Araştırma Makalesi
BibTex RIS Kaynak Göster

Base-level poljes in the Sivas gypsum karst, Türkiye

Yıl 2022, Sayı: 9, 19 - 37, 15.11.2022
https://doi.org/10.46453/jader.1125343

Öz

The Sivas Basin, Central Anatolia, includes one of the most outstanding gypsum karst terrains in the world, covering an area of 2140 km2. The karst landscapes are developed on late Eocene gypsum deposits. The fact that the polje shapes that are commonly seen in the limestone karst terrain also seen in the Sivas gypsum karst area further increases the importance of this area in terms of geomorphology. This study is focused on the explanation of the morphometric properties and formation mechanism of poljes around the Kızılırmak River in the Sivas gypsum karst area. The geomorphological evolution of the Sivas gypsum karst area was controlled by the Kızılırmak River drainage system formed in the Early Pliocene. Polygonal doline karst is common on the High Karst Plateau (or erosional-denudational surface) formed during this evolution process, while subsidence dolines, hanging valleys, and poljes are common on the Low Karst Plateau. A total of 14 poljes, most of which are drained underground, and a corrosion plain were identified around the Kızılırmak River in the Low Karst Plateau. The boundaries of some of the poljes, the area of the largest of which is 6.3 km2, and hence their strike is controlled by faults. These poljes are base-level poljes, which bases are approximately at the river level and developed in the water table fluctuation zone. In addition to the structural lines in the formation of the poljes, the beginning of a blind valley-like karstification process, especially in the lower parts of the hanging valleys, mostly as a result of the collapse doline formation (showing the estevalle feature), changes in the water table level in the epiphreatic zone, and in addition to the precipitation, the aggressive river floodwaters that invaded the polje floor were effective. Due to the rapid dissolution of gypsum, the development of polje must have been affected by the incision and deposition periods of the river. The Tödürge Lake depression most probably has been shaped by collapse dolines.

