Kırmızı Alglerden Gracilaria verrucosa'nın Biyomas Verimi ve Kimyasal Kompozisyonu Üzerine Fotoperiyot Uygulamalarının Etkisinin Belirlenmesi
Yıl 2023,
Cilt: 8 Sayı: 4, 756 - 763, 31.12.2023
İlknur Ak
,
Melis Yılmaz
,
Gülen Türker
Öz
Bu çalışmada kırmızı alglerden Gracilaria verrucosa (Hudson) Papenfuss tank kültür sistemlerinde 100 µmol foton m-2 s -1 ışık şiddetinde, farklı foto periyotlar (24:00, 16:08, 12:12 ve 08:16 (A:K)) uygulanarak algin büyüme hızında ve kimyasal içeriğinde meydana gelen değişimler izlenmiştir. Çalışma sonucunda deneme grupları arasında en yüksek büyüme hızı 16:8 (A:K) foto periyot uygulanan grupta bulunmuştur. Deneme gruplarının klorofil a içerikleri aydınlanma süresi arttıkça azalmıştır. Büyüme hızı arttıkça algin fikosiyanin ve fikoeritrin içeriklerinin azaldığı belirlenmiştir. Çalışmada grupların ham protein içerikleri %9,14±0,13 (24:24) ile %10,92±0,25 (12:12) arasında değişim göstermiştir. Tüm deneme gruplarının yağ içerikleri %1’den az bulunmuştur. Alg talluslarının kül içerikleri arasında istatistiksel olarak önemli derece farklılıkların olmadığı görülmüştür (p>0,05). Deneme gruplarının agar içerikleri %8,36±0,24– 13,19±1,09 arasında değişim göstermiştir. En yüksek agar içeriği 8:16 foto periyot uygulanan grupta saptanmıştır. Yüksek ışık şiddeti ve uzun aydınlanma sürelerinin algin serbest radikal temizleme aktivitesini arttırdığı çalışma sonucunda saptanmıştır. Deneme gruplarının toplam fenolik madde içerikleri ile 1,82±0,03 (8:16) ile 2,84±0,04 (24:24) mg GAE g−1 ekstrakt arasında değişim göstermiştir. En yüksek toplam flavonoid içeriği 8:16 (A:K) uygulanan grupta saptanmıştır.
Destekleyen Kurum
Bu çalışma Çanakkale Onsekiz Mart Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon birimi
Proje Numarası
Fhd-2021-3677
Teşekkür
Bu çalışma Çanakkale Onsekiz Mart Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon birimi tarafınfan Fhd-2021-3677 proje numaralı ve “Kırmızı Alglerden Gracilaria verrucosa’nın Biyomas Verimi ve Kimyasal Kompozisyonu Üzerine Işık Şiddeti ve Fotoperiyot Uygulamalarının Etkisinin Belirlenmesi” başlıklı proje ile desteklenmiştir
Kaynakça
- Ak, İ., Çetin, Z., Cirik, Ş. & Göksan, T. (2011).
Gracilaria verrucosa (Hudson) Papenfuss culture
using an agricultural organic fertilizer. Fresenius
Environmental Bulletin, 20(8a), 2156-2162.
- Ak, İ., Çankırılıgil, E.C., Türker, G., Sever, O. &
Abomohra, A. (2022). Enhancement of
antioxidant properties of Gongolaria barbata
(Phaeophyceae) by optimization of combined
light intensity and salinity stress. Phcologia,
61(6), 584-594. DOI:
10.1080/00318884.2022.2099136
- Ak, İ. & Türker, G. (2018). Antioxidant Activity of Five
Seaweed Extracts. New Knowledge Journal of
Science / Novo Znanie, 7(2), 149-155.
- Ak, İ. & Türker, G. (2019). Free Radical Scavenging
Activity and Biochemical characteristics of Ulva
rigida (Ulvophyceae) and Arthrospira platensis
(Cyanophyceae). Turkish Journal of Agriculture-
Food Science and Technology, 7, 145-149. DOI:
10.24925/turjaf.v7isp1.145-149.2789
- Ak, İ. & Yücesan, M. (2012). Effect of light intensity on
the pigment composition of Gracilaria verrucosa
(Rhodophyta). Fresenius Environmental Bulletin,
21(2), 337-342.
- AOAC. (2000). Official methods of analysis of AOAC
(Association of Official Analytical Chemists)
International (17th ed.), AOAC
International,Gaithersburg, MD, 1298.
- Brand-Williams, W., Cuvelier, M.E. & Berset, C.
(1995). Use of a free radical method to evaluate
antioxidant activity. LWT - Food Science and
Technology, 28(1), 25-30. DOI: 10.1016/S0023-
6438(95)80008-5
- Briggs, M. & Smith, S. (1993). Macroalgae in
aquaculture: An overview and their possible roles
in shrimp culture. Proceedings of a conference on
marine biotechnology in the Asia Pacific
Bangkok, Thailand. 137-143p.
