Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, , 599 - 605, 15.12.2021
https://doi.org/10.31015/jaefs.2021.4.20

Öz

Kaynakça

  • Ahmed, M., Karns, M., Goodson, M., Rowe, J., Hussain, S., Schlager, J., Hong, Y. (2008). DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicology and Applied Pharmacology, 233(3):404-410.https://doi.org/10.1016/j.taap.2008.09.015
  • Asare, N., Ornek, C., Sandberg, W.J., Refsnes, M., Schwarze, P., Kruszewski, M., Brunborg, G. (2012).Cytotoxic and genotoxic effects of silver nanoparticles in testicular cells. Toxicology, 291(1-3):65-72.https://doi.org/10.1016/j.tox.2011.10.022
  • AshaRani, P.V., Mun, G.L.K., Hande, M.P., Valiyaveettil, S. (2009). Cytotoxicity and Genotoxicity of Silver Nanoparticles in Human Cells. ACS Nano,3(2):279-290.https://doi/10.1021/nn800596w
  • Babu, K., Deepa, M.A., Gokul, Shankar, S., Sadananda, R. (2008). Effect of nano-silver on cell division and mitotic chromosomes: a prefatort siren. The International Journal of Nanotechnology, 2(2): 1-7.
  • Blaser, S.A., Scheringer, M., MacLeod, M., Hungerbühler, K. (2008). Estimation of cumulative aquatic exposure and risk due to silver: Contribution of nano-functionalized plastics and textiles, Science of the Total Environment,390(2-3):396-409.https://doi.org/10.1016/j.scitotenv.2007.10.010
  • Cıracı, S., Ozbay,E., Gulseren, O., Demir, H.V., Bayındır, M., Oral, A., Senger, T., Aydınlı, A., Dana, A.(2005).Nanotechnology in Turkey. TUBITAK Journal of Science and Technology.
  • Colvin, V.L. (2003). The potential environmental impact of engineered nanomaterials.Nature Biotechnology.21(10): 1166-1170.
  • Corredor, E., Testillano, P., Coronado, M.J, Gonzalez-Melendi, P., Fernandez-Pacheco, R., Marquina C, Risueño, M.C. (2009). Nanoparticle penetration and transport in living pumpkin plants: in situ subcellular identification. BMC Plant Biology, 9(45):1-11.https://doi.org/10.1186/1471-2229-9-45
  • Chung, I.M, Rajakumar, G.,Thiruvengadam, M.(2018). Effect of silver nanoparticles on phenolic compounds production and biological activities in hairy bulb cultures of Cucumisanguria.ActaBiologicaHungarica, 69(1):97–109.http://doi.org/10.1556/018.68.2018.1.8
  • Duarte, D.R., Castillo, E., Bárzana, E., López-Munguía, A. (2000). Capsaicin hydrolysis by Candidaantarcticalipase. Biotechnol Letters, 22:1811–1814.https://doi.org/10.1023/A:1005622704504 Duncan, T.V. (2011). Applications of Nanotechnolgyin Food Packaging and Food Safety: Barrier Materials, Antimicrobials and Sensors. Journal of Colloid and Interface Sciences, 363(1):1-24. https://doi.org/10.1016/j.jcis.2011.07.017
  • FAO, 2020.Crops.http://www.fao.org/faostat/en/#data/QC/visualize
  • Ge, X. andWu, J. (2005).Tanshinone production and isoprenoid pathways in Salvia miltiorrhiza hairy bulbs induced by Ag+ and yeast elicitor. Plant Science, 168(2):487–49.https://doi.org/10.1016/j.plantsci.2004.09.012
  • Ghosh, M.M.J., Sinha, S., Çakrabort, A., Mallick, S.K., Bandyopadhyaye, M., Mukherjee, A.(2012). In vitro and in vivo genotoxicity of silver nanoparticles. Mutation Research/Genetic Toxicology and Environmental Mutagenesis,749(1-2):60-69.https://10.1016/j.mrgentox.2012.08.007
  • Griffiths, G., Trueman, L., Crowther, T., Thomas, B., Smith, B. (2002). Onions - a globalbenefit to health. Phytotherapy Research,16: 603-615.https://doi.org/10.1002/ptr.1222