Kaynakça

  • Alagöz, C. A. (1944). Türkiye Karst Olayları Hakkında Bir Araştırma, Türk Coğrafya Kurumu Yayınları, Sayı: 1, Ankara.
  • Alagöz, C. (1967). Sivas çevresi ve doğusunda jips karstı olayları, 175. Ankara Üniversitesi Dil ve Tarih-Coğrafya Fakültesi Yayını, 126 pp.
  • Bonacci, O. (2013). Poljes, ponors and their catchments. In: Shroder, J. (Editor in Chief), Frumkin, A. (Ed.), Treatise on Geomorphology. Academic Press, San Diego, CA, vol. 6, Karst Geomorphology, pp. 112–120.
  • Brocard, G.Y., Meijers, M.J.M., Cosca, M.A., Salles, T., Willenbring, J., Teyssier, C., Whitney, D. L. (2021). Fast Pliocene integration of the Central Anatolian Plateau drainage: evidence, processes, and driving forces. Geosphere, 17: 739–765. doi: 10.1130/GES02247.1
  • Calaforra, J. M., Pulido-Bosch, A. (1999). Gypsum karst features as evidence of diapiric processes in the Betic Cordillera, Southern Spain. Geomorphology 29, 251–264.
  • Callot, J.P., Ribes, C., Kergaravat, C., Bonnel, C., Temiz, H., Poisson, A., Vrielynck, Salel, J.P., Ringebach, J.C. (2014). Salt tectonics in the Sivas Basin (Turkey): crossing salt walls and minibasins. Bulletin de la Societe Géologique de France, 185: 33-42. doi: 10.2113/gssgfbull.185.1.33
  • Çiner, A., Koşun, E., Deynoux, M. (2002). Fluvial, evaporitic and shallow marine facies architecture, depositional evolution and cyclicity in the Sivas Basin (Lower to Middle Miocene) Central Turkey. Journal of Asian Earth Sciences, 21: 147-165.
  • Cooper, A.H., Gutiérrez, F. (2013). Dealing with gypsum karst problems: hazards, environmental issues, and planning. In: Shroder JF (ed) Treatise on geomorphology. Elsevier, pp 451–462.
  • Çubuk Y, İnan, S. (1998). İmranlı ve Hafik Güneyinde (Sivas) Miyosen Havzası’nın Stratigrafik ve Tektonik Özellikleri. MTA Dergisi, 120: 45–60.
  • Darıcı, N., Özel, S. (2018). Examination of the structural characteristics arising in gypsums by the GPR and MASW methods (Sivas, Turkey). Nat Hazard, 68: 1–16.
  • Doğan, U., Koçyiğit, A. (2018). Morphotectonic evolution of Maviboğaz canyon and Suğla polje, SW central Anatolia, Turkey. Geomorphology, 306: 13-27.
  • Doğan, U. (1996). Polye ve Fluvio-Karstik Depresyonlar (Seydişehir’in Güneybatısından Örnekler). Türkiye Coğrafyası Araştırma ve Uygulama Merkezi Dergisi, 5: 229-246.
  • Doğan, U. (2003). Sarıot Polje, Central Taurus (Turkey): a border polje developed at the contact of karstic and non-karstic lithologies. Cave and Karst Science, 30: 117-123.
  • Doğan, U. (2010). Fluvial response to climate change during and after the Last Glacial Maximum in Central Anatolia, Turkey. Quaternary International, 222: 221-229. doi: 10.1016/j.quaint.2009.08.004
  • Doğan, U., Koçyiğit, A. (2018). Morphotectonic evolution of Maviboğaz canyon and Suğla polje, SW Central Anatolia, Turkey. Geomorphology, 306: 13–27. doi: 10.1016/j.geomorph.2018.01.001
  • Doğan, U., Koçyiğit, A., Gökkaya, E. (2017). Development of the Kembos and Eynif structural poljes: Morphotectonic evolution of the Upper Manavgat River basin, central Taurides, Turkey. Geomorphology, 278: 105-120. doi: 10.1016/j.geomorph.2016.10.030
  • Doğan, U., Özel, S. (2005). Gypsum karst and its evolution east of Hafik (Sivas, Turkey). Geomorphology, 71: 373-388. doi: 10.1016/j.geomorph.2005.04.009
  • Doğan, U., Şenkul, Ç. (2020). When did the drainage system of the Kızılırmak River form in Cappadocia (Anatolia, Turkey)? A revised geological and geomorphological stratigraphy. Turkish J Earth Sci, 29: 1100-1113.