- Broch, O.J. & Slagstad, D. (2012). Modelling seasonal
growth and composition of the kelp Saccharina
latissima. Journal of Applied Phycology, 24, 759-
776.
- Bunsom, C. & Prathep, A. (2012). Effects of salinity,
light intensity and sediment on growth, pigments,
agar production and reproduction in Gracilaria
tenuistipitata from Songkhla Lagoon in Thailand.
Phycological Research, 60(3), 169-178. DOI:
10.1111/j.1440-1835.2012.00648.x
- Cirik, Ş. & Cirik, S. (2017). Su Bitkileri (Deniz
bitkilerinin biyolojisi, ekolojisi, yetiştirme
teknikleri). İzmir, Ege Üniversitesi Su Ürünleri
Fakültesi Yayınları. 15-47p.
- Cirik, Ş., Şen, E. & Ak, İ. (2010). Brown algae Cystoseira
barbata (Stackhouse) C. Agardh culture and
changes in it chemical composition. Journal of
fisheriessciences.com, 4(4), 354-361. DOI:
10.3153/jfscom.2010038
- Djeridane, A., Yousfi, M., Nadjemi, B., Boutassouna,
D., Stocker, P. & Vidal, N. (2006). Antioxidant
activity of some algerian medicinal plants extracts
containing phenolic compounds. Food Chemistry,
97(4), 654-660. DOI:
10.1016/j.foodchem.2005.04.028
- Falkowski, P.G. & LaRoche, J. (1991). Acclimation to
Spectral Irradiance in Algae. Journal of
Phycology, 27(1), 8-14. DOI: 10.1111/j.0022-
3646.1991.00008.x
- FAO. (2021). The State of World Fisheries and
Aquaculture 2019. Sustainability in action FAO
Fisheries and Aquaculture Department, Rome,
224p.
- Fethi, M. & Ghedifa, A.B. (2019). Optimum ranges of
combined abiotic factor for Gracilaria gracilis
aquaculture. Journal of Applied Phycology, 31(5),
3025-3040. https://doi.org/10.1007/s10811-019-
01826-5.
- Folch, J., Lees, M. & Sloane Stanley, G.H. (1957). A
simple method for the isolation and purification of
total lipides from animal tissues. Journal of
Biological Chemistry, 226(1), 497-509.
- Guillard, R.R.L. (1975). Culture of Phytoplankton for
Feeding Marine Invertebrates. In: Smith, W.L.,
Chanley, M.H. (Ed), Culture of Marine
Invertebrate Animals. Springer, Boston, 29-60p.
- Hanisak, M.D. (1987). Cultivation of Gracilaria and other
macroalgae in Florida for energy production. In
Bird, K.T., Benson, P.H. (Ed), Seaweed
Cultivation for Renewable Resources. Elsevier,
Amsterdam, 191-218p.
- Hurd, C.L., Harrison, P.J., Bischof, K. & Lobban, C. S.
(2014). Seaweed Ecology and Physiology.
Cambridge, Cambridge University Press.15-
215p.
- Jeffrey, S.W. & Humphrey, G.F. (1975). New
spectrophotometric equations for determining
chlorophylls a, b, c1 and c2 in higher plants, algae
and natural phytoplankton. Biochemie und
Physiologie der Pflanzen, 167(2), 191-194. DOI:
10.1016/S0015-3796(17)30778-3
- Kim, J. K., Mao, Y., Kraemer, G. & Yarish, C. (2015).
Growth and pigment content of Gracilaria
tikvahiae McLachlan under fluorescent and LED
lighting. Aquaculture, 436, 52-57. DOI:
10.1016/j.aquaculture.2014.10.037
- Kim, Y.S., Choi, H.G. & Nam, K.W. (2006). Phenology
of Chondrus ocellatus in Cheongsapo near Busan,
Korea. Journal of Applied Phycology, 18, 551-
556.
- Koru, E., Cirik, S., Turan, G., Ak, İ. & Başaran, A.
(2008). Gracilaria verrucosa (Hudson) Papenfuss
Kültürüne Farklı Işık Yoğunluklarının Etkisi. Ege
Journal of Fisheries and Aquatic Sciences, 25(3),
187-190.
- Lakshminarayana, R., Vijay, K., Ambedkar, R., Ranga
Rao, A. & Ravishankar, G.A. (2022). Biological
Activities and Health Benefits of Seaweed
Carotenoids with Special Reference to
Fucoxanthin. In: Ranga Rao, A., Ravishankar,
G.A. (Ed), Sustainable Global Resources of
Seaweeds Volume 2. Springer, Cham, 539-558p.