  • Hackenberg, S., Scherzed, A., Kessler, M., Hummel, S., Technau, A., Froelich, K., Ginzkey, C., Koehler, C., Hagen, R., Kleinsasser, N. (2011). Silver nanoparticles: Evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cells. Toxicology Letters, 201(1):27-33. https://doi.org/10.1016/j.toxlet.2010.12.001
  • HaghighiPak, Z., Abbaspour, A., Karimi, N., Fattahi, A.(2016). Eco-Friendly Synthesis and Antimicrobial Activity of Silver Nanoparticles Using Dracocephalummoldavica Seed Extract. Applied Sciences 6(3):69.https://doi.org/10.3390/app6030069
  • Hsu, C.K., Chiang, B.H., Chen, Y.S., Yang, J.H., Liu, C.L. (2008). Improving the Antioxidant Activity of Buckwheat (FagopyrumtataricumGaertn) Sprout with Trace Element Water. Food Chemistry 108(2): 633-641. https://doi.org/10.1016/j.foodchem.2007.11.028
  • Jiang, H.S., Li, M., Chang, F.Y., Li,W.,Yin, L.Y.(2012). Physiological analysis of silver nanoparticles and AgNO3 toxicity to Spirodelapolyrhiza. Environmental Toxicology and Chemistry,31(8):1880–1886. https://doi.org/10.1002/etc.1899
  • Kaphle, A., Navya, P.N., Umapathi, A.,Daim, H.K. (2018). Nanomaterials for agriculture, food and environment: applications, toxicity and regulation. Environmental Chemistry Letters, 16(1):43-58.https://doi.org/10.1007/s10311-017-0662-y
  • Kim, L.S., Kim, K.S, Park, H.C.(2004). Introduction and Nutritional Evaluation of Buckwheat Sprouts as a New Vegetable. Food Research International, 37(4):319-327. https://doi.org/10.1016/j.foodres.2003.12.008
  • Khodakovskaya, M.V, Silva,De.,Biris, A.S., Dervishi, E.,Villagarcia, H.(2012). Carbon Nanotubes Induce Growth Enhancement of Tobacco Cells. ACS Nano, 6(3):2128-2135.https://doi.org/10.1021/nn204643g
  • Kumar. A., Chisti, Y., Banerjee, U. (2013). Synthesis of metallic nanoparticles using plant extracts: Biotechnology Advances, 31(2):346-356. https://doi.org/10.1016/j.biotechadv.2013.01.003
  • Kim, Y.K., Lee, Y.S., Jeong, D.H., Cho, M.H. (2007). Antimicrobial effect of silver nanoparticles.Nanomedicine, 3(1):95–101.https://doi.org/10.1016/j.nano.2006.12.001
  • Lam, C.W., James, J.T., Mc. Cluskey, R., Hunter, R.L.(2004). Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicology Science 77(1):126-134. https://doi.org/10.1093/toxsci/kfg243
  • Ma, X., Geiser-Lee, J., Deng, Y., Kolmakov, A. (2010). Interactions between engineered nanoparticles (ENPs) and plants: Phytotoxicity, uptake and accumulation.Science of the Total Environment, 408(16):3053–3061.https://doi.org/10.1016/j.scitotenv.2010.03.031
  • Mamta, K., Mukherjee, A., Chandrasekaran, N.(2009). Genotoxicity of silver nanoparticles inAlliumcepa. Science of the Total Environment,407(19):5243-5246.https://doi.org/10.1016/j.scitotenv.2009.06.024
  • Morimitsu, Y., Morioka, J., Kawakishi, S. (1992). Inhibitors of platelet aggregation generated from mixtures of Allium species and/or S-alk(en)nyl- L-cysteine sulfoxides. Journal of Agricultural Food Chemistry 40(3):368-372.https://doi.org/10.1021/jf00015a002
  • Narayanan, K.B., Sakthivel, N.(2010). Biologicol Synthesis of Metal Nanoparticles By Microbes, Advances in Colloidal and Interface Sciences. 156(1-2):1-13.https://doi.org/10.1016/j.cis.2010.02.001
  • Nel, A., Xia, T., Madler, L., Li, N. (2006).Toxic Potential of Materials at the Nanolevel.Science. 311(5761):622-627.https://doi.org/10.1126/science.1114397
  • Oberdörster, G., Oberdörster, E., Oberdörster, J.(2005). Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles. Environmental Health Perspectives. 113:823-839.https://doi.org/10.1289/ehp.7339