  • Doğan, U., Yeşilyurt, S. (2004). Gypsum karst south of Imranlı, Sivas, Turkey. Cave and Karst Science, 31: 7-14.
  • Doğan, U., Yeşilyurt, S. (2019). Gypsum karst landscape in the Sivas Basin. C. Kuzucuoğlu et al. (eds.), Landscapes and Landforms of Turkey, World Geomorphological Landscapes. Springer Nature Switzerland AG.
  • Doğan, U., Yeşilyurt, S. (2021). Sivas jips karstı sahasının jeomorfolojik özellikleri. Jeomorfoloji Derneği Bülteni, 5: 35-47.
  • Doğan, U., Koçyiğit, A., Yeşilyurt, S. (2019). The relationship between Kestel Polje system and the Antalya Tufa Plateau: Their morphotectonic evolution in Isparta Angle, Antalya-Turkey. Geomorphology, 334: 112-125.
  • Drahor, M.G. (2019). Identification of gypsum karstification using an electrical resistivity tomography technique: The case-study of the Sivas gypsum karst area (Turkey). Engineering Geology, 252: 78-98.
  • Ford, D.C., Williams, P.W. (1989). Karst Geomorphology and Hydrology. Unwin Hyman, London. 601 pp https://www.degruyter.com/database/IBR/entry/ibr.ID609763647/html?lang=en
  • Ford, D.C., Williams, P.W. (2007). Karst Hydrogeology and Geomorphology. Wiley, Chichester, 562 pp. doi:10.1002/9781118684986
  • Gams, I., (1969). Some Morphologıcal Characteristics of the Dinaric Karst. Geographıcal Journal, Vol. 135, P.4, 563-572.
  • Gams, I. (1973). Die zweiphasige quarterzeitliche Flachbildung in Poljen und Blindtalern des nordwestlichen Dinarischen Karstes.-Geog. Z. Beh.: Neue Ergebnisse der Karstforschung in den Troppen und im Mittelmeerraum, 32: 143-149, Weisbaden.
  • Gams, I. (1978). The Polje: the Problem of Definition. Zeitschrift für Geomorphologie, 22: 170-181.
  • Gökkaya, E., Gutiérrez, F., Ferk, M., Görüm, T. (2021). Sinkhole development in the Sivas gypsum karst, Turkey. Geomorphology.
  • Gracia, F.J., Gutiérrez, F., Gutiérrez, M. (2003). The Jiloca karst polje-tectonic graben (Iberian Range, NE Spain). Geomorphology, 52: 215–231.
  • Guerrero, J., Gutiérrez, F., Bonachea, J., Lucha, P. (2008). A sinkhole susceptibility zonation based on paleokarst analysis along a stretch of the Madrid–Barcelona high-speed railway built over gypsum- and salt-bearing evaporites (NE Spain). Engineering Geology, 102(1): 62-73.
  • Günay, G. (2002). Gypsum karst, Sivas, Turkey. Environ Geol, 42: 387– 398
  • Gündoğan, İ., Önal, M., Depçi, T. (2005). Sedimentology, petrography and diagenesis of Eocene-Oligocene evaporites: the Tuzhisar Formation, SW Sivas Basin, Turkey. Journal of Asian Earth Sciences, 25: 791-803. doi: 10.1016/j.jseaes.2004.08.002
  • Gutiérrez, F., Cooper, A.H. (2013). Surface morphology of gypsum karst. In: Shroder JF (ed) Treatise on geomorphology. Elsevier, pp 425– 437 doi: 10.1016/B978-0-12-374739-6.00114-7
  • Gutiérrez, F., Cooper, A.H., Johnson, K.S. (2008a). Identification, prediction and mitigation of sinkhole hazards in evaporite karst areas. Environ Geol 53: 1007–1022 doi: 10.1007/s00254-007-0728-4
  • Gutiérrez, F., Guerrero, J., Lucha, P. (2008b). A genetic classification of sinkholes illustrated from evaporite paleokarst exposures in Spain. Environ Geol, 53: 993–1006 doi: 10.1007/s00254-007-0727-5
  • Kaçaroğlu, F., Değirmenci, M., Cerit, O. (1997). Karstification in Miocene gypsum: an example from Sivas (Turkey). Environmental Geology, 30: 88-97. doi: 10.1007/s002540050136
  • Karacan, E., Yılmaz, I. (1997). Collapse dolines in Miocene gypsum: an example from Sivas (Turkey). Environmental Geology, 29: 263-266. doi: 10.1007/s002540050125
  • Keskin, İ., Yılmaz, I. (2016). Morphometric and geological features of karstic depressions in gypsum (Sivas, Turkey). Environ Earth Sci, 75. doi: 10.1007/s12665-016-5845-5
  • Klimchouk, A. (1996). The dissolution and conversion of gypsum and anhydrite. Int J Speleol 5:21–36 (In: Klimchouk A, Lowe D, Cooper A, Sauro U (eds.) Gypsum karst of the world). doi: 10.5038/1827-806X.25.3.2
  • Klimchouk, A. (2013). Evolution of intrastratal karst and caves in gypsum. In: Shroder JF (ed) Treatise on geomorphology. Elsevier, pp 438–450 doi: 10.1016/B978-0-12-374739-6.00123-8
  • Koçyiğit, A., Beyhan, A. (1998). A new intracontinental transcurrent structure: the Central Anatolian Fault Zone, Turkey. Tectonophysics, 284: 317-336.
  • Kurtman, F. (1973). Sivas-Hafik-Zara ve İmranlı bölgesinin jeolojik ve tektonik gelişimi. MTA Dergisi, 80: 1 – 32.
  • Legeay, E., Pichat, A., Kergaravat, C., Ribes, C., Callot, J.P., Ringenbach, J.C., Bonnel, C., Hoareau, G., Poisson, A., Mohn, G., Crumeyrolle, P., Kavak, K.S., Temiz, H. (2019). Geology of the Central Sivas Basin (Turkey). Journal of Maps, 15(2): 406-417. doi: 10.1080/17445647.2018.1514539
  • Ocakoğlu, F. (1999). Evaporitlerden kaynaklanan sünümlü deformasyona ilişkin bazı veriler (Zara, Sivas doğusu). MTA Dergisi, 121: 83–95.
  • Özel, S., Darıcı, N. (2020). Environmental hazard analysis of a gypsum karst depression area with geophysical methods: a case study in Sivas (Turkey). Environmental Earth Sciences 79: 115-129. doi: 10.1007/s12665-020-8861-4
  • Poisson, A.M., Guezou, J.C., Öztürk, A., Inan, S., Temiz, H., Gürsoy, H., Kavak, K., Özden, S. (1996). Tectonic setting and evolution of the Sivas Basin Central Anatolia, Turkey. International Geology Review 38: 838 – 853. doi: 10.1080/00206819709465366
  • Poyraz, M., Öztürk, M.Z., Soykan, A. (2021). Sivas jips karstında dolin yoğunluğunun CBS tabanlı analizi. Jeomorfolojik Araştırmalar Dergisi, 6: 67-80. doi: 10.46453/jader.863090
  • Ristic, D. M. (1976). Water regime of flooded karst poljes. 301-318 in Karst Hydrology and Water Resources, V. Yevjevich (ed.) (Colorado: Water Resources Publication).
  • Şimşek, M., Doğan, U., Öztürk, M.Z. (2020). Polyelerin sınıflandırılması ve toroslardan örnekler Jeomorfolojik Araştırmalar Dergisi (5): 1-14. doi: 10.46453/jader.733500
  • Şimsek, M., Özturk, M. Z., Doğan, U., Utlu, M. (2021). Toros polyelerinin morfometrik özellikleri. Cografya Dergisi, 42: 101-119. doi: 10.26650/JGEOG2020-834461
  • Sirel, E., Erdem, N.Ö., Özgen, N. (2013). Systematics and biostratigraphy of Oligocene (Rupelian-Early Chattian) foraminifera from lagoonal-very shallow water limestone in the eastern Sivas Basin (central Turkey). Geologia Croatica Online 66: 83-109. doi: 10.4154/gc.2013.07
  • Sweeting, M.M. (1972). Karst Landforms, MacMillan Press, London.
  • Waltham, T. (2002). Gypsum karst near Sivas, Turkey. Cave Karst Sci., 29: 39–44.
  • White, W.B. (1988). Geomorphology and Hydrology of Karst Terrains. Oxford University Press, Oxford. 464 pp. https://global.oup.com/ushe/product/geomorphology-and-hydrology-of-karst-terrains-9780195044447?cc=tr&lang=en&
  • Yılmaz, I. (2007). GIS based susceptibility mapping of karst depressions in gypsum: a case study from Sivas Basin (Turkey). Engineering Geology, 90: 89-103. doi: 10.1016/j.enggeo.2006.12.004
  • Yılmaz, I. (2012). On the value of dolines in gypsum terrains as a “Geological Heritage”: an example from Sivas Basin, Turkey. Environmental Earth Sciences, 65: 805-812. doi: 10.1007/s12665-011-1125-6