- Lüning, K. (2005). Endogenus rhytms and day length
effects in macroalgal development. In: Andersen
,R.A. (Ed.). Algal culturing techniques. Elsevier
Academic Press, San Diego, 347-364p.
- Machalek, K. M., Davison, I.R., & Falkowski, P. G.
(1996). Thermal acclimation and
photoacclimation of photosynthesis in the brown
alga Laminaria saccharina. Plant, Cell &
Environment, 19(9), 1005-1016. DOI:
10.1111/j.1365-3040.1996.tb00207.x
- Marinho-Soriano, E. & Bourret, E. (2003). Effects of
season on the yield and quality of agar from
Gracilaria species (Gracilariaceae, Rhodophyta).
Bioresource Technology, 90(3), 329-333. DOI:
10.1016/s0960-8524(03)00112-3
- Marinho-Soriano, E., Fonseca, P.C., Carneiro, M.A.A.
& Moreira, W.S.C. (2006). Seasonal variation in
the chemical composition of two tropical
seaweeds. Bioresource Technology, 97(18), 2402-
2406. DOI: 10.1016/j.biortech.2005.10.014
- Mensi, F. (2019). Agar yield from R-phycoerythrin
extraction by-product of the red alga Gracilaria
verrucosa. Journal of Applied Phycology, 31(1),
741-751. DOI: 10.1007/s10811-018-1533-z
- Öztaşkent, C. & Ak, İ. (2021). Effect of LED light
sources on the growth and chemical composition
of brown seaweed Treptacantha barbata.
Aquaculture International, 29(1), 193-205. DOI:
10.1007/s10499-020-00619-9
- Percival, E. & Young, M. (1974). Carbohydrates of the
brown seaweeds: Part III. Desmarestia aculeata.
Carbohydrate Research, 32(2), 195-201. DOI:
10.1016/S0008-6215(00)82097-2
- Price, M.L., Van Scoyoc, S. & Butler, L.G. (1978). A
critical evaluation of the vanillin reaction as an
assay for tannin in sorghum grain. Journal of
agricultural and food chemistry, 26(5), 1214-
1218. DOI: 10.1021/jf60219a031
- Quettier-Deleu, C., Gressier, B., Vasseur, J., Dine, T.,
Brunet, C., Luyckx, M., Cazin, M., Cazin, J.-
C., Bailleul, F. & Trotin, F. (2000). Phenolic
compounds and antioxidant activities of
buckwheat (Fagopyrum esculentum Moench)
hulls and flour. Journal of Ethnopharmacology,
72(1), 35-42. DOI: 10.1016/S0378-
8741(00)00196-3
- Rodríguez-Sánchez, R., Ortiz-Butrón, R., Blas-
Valdivia, V., Hernández-García, A. & Cano-
Europa, E. (2012). Phycobiliproteins or c-
phycocyanin of Arthrospira (Spirulina) maxima
protect against hgcl2-caused oxidative stress and
renal damage. Food Chemistry, 135(4), 2359-
2365. DOI: 10.1016/j.foodchem.2012.07.063
- Tanna, B., Choudhary, B., Mishra, A., Yadav, S.,
Chauhan, O.P., Elansary, H.O., Shokralla, S.,
Zin El-Abedin, T.K. & Mahmoud, E.A. (2022).
Biochemical and Anti-proliferative activities of
seven abundant tropical red seaweeds confirm
nutraceutical potential of Grateloupia indica.
Arabian Journal of Chemistry, 15(6), 103868.
DOI: 10.1016/j.arabjc.2022.103868.
- Troell, M., Halling, C., Nilsson, A., Buschmann, A. H.,
Kautsky, N. & Kautsky, L. (1997). Integrated
marine cultivation of Gracilaria chilensis
(Gracilariales, Rhodophyta) and salmon cages for
reduced environmental impact and increased
economic output. Aquaculture, 156(1), 45-61.
DOI: 10.1016/S0044-8486(97)00080-X
- Wang, L., Shen, Z. Mu, H. Lin, Y. Zhang, J. & Jiang,
X. (2017). Impact of alkali pretreatment on yield,
physico-chemical and gelling properties of high
quality agar from Gracilaria tenuistipitata. Food
Hydrocolloids, 70, 356-362. DOI:
10.1016/j.foodhyd.2016.11.042
- Weinberger, F., Buchholz, B., Karez, R. & Wahl, M.
