Production of recombinant expansin and detection by SDS page analysis in Escherichia coli
Yıl 2023,
, 117 - 121, 27.03.2023
Serap Güneş
,
Demet Ektiren
,
Mehmet Karaaslan
,
Hasan Vardin
Öz
The study aims to produce Expansin protein isolated from a young tomato plant by using Escherichia coli which is used in recombinant protein production. Continuous culture is the most common method used to grow cells for recombinant protein production. In the study, the K12 strain of E. coli was used as a culture for the production of Expansin protein. The used LeExp1 gene was isolated from a young tomato plant. Since the related gene is found in very small amounts in plants, it has been reproduced using the PCR method and has been made workable with this method. T17 vector (T7 RNA polymerase system), which is frequently used in the production of recombinant protein, was used as the bacterial expression vector. The T7 RNA polymerase system is a commonly used vector in E. coli. With the transfer, the E. coli bacterium was given the ability to produce recombinant protein. Whether the obtained recombinant protein expressed the appropriate protein was determined by SDS Page analysis.
Destekleyen Kurum
TÜBİTAK
Teşekkür
Researchers would like to thank TÜBİTAK for its support.
Kaynakça
- Andersson, P., Edenståhl, S., Eriksson, E., Nielsen, J., Pihlblad, A. (2018). The Future's Expression Systems for Complex Proteins: Evaluation of Twelve Expression Systems, Uppsala.
- Anon. (2010). Champion™ pET Directional TOPO® Expression Kits. Five-minute, directional TOPO® Cloning of blunt-end PCR products into vectors for high-level, inducible expression in E. coli. Catalog no. K100-01, K101 01, K102-01, K151- 01, K200-01.
- Cosgrove. D.J. (2000). Expansive growth of plant cell walls. Plant Physiology and Biochemistry 38:1-1.
- García-Fruitós, E. (2014). Insoluble Proteins: Methods and Protocols, Insoluble Proteins Methods Protoc Vol. 1258, pp. 1–422, https://doi.org/10.1007/978-1-4939-2205-5
- Gräslund, S., Nordlund, P., Weigelt, J., Hallberg, B.M., Bray, J., Gileadi, O., Knapp, S., Oppermann, U., Arrowsmith, C., Hui, R., Ming, J., Dhe-Paganon, S., Park, H., Savchenko, A., Yee, A., Edwards, A., Vincentelli, R., Cambillau, C., Kim, R., Kim, S.H., Rao, Z., Shi, Y., Terwilliger, T.C., Kim, C.Y., Hung, L.W., Waldo, G.S., Peleg, Y., Albeck, S., Unger, T., Dym, O., Prilusky, J., Sussman, J.L., Stevens, R.C., Lesley, S.A., Wilson, I.A., Joachimiak, A., Collart, F., Dementieva, I., Donnelly, M.I., Eschenfeldt, W.H., Kim, Y., Stols, L., R.Wu., Zhou, M., Burley, S.K., Emtage, J.S., Sauder, J.M., Thompson, D., Bain, K., Luz, J., Gheyi, T., Zhang, F., Atwell, S., Almo, S.C., Bonanno, J.B., Fiser, A., Swaminathan, S., Studier, F.W., Chance, M.R., Sali, A., Acton, T.B., Xiao, R., Zhao, L., Ma, L.C., Hunt, J.F., Tong, L., Cunningham, K., Inouye, M., Anderson, S., Janjua, H., Shastry, R., Ho, C.K., Wang, D., Wang, H., Jiang, M., Montelione, G.T., Stuart, D.I., Owens, R.J., Daenke, S., Schütz, A., Heinemann, U., Yokoyama, S., Büssow, K., Gunsalus, K.C. (2008). Protein production and purification, Nat. Methods, 5, s. 135–146. https://doi.org/10.1038/nmeth.f.202
- Hartley, J.L. (2006). Cloning technologies for protein expression and purification, Current Opinion in Biotechnology, 17:359-366.
- Hughes, S.S. (2001). Making dollars out of DNA. The First Major Patent in biotechnology and the commercialization of molecular biology, 1974-1980. Isis., 92(3): 541-75.
- Jackson, D., Symons, R., Berg, P., (1972). Biochemical method for inserting new genetic information into DNA of simian virus 40: circular sv40 DNA molecules containing lambda phage genes and the galactose operon of Escherichia coli. Proc Natl Acad Sci, 69(10): 2904-2909.
- Katartaş, Z. (2011). Drug production with recombinant DNA technology. Graduation Paper, Erciyes University, Faculty of Pharmacy, Pharmaceutical Biotechnology, Kayseri.
- Ladisch, M.R., Kohlmann, K.L. (1992). Recombinant human insulin. Biotechnol. Prog., 8:469-478.
- Mullis, K.B. (1990). Recombinant DNA technology and molecular cloning, Scientific American, 262(36): 181-231.