  • Oberdörster, G. (1996). Effects of Ultrafine Particles on the Lungs Aerosol Inhalation in Potential Relationship with Particles; Marijnissen, JMC., Gradon, L., Eds.; Kluwer Academic: Dordrecht, Hollanda; p. 165.
  • Oukarroum, A., Bras, S., Perreault, F., Popovic, R.(2012). Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliellatertiolecta. Ecotoxicology and Environmental Safety 78:80–85.https://doi.org/10.1016/j.ecoenv.2011.11.012
  • Park, H.J., Cha, H.C. (2008). Differences of Flavonols Profiles in Various Grape Cultivars Separated by High Performance Liquid Chromatography. Horticulture Environment and Biotechnology, 49(1): 35–41.
  • Patil, B.S., Pike, L.M., Yoo, K.S.(1995).Variation in the quercetin content in different colored onions (Allium cepa L.) owing to location, growth stage and soil type. Journal of American Society of Horticultural Science, 120:909–913.https://doi.org/10.21273/jashs.120.6.909
  • Qian, H., Peng, X., Han, X., Ren,J., Sun, L., Fu., Z.(2013). Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana.Journal of Environmental Science. 25(9):1947–1956.https://doi.org/10.1016/S1001-0742(12)60301-5
  • Sefer, F. (2000).Investigation of Levels of Some Secondary Metabolites in Bitter and Sweet Apricots.Ege University Graduate School of Natural and Applied Sciences, PhD Thesis, 136 p, İzmir, Turkey.
  • Sefer, F. (2000).Investigation of Levels of Some Secondary Metabolites in Bitter and Sweet Apricots.Ege University Graduate School of Natural and Applied Sciences, PhD Thesis, 136p, İzmir, Turkey.
  • Spinoso-Castillo, J.L., Chavez-Santoscoy, R.A., Bogdanchikova, N., Pérez-Sato, J.A.,Morales-Ramos, V., Bello-Bello, J.J.(2017). Antimicrobial and hormetic effects of silver nanoparticles on in vitro regeneration of vanilla (Vanilla planifolia Jacks. ex Andrews) using a temporary immersion system. Plant Cell Tissues and Organic Culture, 129(2):195–207.https://doi.org/10.1007/s11240-017-1169-8.
  • Tegart, G. (2003).Nanotechnology: The Technology for the 21th Century. The Second International Conference on Technology Foresight, 27-28 February, 1-12pp. Tokyo.
  • Xing, B., Yang, D., Guo, W., Liang, Z.,Yan, X., Zhu, Y., Liu, Y. (2015).Ag+ as a more effective elicitor for production of tanshinones than phenolic acids in Salvia miltiorrhiza hairy bulbs. Molecules 20(1):309–324.https://doi.org/10.3390/molecules20010309
  • Xing, B., Yang, D., Guo, W., Liang, Z., Yan, X., Zhu, Y., Liu, Y. (2015). Ag+ as a more effective elicitor for production of tanshinones than phenolic acids in Salvia miltiorrhiza hairy bulbs. Molecules 20(1): 309–324.https://doi.org/10.3390/molecules20010309
  • Xu, Z.P., Zeng, Q.P., Lu, G.Q., Yu, A.B. (2006). Inorganic nanoparticles as carriers for efficient cellular delivery. Chemical Engineering Science. 61(3):1027-1040. https://doi.org/10.1016/j.ces.2005.06.019
  • Zhang, P., Ma, Y., Zhang, Z., He, X., Guo, Z., Tai, R.,Chai, Z. (2012).Comparative toxicity of nanoparticulate/bulk Yb2O3 and YbCl3 to cucumber (Cucumissativus). Environmental Science and Technology 46(3):1834–1841.https://doi.org/10.1021/es2027295
  • Zhang, C.H., Yan, Q., Cheuki, W.K., Wu, J.Y. (2004). Enhancement of tanshinone production in Salvia miltiorrhiza hairy bulb culture by Ag+ elicitation and nutrient feeding. Planta Medica, 70(2):147–151. https://doi.org/10.1055/s-2004-815492
  • Zhang, B., Zheng, L.P., Li, Y.W., Wang, J.W. (2013). Stimulation of artemisinin production in Artemisia annua hairy bulbs by Ag-SiO2 core-shell nanoparticles. Current Nanoscience, 9(3):363–370. https://doi.org/10.2174/1573413711309030012