(2008). The invasive red alga Gracilaria
vermiculophylla in the Baltic Sea: adaptation to
brackish water may compensate for light
limitation. Aquatic Biology, 3(3), 251-264. DOI:
10.3354/ab00083
- Wu, H. (2016). Effect of Different Light Qualities on
Growth, Pigment Content, Chlorophyll
Fluorescence, and Antioxidant Enzyme Activity
in the Red Alga Pyropia haitanensis (Bangiales,
Rhodophyta). BioMed Research International,
2016, 7383918. DOI: 10.1155/2016/7383918
- Zhang, W., Zhu, C. & Chen, S. (2020). Effects of light
quality and photoperiod on growth and
photosynthetic pigment content of a Rhodophyta,
Gloiopeltis furcata. Fisheries Science, 86(2), 367-
373. DOI: 10.1007/s12562-020-01400-w.
Effect of Photoperiod Applications on Biomass Yield and Chemical Composition of Red Algae Gracilaria verrucosa
Yıl 2023,
Cilt: 8 Sayı: 4, 756 - 763, 31.12.2023
İlknur Ak
,
Melis Yılmaz
,
Gülen Türker
Öz
In this study, the changes in the growth rate and chemical content of algal extracts from Gracilaria verrucosa (Hudson) were examined under Papenfuss tank culture systems with 100 µmol photon m-2 s -1 light intensity and different photo periods (24:00, 16:08, 12:12 and 08:16 (L:D)). As a result of the study, the highest growth rate among the experimental groups was found in the 16:8 (L:D) photoperiod group. Chlorophyll a content of the groups decreased as the illumination time increased while phycocyanin, phycoerythrin contents decreased as the growth rate increased. The crude protein content of the groups varied between 9.14±0.13 (24:24) and 10.92±0.25 (12:12). Fat content of all groups was found to less than 1%. There was no statistically significant difference in ash content of algae thallus (p>0.05). The agar contents of the experimental groups varied between %8.36±0.24-13.19±1.09. The highest agar content was found in the group treated with the 8:16 photo period. As a result of the study, it was determined that high light intensity and long illumination durations increase the free radical scavenging activity of algae. The total phenolic content of the experimental groups varied between 1.82±0.03 (8:16) and 2.84±0.04 (24:24) mg GAE g−1 extract. The highest total flavonoid content was found in the 8:16 (L:D) group.
Proje Numarası
Fhd-2021-3677
Kaynakça
- Ak, İ., Çetin, Z., Cirik, Ş. & Göksan, T. (2011).
Gracilaria verrucosa (Hudson) Papenfuss culture
using an agricultural organic fertilizer. Fresenius
Environmental Bulletin, 20(8a), 2156-2162.
- Ak, İ., Çankırılıgil, E.C., Türker, G., Sever, O. &
Abomohra, A. (2022). Enhancement of
antioxidant properties of Gongolaria barbata
(Phaeophyceae) by optimization of combined
light intensity and salinity stress. Phcologia,
61(6), 584-594. DOI:
10.1080/00318884.2022.2099136
- Ak, İ. & Türker, G. (2018). Antioxidant Activity of Five
Seaweed Extracts. New Knowledge Journal of
Science / Novo Znanie, 7(2), 149-155.
- Ak, İ. & Türker, G. (2019). Free Radical Scavenging
Activity and Biochemical characteristics of Ulva
rigida (Ulvophyceae) and Arthrospira platensis
(Cyanophyceae). Turkish Journal of Agriculture-
Food Science and Technology, 7, 145-149. DOI:
10.24925/turjaf.v7isp1.145-149.2789
- Ak, İ. & Yücesan, M. (2012). Effect of light intensity on
the pigment composition of Gracilaria verrucosa
(Rhodophyta). Fresenius Environmental Bulletin,
21(2), 337-342.
- AOAC. (2000). Official methods of analysis of AOAC
(Association of Official Analytical Chemists)
International (17th ed.), AOAC
International,Gaithersburg, MD, 1298.
- Brand-Williams, W., Cuvelier, M.E. & Berset, C.
(1995). Use of a free radical method to evaluate
antioxidant activity. LWT - Food Science and
Technology, 28(1), 25-30. DOI: 10.1016/S0023-
6438(95)80008-5
- Briggs, M. & Smith, S. (1993). Macroalgae in
aquaculture: An overview and their possible roles
in shrimp culture. Proceedings of a conference on
marine biotechnology in the Asia Pacific
Bangkok, Thailand. 137-143p.
- Broch, O.J. & Slagstad, D. (2012). Modelling seasonal
growth and composition of the kelp Saccharina
latissima. Journal of Applied Phycology, 24, 759-
776.
- Bunsom, C. & Prathep, A. (2012). Effects of salinity,
light intensity and sediment on growth, pigments,
agar production and reproduction in Gracilaria
tenuistipitata from Songkhla Lagoon in Thailand.
Phycological Research, 60(3), 169-178. DOI:
10.1111/j.1440-1835.2012.00648.x
- Cirik, Ş. & Cirik, S. (2017). