Araştırma Makalesi
BibTex RIS Kaynak Göster

Dıştan Uygulanan H2O2’in Tuz Stresi Altındaki iki Patlıcan Genotipinde (Solanum melongena L.) Antioksidan Mekanizmasını İyileştirmesi

Yıl 2022, Cilt: 7 Sayı: 4, 465 - 471, 31.12.2022
https://doi.org/10.35229/jaes.1134647

Öz

Tuzluluk, bitkisel üretimi doğrudan etkileyen bir çevre sorunudur. H2O2’nin yapraktan uygulanması, bitkilerin abiyotik stres toleransını uyaran önemli bir süreçtir. Etkili bir sinyal molekülü olarak H2O2, bitkilerde tuz stresinin zararlı etkilerini azaltabilir. Bu çalışmada, Mardin (tuza dayanıklı) ve Artvin (tuza duyarlı) patlıcan genotiplerine dıştan uygulanan H2O2 ve H2O2 sentaz inhibitörü (DPI) uygulamasının olası etkileri araştırılmıştır. Patlıcan fidelerinin yapraklarına 48 saat boyunca H2O2 ve DPI uygulamalarının orta derecede tuzluluğa maruz kalan bu patlıcan genotiplerinde MDA içeriği ve Katalaz ve Süperoksit dismutaz aktivitelerinin olası katılımı araştırılmıştır. İçsel H2O2 ve MDA miktarları tuz stresi ile artış gösterirken, H2O2 uygulaması ile azalma göstermiştir. Yapraktan püskürtme yoluyla uygulanan H2O2 'nin antioksidan enzim aktivitelerini arttırdığı görülmüştür. Bu çalışma, tuza dayanıklı Mardin genotipinin, tuza duyarlı Artvin genotipine göre dıştan uygulanan H2O2 ve DPI' dan daha fazla etkilendiğini göstermektedir.