Responses of Allium cepa L. exposed to silver nanoparticles

Yıl 2021, , 599 - 605, 15.12.2021
https://doi.org/10.31015/jaefs.2021.4.20

Öz

The study was aimed to determine the gallic acid, rutin and quercetin contents and yield of Narli onion genotype (Allium cepa L.,) exposed to four different doses (0, 25, 50, 75, 100 mg L-1) of silver nanoparticles (AgNPs)for30 days, after planting the onion bulbs, attwo-week intervals. Quercetin, rutinand gallic acid contents in the leaves and bulbs of onion plants were determined.While the quercetin content was the highest in 25 mg L-1ofAgNPs treatment (575.0 ± 10.39 µg g-1)in the bulb parts, gallic acid content reachedtothe highest rate in 50 mg L-1 of AgNPs(3605.8 ± 90.96µg g-1), inthe onion bulb, compared to the control (2819.3 ± 65.72µg g-1).The content of rutinwere enhanced in 25 (19.72 ± 0.28µg g-1), 50 (21.66 ± 0.57µg g-1) and 75 mg L-1(31.08 ± 0.53 µg g-1) of AgNPs treatments, but it was significantly close to the control (7.15 ± 0.93µg g-1), in100 mg L-1(10.92 ± 0.38 µg g-1), in bulb parts.Chlorophyll content showed reducesin all doses, except for25 mg L-1 of AgNPs treatment. Total yield enhanced in treatments of AgNPs, but the highest increase was obtained in treatment of 50 mg L-1 of AgNPs (97.49 ± 0.92 µg g-1). The analysis of quercetin, rutin and gallic acid contents were performed by high performance liquid chromatography (HPLC), and Chlorophyll was determined by SPAD.