Base-level poljes in the Sivas gypsum karst, Türkiye

Yıl 2022, Sayı: 9, 19 - 37, 15.11.2022
https://doi.org/10.46453/jader.1125343

Öz

The Sivas Basin, Central Anatolia, includes one of the most outstanding gypsum karst terrains in the world, covering an area of 2140 km2. The karst landscapes are developed on late Eocene gypsum deposits. The fact that the polje shapes that are commonly seen in the limestone karst terrain also seen in the Sivas gypsum karst area further increases the importance of this area in terms of geomorphology. This study is focused on the explanation of the morphometric properties and formation mechanism of poljes around the Kızılırmak River in the Sivas gypsum karst area. The geomorphological evolution of the Sivas gypsum karst area was controlled by the Kızılırmak River drainage system formed in the Early Pliocene. Polygonal doline karst is common on the High Karst Plateau (or erosional-denudational surface) formed during this evolution process, while subsidence dolines, hanging valleys, and poljes are common on the Low Karst Plateau. A total of 14 poljes, most of which are drained underground, and a corrosion plain were identified around the Kızılırmak River in the Low Karst Plateau. The boundaries of some of the poljes, the area of the largest of which is 6.3 km2, and hence their strike is controlled by faults. These poljes are base-level poljes, which bases are approximately at the river level and developed in the water table fluctuation zone. In addition to the structural lines in the formation of the poljes, the beginning of a blind valley-like karstification process, especially in the lower parts of the hanging valleys, mostly as a result of the collapse doline formation (showing the estevalle feature), changes in the water table level in the epiphreatic zone, and in addition to the precipitation, the aggressive river floodwaters that invaded the polje floor were effective. Due to the rapid dissolution of gypsum, the development of polje must have been affected by the incision and deposition periods of the river. The Tödürge Lake depression most probably has been shaped by collapse dolines.