Destekleyen Kurum

Bulunmamaktadır

Proje Numarası

-

Kaynakça

  • Ahmad, P. & Umar, S. (2011). Oxidative stress Role of antioxidants in plants. New Delhi: Studium Press, 56-62.
  • Ashraf, M. (2009). Biotechnological approach of improving plant salt tolerance using antioxidants as markers, Biotechnology Advances, 27(1), 84–93.
  • Bhatnagar-Mathur, P., Vadez, V. & Sharma, K.K. (2008). Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Japan Plant Cell Reports, 27, 411–424.
  • Cakmak I. & Marschner H. (1992). Magnesium deficiency and high light intensity enhance activities of superoxide dismutase ascorbate peroxidase and glutathione reductase in bean leaves. Plant Physiology 98(4), 1222-1227.
  • Chen, V.P. & Li, P.H. (2002). Membrane stabilization by abscisic acid under cold aids proline in alleviating chilling injury in maize (Zea mays L) cultured cells. Plant Cell and Environment, 25, 955–962.
  • de Azevedo Neto, A.D., Prisco, J.T., Ene´as-Filho, J., Medeiros, J.V. & Gomes-Filho, E. (2005). Hydrogen peroxide pre-treatment induces salt stress acclimation in maize plants. Journal of Plant Physiology, 162(10), 1114-1122.
  • Fedina, I.S., Nedeva, D. & Çiçek, N. (2009). Pre-treatment with H2O2 induces salt tolerance in barley seedlings. Biologia Plantarum, 53, 321–324.
  • Furtana Baysal, G. & Tıpırdamaz, R. (2010). Physiological and antioxidant response of three cultivars of cucumber (Cucumis sativus L) to salinity. Turkish Journal of Biology, 34: 287–296.
  • Gao, J., Thelen, K.D., Min, D.H., Smith, S., Hao, X. & Gehl, R. (2010). Effects of manure and fertilizer applications on canola oil content and fatty acid composition. Agronomy Journal, 102, 790-797.
  • Gechev, T., Gadjev, I., Van Breusegem, F., Inzé, D., Dukiandjiev, S., Toneva, V. & Minkov, I. (2002). Hydrogen peroxide protects tobacco from oxidative stress by inducing a set of antioxidant enzymes. Cellular and Molecular Life Sciences, 9: 708-714.
  • Giannopolitis, C.N. & Ries, S.K. (1977). Superoxide dismutases: I Occurrence in higher plants. Plant Physiology, 59(2), 309-314.
  • Gondim, F.A., Gomes-Filho, E. & Costa, J.H. (2012). Catalase plays a key role in salt stress acclimation induced by hydrogen peroxide pretreatment in maize. Plant Physiology and Biochemistry, 56, 62–71.
  • Güler, N.S. & Pehlivan, N. (2016). Exogenous low-dose hydrogen peroxide enhances drought tolerance of soybean (Glycine max L) through inducing antioxidant system, Acta biologica Hungarica, 67, 169-183.
  • Flowers, T.J. & Colmer, T.D. (2008). Salinity tolerance in halophytes. New Phytologist, 179, 945–963.
  • Fridovich, I. (1986). Biological effects of the superoxide radical. Archives of Biochemistry and Biophysics, 247(1), 1-11.
  • Hasanuzzaman, M. & Fujita, M. (2012). Selenium and plant health: the physiological role of selenium In: Aomori C Hokkaido M (eds) Selenium: sources functions and health effects. New York: Nova Publishers, 12-96.
  • Hasanuzzaman, M., Nahar, K., Hossain, M.S., Mahmud, J.A., Rahman, A., Inafuku, M., Oku, H. & Fujita, M. (2017). Coordinated actions of glyoxalase and antioxidant defense systems in conferring abiotic stress tolerance in plants. International Journal of Molecular Science, 18, 200-213.
  • Hoagland, D.R. & Arnon, D. I. (1938). The water-culture method for growing plants without soil Berkeley USA: College of Agriculture University of California.
  • Kim, S.Y., Lim, J.H. & Park, M.R. (2005). Enhanced antioxidant enzymes are associated with reduced hydrogen peroxide in barley roots under saline stress. BMB Reports, 38, 218–224.