Kaynakça

  • Ahmed, M., Karns, M., Goodson, M., Rowe, J., Hussain, S., Schlager, J., Hong, Y. (2008). DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicology and Applied Pharmacology, 233(3):404-410.https://doi.org/10.1016/j.taap.2008.09.015
  • Asare, N., Ornek, C., Sandberg, W.J., Refsnes, M., Schwarze, P., Kruszewski, M., Brunborg, G. (2012).Cytotoxic and genotoxic effects of silver nanoparticles in testicular cells. Toxicology, 291(1-3):65-72.https://doi.org/10.1016/j.tox.2011.10.022
  • AshaRani, P.V., Mun, G.L.K., Hande, M.P., Valiyaveettil, S. (2009). Cytotoxicity and Genotoxicity of Silver Nanoparticles in Human Cells. ACS Nano,3(2):279-290.https://doi/10.1021/nn800596w
  • Babu, K., Deepa, M.A., Gokul, Shankar, S., Sadananda, R. (2008). Effect of nano-silver on cell division and mitotic chromosomes: a prefatort siren. The International Journal of Nanotechnology, 2(2): 1-7.
  • Blaser, S.A., Scheringer, M., MacLeod, M., Hungerbühler, K. (2008). Estimation of cumulative aquatic exposure and risk due to silver: Contribution of nano-functionalized plastics and textiles, Science of the Total Environment,390(2-3):396-409.https://doi.org/10.1016/j.scitotenv.2007.10.010
  • Cıracı, S., Ozbay,E., Gulseren, O., Demir, H.V., Bayındır, M., Oral, A., Senger, T., Aydınlı, A., Dana, A.(2005).Nanotechnology in Turkey. TUBITAK Journal of Science and Technology.
  • Colvin, V.L. (2003). The potential environmental impact of engineered nanomaterials.Nature Biotechnology.21(10): 1166-1170.
  • Corredor, E., Testillano, P., Coronado, M.J, Gonzalez-Melendi, P., Fernandez-Pacheco, R., Marquina C, Risueño, M.C. (2009). Nanoparticle penetration and transport in living pumpkin plants: in situ subcellular identification. BMC Plant Biology, 9(45):1-11.https://doi.org/10.1186/1471-2229-9-45
  • Chung, I.M, Rajakumar, G.,Thiruvengadam, M.(2018). Effect of silver nanoparticles on phenolic compounds production and biological activities in hairy bulb cultures of Cucumisanguria.ActaBiologicaHungarica, 69(1):97–109.http://doi.org/10.1556/018.68.2018.1.8
  • Duarte, D.R., Castillo, E., Bárzana, E., López-Munguía, A. (2000). Capsaicin hydrolysis by Candidaantarcticalipase. Biotechnol Letters, 22:1811–1814.https://doi.org/10.1023/A:1005622704504 Duncan, T.V. (2011). Applications of Nanotechnolgyin Food Packaging and Food Safety: Barrier Materials, Antimicrobials and Sensors. Journal of Colloid and Interface Sciences, 363(1):1-24. https://doi.org/10.1016/j.jcis.2011.07.017
  • FAO, 2020.Crops.http://www.fao.org/faostat/en/#data/QC/visualize
  • Ge, X. andWu, J. (2005).Tanshinone production and isoprenoid pathways in Salvia miltiorrhiza hairy bulbs induced by Ag+ and yeast elicitor. Plant Science, 168(2):487–49.https://doi.org/10.1016/j.plantsci.2004.09.012
  • Ghosh, M.M.J., Sinha, S., Çakrabort, A., Mallick, S.K., Bandyopadhyaye, M., Mukherjee, A.(2012). In vitro and in vivo genotoxicity of silver nanoparticles. Mutation Research/Genetic Toxicology and Environmental Mutagenesis,749(1-2):60-69.https://10.1016/j.mrgentox.2012.08.007
  • Griffiths, G., Trueman, L., Crowther, T., Thomas, B., Smith, B. (2002). Onions - a globalbenefit to health. Phytotherapy Research,16: 603-615.https://doi.org/10.1002/ptr.1222
  • Hackenberg, S., Scherzed, A., Kessler, M., Hummel, S., Technau, A., Froelich, K., Ginzkey, C., Koehler, C., Hagen, R., Kleinsasser, N. (2011). Silver nanoparticles: Evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cells. Toxicology Letters, 201(1):27-33. https://doi.org/10.1016/j.toxlet.2010.12.001
  • HaghighiPak, Z., Abbaspour, A., Karimi, N., Fattahi, A.(2016). Eco-Friendly Synthesis and Antimicrobial Activity of Silver Nanoparticles Using Dracocephalummoldavica Seed Extract. Applied Sciences 6(3):69.https://doi.org/10.3390/app6030069