Kaynakça

  • Alagöz, C. A. (1944). Türkiye Karst Olayları Hakkında Bir Araştırma, Türk Coğrafya Kurumu Yayınları, Sayı: 1, Ankara.
  • Alagöz, C. (1967). Sivas çevresi ve doğusunda jips karstı olayları, 175. Ankara Üniversitesi Dil ve Tarih-Coğrafya Fakültesi Yayını, 126 pp.
  • Bonacci, O. (2013). Poljes, ponors and their catchments. In: Shroder, J. (Editor in Chief), Frumkin, A. (Ed.), Treatise on Geomorphology. Academic Press, San Diego, CA, vol. 6, Karst Geomorphology, pp. 112–120.
  • Brocard, G.Y., Meijers, M.J.M., Cosca, M.A., Salles, T., Willenbring, J., Teyssier, C., Whitney, D. L. (2021). Fast Pliocene integration of the Central Anatolian Plateau drainage: evidence, processes, and driving forces. Geosphere, 17: 739–765. doi: 10.1130/GES02247.1
  • Calaforra, J. M., Pulido-Bosch, A. (1999). Gypsum karst features as evidence of diapiric processes in the Betic Cordillera, Southern Spain. Geomorphology 29, 251–264.
  • Callot, J.P., Ribes, C., Kergaravat, C., Bonnel, C., Temiz, H., Poisson, A., Vrielynck, Salel, J.P., Ringebach, J.C. (2014). Salt tectonics in the Sivas Basin (Turkey): crossing salt walls and minibasins. Bulletin de la Societe Géologique de France, 185: 33-42. doi: 10.2113/gssgfbull.185.1.33
  • Çiner, A., Koşun, E., Deynoux, M. (2002). Fluvial, evaporitic and shallow marine facies architecture, depositional evolution and cyclicity in the Sivas Basin (Lower to Middle Miocene) Central Turkey. Journal of Asian Earth Sciences, 21: 147-165.
  • Cooper, A.H., Gutiérrez, F. (2013). Dealing with gypsum karst problems: hazards, environmental issues, and planning. In: Shroder JF (ed) Treatise on geomorphology. Elsevier, pp 451–462.
  • Çubuk Y, İnan, S. (1998). İmranlı ve Hafik Güneyinde (Sivas) Miyosen Havzası’nın Stratigrafik ve Tektonik Özellikleri. MTA Dergisi, 120: 45–60.
  • Darıcı, N., Özel, S. (2018). Examination of the structural characteristics arising in gypsums by the GPR and MASW methods (Sivas, Turkey). Nat Hazard, 68: 1–16.
  • Doğan, U., Koçyiğit, A. (2018). Morphotectonic evolution of Maviboğaz canyon and Suğla polje, SW central Anatolia, Turkey. Geomorphology, 306: 13-27.
  • Doğan, U. (1996). Polye ve Fluvio-Karstik Depresyonlar (Seydişehir’in Güneybatısından Örnekler). Türkiye Coğrafyası Araştırma ve Uygulama Merkezi Dergisi, 5: 229-246.
  • Doğan, U. (2003). Sarıot Polje, Central Taurus (Turkey): a border polje developed at the contact of karstic and non-karstic lithologies. Cave and Karst Science, 30: 117-123.
  • Doğan, U. (2010). Fluvial response to climate change during and after the Last Glacial Maximum in Central Anatolia, Turkey. Quaternary International, 222: 221-229. doi: 10.1016/j.quaint.2009.08.004
  • Doğan, U., Koçyiğit, A. (2018). Morphotectonic evolution of Maviboğaz canyon and Suğla polje, SW Central Anatolia, Turkey. Geomorphology, 306: 13–27. doi: 10.1016/j.geomorph.2018.01.001
  • Doğan, U., Koçyiğit, A., Gökkaya, E. (2017). Development of the Kembos and Eynif structural poljes: Morphotectonic evolution of the Upper Manavgat River basin, central Taurides, Turkey. Geomorphology, 278: 105-120. doi: 10.1016/j.geomorph.2016.10.030
  • Doğan, U., Özel, S. (2005). Gypsum karst and its evolution east of Hafik (Sivas, Turkey). Geomorphology, 71: 373-388. doi: 10.1016/j.geomorph.2005.04.009
  • Doğan, U., Şenkul, Ç. (2020). When did the drainage system of the Kızılırmak River form in Cappadocia (Anatolia, Turkey)? A revised geological and geomorphological stratigraphy. Turkish J Earth Sci, 29: 1100-1113.
  • Doğan, U., Yeşilyurt, S. (2004). Gypsum karst south of Imranlı, Sivas, Turkey. Cave and Karst Science, 31: 7-14.
  • Doğan, U., Yeşilyurt, S. (2019). Gypsum karst landscape in the Sivas Basin. C. Kuzucuoğlu et al. (eds.), Landscapes and Landforms of Turkey, World Geomorphological Landscapes. Springer Nature Switzerland AG.