  • Lutts S, Kinet J.M. & Bouharmont J. (1996). NaCl-induced senescence in leaves of rice (Oryza sativa L) cultivars differing in salinity resistance. Annals of Botany, 78, 389–398.
  • Mahajan, S. & Tuteja, N. (2005). Cold salinity and drought stresses: an overview. Archives of Biochemistry and Biophysics, 444, 139–158.
  • Mbarki S., Skalicky, M., Talbi, O., Chakraborty, A., Hnilicka, F., Hejnak, V., Zivcak, M., Brestic, M., Cerda, A. & Abdelly, C. (2020). Performance of Medicago sativa grown in clay soil favored by compost or farmyard manure to mitigate salt stress. Agronomy. 10 (1), 94-98.
  • Mhamdi, A., Queval, G., Chaouch, S., Vanderauwera, F. & Van Breusegem, F. (2010). Catalase function in plants: A focus on Arabidopsis mutants as stress-mimic models, Journal of Experimental Botany, 61, 4197-4220.
  • Mishra, A. & Choudhuri, M.A. (1999). Effects of salicylic acid on heavy metal-induced membrane deterioration mediated by lipoxygenase in rice. Biologia Plantarum, 42, 409–415.
  • Munns, R., James, R.A. & Läuchli, A. (2006). Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany, 57,1025-1043.
  • Munns, R. & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Reviews of Plant Biology, 59, 651–681.
  • Neill, S., Desikan, R. & Hancock, J.T., (2002). Hydrogen peroxide signalling, Current Opinion in Plant Biology, 5, 388–395.
  • Nohar, S.D., Keshaw, P.R., Ankit, Y., Shobhana, R. & Bharat Lal, S. (2015). Fluoride Contamination of Groundwater and Health Hazard in Central, India Journal of Water Resource and Protection, 7, 1416-1428.
  • Parida, A.K., Das, A.B. & Mohanty, P. (2004). Investigations on the antioxidative defence responses to NaCl stress in a mangrove Bruguiera parviflora: differential regulations of isoforms of some antioxidative enzymes. Plant Growth Regulation, 42(3), 213–226.
  • Parihar, P., Singh, S., Singh, R., Singh, V.P. & Prasad, S.M. (2015). Effect of salinity stress on plants and its tolerance strategies: a review. Environmental Science and Pollution Research, 22, 4056–4075.
  • Quan, L. J., Zhang, B., Shi, W.W. & Li, H.Y. (2008). Hydrogen Peroxide in Plants: a Versatile Molecule of the Reactive Oxygen Species Network. Journal of Integrative Plant Biology, 50, 2-18.
  • Sathiyaraj, G., Srinivasan, S., Kim, Y.J., Lee, O.R. & Parvin, S. (2014). Acclimation of hydrogen peroxide enhances salt tolerance by activating defense-related proteins in Panax ginseng CA Meyer Netherlands, Molecular Biology Reports, 41, 3761-3771.
  • Tanou, G., Molassiotis, A. & Diamantidis, G. (2009b). Induction of reactive oxygen species and necrotic death like destruction in strawberry leaves by salinity. Environmental and Experimental Botany, 65, 270–281.
  • Velikova, V., Yordanov, I. & Edreva, A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Science, 151, 59–66.
  • Yaşar, F. (2003). Tuz stresi altındaki patlıcan genotiplerinde bazı antioksidant enzim aktivitelerinin in vitro ve in vivo olarak incelenmesi, Doktora Tezi Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü, Van 15-36.
  • Zhang, F., Wang, Y., Yang, Y., Wu, H. & Wang, D. (2007). İnvolvement of hydrogen peroxide and nitric oxide in salt resistance in the calluses of Populus euphratica. Plant Cell and Environment, 30: 775-785.
  • Zhu, J.K. (2004). Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology, 6(5): 441-445.
  • Zhao, L., Zhang, F., Guo, J., Yang, Y., Li, B. & Zhang, L. (2004). Nitric oxide functions as a signal in salt resistance in the calluses from two ecotypes of reed. Plant Physiology, 134, 849-857.