  • Hsu, C.K., Chiang, B.H., Chen, Y.S., Yang, J.H., Liu, C.L. (2008). Improving the Antioxidant Activity of Buckwheat (FagopyrumtataricumGaertn) Sprout with Trace Element Water. Food Chemistry 108(2): 633-641. https://doi.org/10.1016/j.foodchem.2007.11.028
  • Jiang, H.S., Li, M., Chang, F.Y., Li,W.,Yin, L.Y.(2012). Physiological analysis of silver nanoparticles and AgNO3 toxicity to Spirodelapolyrhiza. Environmental Toxicology and Chemistry,31(8):1880–1886. https://doi.org/10.1002/etc.1899
  • Kaphle, A., Navya, P.N., Umapathi, A.,Daim, H.K. (2018). Nanomaterials for agriculture, food and environment: applications, toxicity and regulation. Environmental Chemistry Letters, 16(1):43-58.https://doi.org/10.1007/s10311-017-0662-y
  • Kim, L.S., Kim, K.S, Park, H.C.(2004). Introduction and Nutritional Evaluation of Buckwheat Sprouts as a New Vegetable. Food Research International, 37(4):319-327. https://doi.org/10.1016/j.foodres.2003.12.008
  • Khodakovskaya, M.V, Silva,De.,Biris, A.S., Dervishi, E.,Villagarcia, H.(2012). Carbon Nanotubes Induce Growth Enhancement of Tobacco Cells. ACS Nano, 6(3):2128-2135.https://doi.org/10.1021/nn204643g
  • Kumar. A., Chisti, Y., Banerjee, U. (2013). Synthesis of metallic nanoparticles using plant extracts: Biotechnology Advances, 31(2):346-356. https://doi.org/10.1016/j.biotechadv.2013.01.003
  • Kim, Y.K., Lee, Y.S., Jeong, D.H., Cho, M.H. (2007). Antimicrobial effect of silver nanoparticles.Nanomedicine, 3(1):95–101.https://doi.org/10.1016/j.nano.2006.12.001
  • Lam, C.W., James, J.T., Mc. Cluskey, R., Hunter, R.L.(2004). Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicology Science 77(1):126-134. https://doi.org/10.1093/toxsci/kfg243
  • Ma, X., Geiser-Lee, J., Deng, Y., Kolmakov, A. (2010). Interactions between engineered nanoparticles (ENPs) and plants: Phytotoxicity, uptake and accumulation.Science of the Total Environment, 408(16):3053–3061.https://doi.org/10.1016/j.scitotenv.2010.03.031
  • Mamta, K., Mukherjee, A., Chandrasekaran, N.(2009). Genotoxicity of silver nanoparticles inAlliumcepa. Science of the Total Environment,407(19):5243-5246.https://doi.org/10.1016/j.scitotenv.2009.06.024
  • Morimitsu, Y., Morioka, J., Kawakishi, S. (1992). Inhibitors of platelet aggregation generated from mixtures of Allium species and/or S-alk(en)nyl- L-cysteine sulfoxides. Journal of Agricultural Food Chemistry 40(3):368-372.https://doi.org/10.1021/jf00015a002
  • Narayanan, K.B., Sakthivel, N.(2010). Biologicol Synthesis of Metal Nanoparticles By Microbes, Advances in Colloidal and Interface Sciences. 156(1-2):1-13.https://doi.org/10.1016/j.cis.2010.02.001
  • Nel, A., Xia, T., Madler, L., Li, N. (2006).Toxic Potential of Materials at the Nanolevel.Science. 311(5761):622-627.https://doi.org/10.1126/science.1114397
  • Oberdörster, G., Oberdörster, E., Oberdörster, J.(2005). Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles. Environmental Health Perspectives. 113:823-839.https://doi.org/10.1289/ehp.7339
  • Oberdörster, G. (1996). Effects of Ultrafine Particles on the Lungs Aerosol Inhalation in Potential Relationship with Particles; Marijnissen, JMC., Gradon, L., Eds.; Kluwer Academic: Dordrecht, Hollanda; p. 165.
  • Oukarroum, A., Bras, S., Perreault, F., Popovic, R.(2012). Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliellatertiolecta. Ecotoxicology and Environmental Safety 78:80–85.https://doi.org/10.1016/j.ecoenv.2011.11.012
  • Park, H.J., Cha, H.C. (2008). Differences of Flavonols Profiles in Various Grape Cultivars Separated by High Performance Liquid Chromatography. Horticulture Environment and Biotechnology, 49(1): 35–41.
  • Patil, B.S., Pike, L.M., Yoo, K.S.(1995).Variation in the quercetin content in different colored onions (Allium cepa L.) owing to location, growth stage and soil type. Journal of American Society of Horticultural Science, 120:909–913.https://doi.org/10.21273/jashs.120.6.909