  • Doğan, U., Yeşilyurt, S. (2021). Sivas jips karstı sahasının jeomorfolojik özellikleri. Jeomorfoloji Derneği Bülteni, 5: 35-47.
  • Doğan, U., Koçyiğit, A., Yeşilyurt, S. (2019). The relationship between Kestel Polje system and the Antalya Tufa Plateau: Their morphotectonic evolution in Isparta Angle, Antalya-Turkey. Geomorphology, 334: 112-125.
  • Drahor, M.G. (2019). Identification of gypsum karstification using an electrical resistivity tomography technique: The case-study of the Sivas gypsum karst area (Turkey). Engineering Geology, 252: 78-98.
  • Ford, D.C., Williams, P.W. (1989). Karst Geomorphology and Hydrology. Unwin Hyman, London. 601 pp https://www.degruyter.com/database/IBR/entry/ibr.ID609763647/html?lang=en
  • Ford, D.C., Williams, P.W. (2007). Karst Hydrogeology and Geomorphology. Wiley, Chichester, 562 pp. doi:10.1002/9781118684986
  • Gams, I., (1969). Some Morphologıcal Characteristics of the Dinaric Karst. Geographıcal Journal, Vol. 135, P.4, 563-572.
  • Gams, I. (1973). Die zweiphasige quarterzeitliche Flachbildung in Poljen und Blindtalern des nordwestlichen Dinarischen Karstes.-Geog. Z. Beh.: Neue Ergebnisse der Karstforschung in den Troppen und im Mittelmeerraum, 32: 143-149, Weisbaden.
  • Gams, I. (1978). The Polje: the Problem of Definition. Zeitschrift für Geomorphologie, 22: 170-181.
  • Gökkaya, E., Gutiérrez, F., Ferk, M., Görüm, T. (2021). Sinkhole development in the Sivas gypsum karst, Turkey. Geomorphology.
  • Gracia, F.J., Gutiérrez, F., Gutiérrez, M. (2003). The Jiloca karst polje-tectonic graben (Iberian Range, NE Spain). Geomorphology, 52: 215–231.
  • Guerrero, J., Gutiérrez, F., Bonachea, J., Lucha, P. (2008). A sinkhole susceptibility zonation based on paleokarst analysis along a stretch of the Madrid–Barcelona high-speed railway built over gypsum- and salt-bearing evaporites (NE Spain). Engineering Geology, 102(1): 62-73.
  • Günay, G. (2002). Gypsum karst, Sivas, Turkey. Environ Geol, 42: 387– 398
  • Gündoğan, İ., Önal, M., Depçi, T. (2005). Sedimentology, petrography and diagenesis of Eocene-Oligocene evaporites: the Tuzhisar Formation, SW Sivas Basin, Turkey. Journal of Asian Earth Sciences, 25: 791-803. doi: 10.1016/j.jseaes.2004.08.002
  • Gutiérrez, F., Cooper, A.H. (2013). Surface morphology of gypsum karst. In: Shroder JF (ed) Treatise on geomorphology. Elsevier, pp 425– 437 doi: 10.1016/B978-0-12-374739-6.00114-7
  • Gutiérrez, F., Cooper, A.H., Johnson, K.S. (2008a). Identification, prediction and mitigation of sinkhole hazards in evaporite karst areas. Environ Geol 53: 1007–1022 doi: 10.1007/s00254-007-0728-4
  • Gutiérrez, F., Guerrero, J., Lucha, P. (2008b). A genetic classification of sinkholes illustrated from evaporite paleokarst exposures in Spain. Environ Geol, 53: 993–1006 doi: 10.1007/s00254-007-0727-5
  • Kaçaroğlu, F., Değirmenci, M., Cerit, O. (1997). Karstification in Miocene gypsum: an example from Sivas (Turkey). Environmental Geology, 30: 88-97. doi: 10.1007/s002540050136
  • Karacan, E., Yılmaz, I. (1997). Collapse dolines in Miocene gypsum: an example from Sivas (Turkey). Environmental Geology, 29: 263-266. doi: 10.1007/s002540050125
  • Keskin, İ., Yılmaz, I. (2016). Morphometric and geological features of karstic depressions in gypsum (Sivas, Turkey). Environ Earth Sci, 75. doi: 10.1007/s12665-016-5845-5
  • Klimchouk, A. (1996). The dissolution and conversion of gypsum and anhydrite. Int J Speleol 5:21–36 (In: Klimchouk A, Lowe D, Cooper A, Sauro U (eds.) Gypsum karst of the world). doi: 10.5038/1827-806X.25.3.2
  • Klimchouk, A. (2013). Evolution of intrastratal karst and caves in gypsum. In: Shroder JF (ed) Treatise on geomorphology. Elsevier, pp 438–450 doi: 10.1016/B978-0-12-374739-6.00123-8