Improvement of the Antioxidant Mechanism by Exogenous H2O2 in Two genotypes of Eggplant (Solanum melongena L.) Under Salt Stress

Yıl 2022, Cilt: 7 Sayı: 4, 465 - 471, 31.12.2022
https://doi.org/10.35229/jaes.1134647

Öz

Salinity is an increasing environmental problem that directly affects crop production. Foliar application of H2O2 stimulates the abiotic stress tolerance of plants is an important process. As an effective signaling molecule, H2O2 can reduce the deleterious effects of salt stress in plants. Application of exogenous H2O2 and H2O2 synthase inhibitor (DPI) to the eggplant genotypes Mardin (salt-tolerant) and Artvin (salt-sensitive) showed differential tolerance to salinity. We investigated the possible involvement of MDA content and activities of Catalase and Superoxide dismutase in these eggplant genotypes by foliar applications to seedling of H2O2 and DPI 48 hours before exposure to moderate salinity. H2O2 and MDA content increased upon salt stress and decreased upon H2O2 application. Antioxidant enzyme analysis showed that foliar spraying of H2O2 augmented antioxidant enzyme activities. This study shows that the salt-tolerant Mardin genotype is more affected by exogenously applied H2O2 and DPI than the salt-sensitive Artvin genotype.

Proje Numarası

-

Kaynakça

  • Ahmad, P. & Umar, S. (2011). Oxidative stress Role of antioxidants in plants. New Delhi: Studium Press, 56-62.
  • Ashraf, M. (2009). Biotechnological approach of improving plant salt tolerance using antioxidants as markers, Biotechnology Advances, 27(1), 84–93.
  • Bhatnagar-Mathur, P., Vadez, V. & Sharma, K.K. (2008). Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Japan Plant Cell Reports, 27, 411–424.
  • Cakmak I. & Marschner H. (1992). Magnesium deficiency and high light intensity enhance activities of superoxide dismutase ascorbate peroxidase and glutathione reductase in bean leaves. Plant Physiology 98(4), 1222-1227.
  • Chen, V.P. & Li, P.H. (2002). Membrane stabilization by abscisic acid under cold aids proline in alleviating chilling injury in maize (Zea mays L) cultured cells. Plant Cell and Environment, 25, 955–962.
  • de Azevedo Neto, A.D., Prisco, J.T., Ene´as-Filho, J., Medeiros, J.V. & Gomes-Filho, E. (2005). Hydrogen peroxide pre-treatment induces salt stress acclimation in maize plants. Journal of Plant Physiology, 162(10), 1114-1122.
  • Fedina, I.S., Nedeva, D. & Çiçek, N. (2009). Pre-treatment with H2O2 induces salt tolerance in barley seedlings. Biologia Plantarum, 53, 321–324.
  • Furtana Baysal, G. & Tıpırdamaz, R. (2010). Physiological and antioxidant response of three cultivars of cucumber (Cucumis sativus L) to salinity. Turkish Journal of Biology, 34: 287–296.
  • Gao, J., Thelen, K.D., Min, D.H., Smith, S., Hao, X. & Gehl, R. (2010). Effects of manure and fertilizer applications on canola oil content and fatty acid composition. Agronomy Journal, 102, 790-797.
  • Gechev, T., Gadjev, I., Van Breusegem, F., Inzé, D., Dukiandjiev, S., Toneva, V. & Minkov, I. (2002). Hydrogen peroxide protects tobacco from oxidative stress by inducing a set of antioxidant enzymes. Cellular and Molecular Life Sciences, 9: 708-714.
  • Giannopolitis, C.N. & Ries, S.K. (1977). Superoxide dismutases: I Occurrence in higher plants. Plant Physiology, 59(2), 309-314.
  • Gondim, F.A., Gomes-Filho, E. & Costa, J.H. (2012). Catalase plays a key role in salt stress acclimation induced by hydrogen peroxide pretreatment in maize. Plant Physiology and Biochemistry, 56, 62–71.
  • Güler, N.S. & Pehlivan, N. (2016). Exogenous low-dose hydrogen peroxide enhances drought tolerance of soybean (Glycine max L) through inducing antioxidant system, Acta biologica Hungarica, 67, 169-183.
  • Flowers, T.J. & Colmer, T.D. (2008). Salinity tolerance in halophytes. New Phytologist, 179, 945–963.
  • Fridovich, I. (1986). Biological effects of the superoxide radical. Archives of Biochemistry and Biophysics, 247(1), 1-11.
  • Hasanuzzaman, M. & Fujita, M. (2012). Selenium and plant health: the physiological role of selenium In: Aomori C Hokkaido M (eds) Selenium: sources functions and health effects. New York: Nova Publishers, 12-96.
  • Hasanuzzaman, M., Nahar, K., Hossain, M.S., Mahmud, J.A., Rahman, A., Inafuku, M., Oku, H. & Fujita, M. (2017). Coordinated actions of glyoxalase and antioxidant defense systems in conferring abiotic stress tolerance in plants. International Journal of Molecular Science, 18, 200-213.
  • Hoagland, D.R. & Arnon, D. I. (1938). The water-culture method for growing plants without soil Berkeley USA: College of Agriculture University of California.