- Rabert, C., Weinacker, D., Pessoa, A., Farías, J.G. (2013). Recombinants proteins for industrial uses: utilization of Pichia pastoris expression system, Braz. J. Microbiol. 44, 351–356, https://doi.org/10.1590/S1517-83822013005000041
- Sanchez-Garcia, L., Martín, L., Mangues, R., Ferrer-Miralles, N., Vázquez, E., Villaverde, A. (2016). Recombinant pharmaceuticals from microbial cells: a 2015 update, Microb. Cell Fact., 15, pp. 1-. https://doi.org/10.1186/s12934-016-0437-3
- Walsh, G. (2014). Biopharmaceutical benchmarks, Nat. Biotechnol. 32 (2014) 992–1000, https://doi.org/10.1038/nbt.3040
Yıl 2023,
, 117 - 121, 27.03.2023
Serap Güneş
,
Demet Ektiren
,
Mehmet Karaaslan
,
Hasan Vardin
Kaynakça
- Andersson, P., Edenståhl, S., Eriksson, E., Nielsen, J., Pihlblad, A. (2018). The Future's Expression Systems for Complex Proteins: Evaluation of Twelve Expression Systems, Uppsala.
- Anon. (2010). Champion™ pET Directional TOPO® Expression Kits. Five-minute, directional TOPO® Cloning of blunt-end PCR products into vectors for high-level, inducible expression in E. coli. Catalog no. K100-01, K101 01, K102-01, K151- 01, K200-01.
- Cosgrove. D.J. (2000). Expansive growth of plant cell walls. Plant Physiology and Biochemistry 38:1-1.
- García-Fruitós, E. (2014). Insoluble Proteins: Methods and Protocols, Insoluble Proteins Methods Protoc Vol. 1258, pp. 1–422, https://doi.org/10.1007/978-1-4939-2205-5
- Gräslund, S., Nordlund, P., Weigelt, J., Hallberg, B.M., Bray, J., Gileadi, O., Knapp, S., Oppermann, U., Arrowsmith, C., Hui, R., Ming, J., Dhe-Paganon, S., Park, H., Savchenko, A., Yee, A., Edwards, A., Vincentelli, R., Cambillau, C., Kim, R., Kim, S.H., Rao, Z., Shi, Y., Terwilliger, T.C., Kim, C.Y., Hung, L.W., Waldo, G.S., Peleg, Y., Albeck, S., Unger, T., Dym, O., Prilusky, J., Sussman, J.L., Stevens, R.C., Lesley, S.A., Wilson, I.A., Joachimiak, A., Collart, F., Dementieva, I., Donnelly, M.I., Eschenfeldt, W.H., Kim, Y., Stols, L., R.Wu., Zhou, M., Burley, S.K., Emtage, J.S., Sauder, J.M., Thompson, D., Bain, K., Luz, J., Gheyi, T., Zhang, F., Atwell, S., Almo, S.C., Bonanno, J.B., Fiser, A., Swaminathan, S., Studier, F.W., Chance, M.R., Sali, A., Acton, T.B., Xiao, R., Zhao, L., Ma, L.C., Hunt, J.F., Tong, L., Cunningham, K., Inouye, M., Anderson, S., Janjua, H., Shastry, R., Ho, C.K., Wang, D., Wang, H., Jiang, M., Montelione, G.T., Stuart, D.I., Owens, R.J., Daenke, S., Schütz, A., Heinemann, U., Yokoyama, S., Büssow, K., Gunsalus, K.C. (2008). Protein production and purification, Nat. Methods, 5, s. 135–146. https://doi.org/10.1038/nmeth.f.202
- Hartley, J.L. (2006). Cloning technologies for protein expression and purification, Current Opinion in Biotechnology, 17:359-366.
- Hughes, S.S. (2001). Making dollars out of DNA. The First Major Patent in biotechnology and the commercialization of molecular biology, 1974-1980. Isis., 92(3): 541-75.
- Jackson, D., Symons, R., Berg, P., (1972). Biochemical method for inserting new genetic information into DNA of simian virus 40: circular sv40 DNA molecules containing lambda phage genes and the galactose operon of Escherichia coli. Proc Natl Acad Sci, 69(10): 2904-2909.
- Katartaş, Z. (2011). Drug production with recombinant DNA technology. Graduation Paper, Erciyes University, Faculty of Pharmacy, Pharmaceutical Biotechnology, Kayseri.
- Ladisch, M.R., Kohlmann, K.L. (1992). Recombinant human insulin. Biotechnol. Prog., 8:469-478.
- Mullis, K.B. (1990). Recombinant DNA technology and molecular cloning, Scientific American, 262(36): 181-231.
- Rabert, C., Weinacker, D., Pessoa, A., Farías, J.G. (2013). Recombinants proteins for industrial uses: utilization of Pichia pastoris expression system, Braz. J. Microbiol. 44, 351–356, https://doi.org/10.1590/S1517-83822013005000041
- Sanchez-Garcia, L., Martín, L., Mangues, R., Ferrer-Miralles, N., Vázquez, E., Villaverde, A. (2016). Recombinant pharmaceuticals from microbial cells: a 2015 update, Microb. Cell Fact., 15, pp. 1-. https://doi.org/10.1186/s12934-016-0437-3
- Walsh, G. (2014). Biopharmaceutical benchmarks, Nat. Biotechnol. 32 (2014) 992–1000, https://doi.org/10.1038/nbt.3040