  • Koçyiğit, A., Beyhan, A. (1998). A new intracontinental transcurrent structure: the Central Anatolian Fault Zone, Turkey. Tectonophysics, 284: 317-336.
  • Kurtman, F. (1973). Sivas-Hafik-Zara ve İmranlı bölgesinin jeolojik ve tektonik gelişimi. MTA Dergisi, 80: 1 – 32.
  • Legeay, E., Pichat, A., Kergaravat, C., Ribes, C., Callot, J.P., Ringenbach, J.C., Bonnel, C., Hoareau, G., Poisson, A., Mohn, G., Crumeyrolle, P., Kavak, K.S., Temiz, H. (2019). Geology of the Central Sivas Basin (Turkey). Journal of Maps, 15(2): 406-417. doi: 10.1080/17445647.2018.1514539
  • Ocakoğlu, F. (1999). Evaporitlerden kaynaklanan sünümlü deformasyona ilişkin bazı veriler (Zara, Sivas doğusu). MTA Dergisi, 121: 83–95.
  • Özel, S., Darıcı, N. (2020). Environmental hazard analysis of a gypsum karst depression area with geophysical methods: a case study in Sivas (Turkey). Environmental Earth Sciences 79: 115-129. doi: 10.1007/s12665-020-8861-4
  • Poisson, A.M., Guezou, J.C., Öztürk, A., Inan, S., Temiz, H., Gürsoy, H., Kavak, K., Özden, S. (1996). Tectonic setting and evolution of the Sivas Basin Central Anatolia, Turkey. International Geology Review 38: 838 – 853. doi: 10.1080/00206819709465366
  • Poyraz, M., Öztürk, M.Z., Soykan, A. (2021). Sivas jips karstında dolin yoğunluğunun CBS tabanlı analizi. Jeomorfolojik Araştırmalar Dergisi, 6: 67-80. doi: 10.46453/jader.863090
  • Ristic, D. M. (1976). Water regime of flooded karst poljes. 301-318 in Karst Hydrology and Water Resources, V. Yevjevich (ed.) (Colorado: Water Resources Publication).
  • Şimşek, M., Doğan, U., Öztürk, M.Z. (2020). Polyelerin sınıflandırılması ve toroslardan örnekler Jeomorfolojik Araştırmalar Dergisi (5): 1-14. doi: 10.46453/jader.733500
  • Şimsek, M., Özturk, M. Z., Doğan, U., Utlu, M. (2021). Toros polyelerinin morfometrik özellikleri. Cografya Dergisi, 42: 101-119. doi: 10.26650/JGEOG2020-834461
  • Sirel, E., Erdem, N.Ö., Özgen, N. (2013). Systematics and biostratigraphy of Oligocene (Rupelian-Early Chattian) foraminifera from lagoonal-very shallow water limestone in the eastern Sivas Basin (central Turkey). Geologia Croatica Online 66: 83-109. doi: 10.4154/gc.2013.07
  • Sweeting, M.M. (1972). Karst Landforms, MacMillan Press, London.
  • Waltham, T. (2002). Gypsum karst near Sivas, Turkey. Cave Karst Sci., 29: 39–44.
  • White, W.B. (1988). Geomorphology and Hydrology of Karst Terrains. Oxford University Press, Oxford. 464 pp. https://global.oup.com/ushe/product/geomorphology-and-hydrology-of-karst-terrains-9780195044447?cc=tr&lang=en&
  • Yılmaz, I. (2007). GIS based susceptibility mapping of karst depressions in gypsum: a case study from Sivas Basin (Turkey). Engineering Geology, 90: 89-103. doi: 10.1016/j.enggeo.2006.12.004
  • Yılmaz, I. (2012). On the value of dolines in gypsum terrains as a “Geological Heritage”: an example from Sivas Basin, Turkey. Environmental Earth Sciences, 65: 805-812. doi: 10.1007/s12665-011-1125-6
Toplam 57 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Fiziksel Coğrafya ve Çevre Jeolojisi
Bölüm Makaleler
Yazarlar

Uğur Doğan 0000-0002-1300-3484

Serdar Yeşilyurt 0000-0002-2896-9644

Gönül Mutlu 0000-0002-4280-4950

Ali Koçyiğit 0000-0002-0026-2831

Yayımlanma Tarihi 15 Kasım 2022
Gönderilme Tarihi 2 Haziran 2022
Kabul Tarihi 20 Haziran 2022
Yayımlandığı Sayı Yıl 2022 Sayı: 9

Kaynak Göster

APA Doğan, U., Yeşilyurt, S., Mutlu, G., Koçyiğit, A. (2022). Base-level poljes in the Sivas gypsum karst, Türkiye. Jeomorfolojik Araştırmalar Dergisi(9), 19-37. https://doi.org/10.46453/jader.1125343
Jeomorfolojik Araştırmalar Dergisi ( JADER ) / Journal of Geomorphological Researches
TR Dizin - DOAJ - DRJIASOS İndeks - Scientific Indexing Service - CrossrefGoogle Scholar tarafından taranmaktadır. 
Jeomorfoloji Derneği  / Turkish Society for Geomorphology ( www.jd.org.tr )