journal of Applied Biological Sciences, vol. 11, no. 3, 2017, pp. 42-47.
Vancouver Külahlıoğlu İ, Çürük S. Effect of Different Oryzalin and Colchicine Applications in Liquid Medium on Tetraploid Plant Production in Eggplant. J.appl.biol.sci. 2017;11(3):42-7.