  • Kim, S.Y., Lim, J.H. & Park, M.R. (2005). Enhanced antioxidant enzymes are associated with reduced hydrogen peroxide in barley roots under saline stress. BMB Reports, 38, 218–224.
  • Lutts S, Kinet J.M. & Bouharmont J. (1996). NaCl-induced senescence in leaves of rice (Oryza sativa L) cultivars differing in salinity resistance. Annals of Botany, 78, 389–398.
  • Mahajan, S. & Tuteja, N. (2005). Cold salinity and drought stresses: an overview. Archives of Biochemistry and Biophysics, 444, 139–158.
  • Mbarki S., Skalicky, M., Talbi, O., Chakraborty, A., Hnilicka, F., Hejnak, V., Zivcak, M., Brestic, M., Cerda, A. & Abdelly, C. (2020). Performance of Medicago sativa grown in clay soil favored by compost or farmyard manure to mitigate salt stress. Agronomy. 10 (1), 94-98.
  • Mhamdi, A., Queval, G., Chaouch, S., Vanderauwera, F. & Van Breusegem, F. (2010). Catalase function in plants: A focus on Arabidopsis mutants as stress-mimic models, Journal of Experimental Botany, 61, 4197-4220.
  • Mishra, A. & Choudhuri, M.A. (1999). Effects of salicylic acid on heavy metal-induced membrane deterioration mediated by lipoxygenase in rice. Biologia Plantarum, 42, 409–415.
  • Munns, R., James, R.A. & Läuchli, A. (2006). Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany, 57,1025-1043.
  • Munns, R. & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Reviews of Plant Biology, 59, 651–681.
  • Neill, S., Desikan, R. & Hancock, J.T., (2002). Hydrogen peroxide signalling, Current Opinion in Plant Biology, 5, 388–395.
  • Nohar, S.D., Keshaw, P.R., Ankit, Y., Shobhana, R. & Bharat Lal, S. (2015). Fluoride Contamination of Groundwater and Health Hazard in Central, India Journal of Water Resource and Protection, 7, 1416-1428.
  • Parida, A.K., Das, A.B. & Mohanty, P. (2004). Investigations on the antioxidative defence responses to NaCl stress in a mangrove Bruguiera parviflora: differential regulations of isoforms of some antioxidative enzymes. Plant Growth Regulation, 42(3), 213–226.
  • Parihar, P., Singh, S., Singh, R., Singh, V.P. & Prasad, S.M. (2015). Effect of salinity stress on plants and its tolerance strategies: a review. Environmental Science and Pollution Research, 22, 4056–4075.
  • Quan, L. J., Zhang, B., Shi, W.W. & Li, H.Y. (2008). Hydrogen Peroxide in Plants: a Versatile Molecule of the Reactive Oxygen Species Network. Journal of Integrative Plant Biology, 50, 2-18.
  • Sathiyaraj, G., Srinivasan, S., Kim, Y.J., Lee, O.R. & Parvin, S. (2014). Acclimation of hydrogen peroxide enhances salt tolerance by activating defense-related proteins in Panax ginseng CA Meyer Netherlands, Molecular Biology Reports, 41, 3761-3771.
  • Tanou, G., Molassiotis, A. & Diamantidis, G. (2009b). Induction of reactive oxygen species and necrotic death like destruction in strawberry leaves by salinity. Environmental and Experimental Botany, 65, 270–281.
  • Velikova, V., Yordanov, I. & Edreva, A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Science, 151, 59–66.
  • Yaşar, F. (2003). Tuz stresi altındaki patlıcan genotiplerinde bazı antioksidant enzim aktivitelerinin in vitro ve in vivo olarak incelenmesi, Doktora Tezi Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü, Van 15-36.
  • Zhang, F., Wang, Y., Yang, Y., Wu, H. & Wang, D. (2007). İnvolvement of hydrogen peroxide and nitric oxide in salt resistance in the calluses of Populus euphratica. Plant Cell and Environment, 30: 775-785.
  • Zhu, J.K. (2004). Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology, 6(5): 441-445.
  • Zhao, L., Zhang, F., Guo, J., Yang, Y., Li, B. & Zhang, L. (2004). Nitric oxide functions as a signal in salt resistance in the calluses from two ecotypes of reed. Plant Physiology, 134, 849-857.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Fahriye Öcal Özdamar 0000-0003-0584-2242

Gökçen Baysal Furtana 0000-0001-6931-2430

Hayri Duman 0000-0003-2795-9791

Rukiye Tıpırdamaz 0000-0003-2322-6646

Proje Numarası -
Erken Görünüm Tarihi 16 Aralık 2022
Yayımlanma Tarihi 31 Aralık 2022
Gönderilme Tarihi 23 Haziran 2022
Kabul Tarihi 4 Aralık 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 7 Sayı: 4

Kaynak Göster

APA Öcal Özdamar, F., Baysal Furtana, G., Duman, H., Tıpırdamaz, R. (2022). Improvement of the Antioxidant Mechanism by Exogenous H2O2 in Two genotypes of Eggplant (Solanum melongena L.) Under Salt Stress. Journal of Anatolian Environmental and Animal Sciences, 7(4), 465-471. https://doi.org/10.35229/jaes.1134647


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                                  13369                                         EBSCOHost                                                        Scilit                                                    CABI   
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AAS