  • Qian, H., Peng, X., Han, X., Ren,J., Sun, L., Fu., Z.(2013). Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana.Journal of Environmental Science. 25(9):1947–1956.https://doi.org/10.1016/S1001-0742(12)60301-5
  • Sefer, F. (2000).Investigation of Levels of Some Secondary Metabolites in Bitter and Sweet Apricots.Ege University Graduate School of Natural and Applied Sciences, PhD Thesis, 136 p, İzmir, Turkey.
  • Sefer, F. (2000).Investigation of Levels of Some Secondary Metabolites in Bitter and Sweet Apricots.Ege University Graduate School of Natural and Applied Sciences, PhD Thesis, 136p, İzmir, Turkey.
  • Spinoso-Castillo, J.L., Chavez-Santoscoy, R.A., Bogdanchikova, N., Pérez-Sato, J.A.,Morales-Ramos, V., Bello-Bello, J.J.(2017). Antimicrobial and hormetic effects of silver nanoparticles on in vitro regeneration of vanilla (Vanilla planifolia Jacks. ex Andrews) using a temporary immersion system. Plant Cell Tissues and Organic Culture, 129(2):195–207.https://doi.org/10.1007/s11240-017-1169-8.
  • Tegart, G. (2003).Nanotechnology: The Technology for the 21th Century. The Second International Conference on Technology Foresight, 27-28 February, 1-12pp. Tokyo.
  • Xing, B., Yang, D., Guo, W., Liang, Z.,Yan, X., Zhu, Y., Liu, Y. (2015).Ag+ as a more effective elicitor for production of tanshinones than phenolic acids in Salvia miltiorrhiza hairy bulbs. Molecules 20(1):309–324.https://doi.org/10.3390/molecules20010309
  • Xing, B., Yang, D., Guo, W., Liang, Z., Yan, X., Zhu, Y., Liu, Y. (2015). Ag+ as a more effective elicitor for production of tanshinones than phenolic acids in Salvia miltiorrhiza hairy bulbs. Molecules 20(1): 309–324.https://doi.org/10.3390/molecules20010309
  • Xu, Z.P., Zeng, Q.P., Lu, G.Q., Yu, A.B. (2006). Inorganic nanoparticles as carriers for efficient cellular delivery. Chemical Engineering Science. 61(3):1027-1040. https://doi.org/10.1016/j.ces.2005.06.019
  • Zhang, P., Ma, Y., Zhang, Z., He, X., Guo, Z., Tai, R.,Chai, Z. (2012).Comparative toxicity of nanoparticulate/bulk Yb2O3 and YbCl3 to cucumber (Cucumissativus). Environmental Science and Technology 46(3):1834–1841.https://doi.org/10.1021/es2027295
  • Zhang, C.H., Yan, Q., Cheuki, W.K., Wu, J.Y. (2004). Enhancement of tanshinone production in Salvia miltiorrhiza hairy bulb culture by Ag+ elicitation and nutrient feeding. Planta Medica, 70(2):147–151. https://doi.org/10.1055/s-2004-815492
  • Zhang, B., Zheng, L.P., Li, Y.W., Wang, J.W. (2013). Stimulation of artemisinin production in Artemisia annua hairy bulbs by Ag-SiO2 core-shell nanoparticles. Current Nanoscience, 9(3):363–370. https://doi.org/10.2174/1573413711309030012
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bahçe Bitkileri Yetiştirme ve Islahı
Bölüm Makaleler
Yazarlar

Yelderem Akhoundnejad 0000-0002-1435-864X

Özgür Karakaş 0000-0003-3339-4811

Yayımlanma Tarihi 15 Aralık 2021
Gönderilme Tarihi 2 Ağustos 2021
Kabul Tarihi 22 Kasım 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Akhoundnejad, Y., & Karakaş, Ö. (2021). Responses of Allium cepa L. exposed to silver nanoparticles. International Journal of Agriculture Environment and Food Sciences, 5(4), 599-605. https://doi.org/10.31015/jaefs.2021.4.20

by-nc.png

International Journal of Agriculture, Environment and Food Sciences dergisinin içeriği, Creative Commons Alıntı-GayriTicari (CC BY-NC) 4.0 Uluslararası Lisansı ile yayınlanmaktadır. Söz konusu telif, üçüncü tarafların içeriği uygun şekilde atıf vermek koşuluyla, ticari olmayan amaçlarla paylaşımına ve uyarlamasına izin vermektedir. Yazarlar, International Journal of Agriculture, Environment and Food Sciences dergisinde yayınlanmış çalışmalarının telif hakkını elinde tutar. 

Web: dergipark.org.tr/jaefs  E-mail: editor@jaefs.com WhatsApp: +90 850 309 59 27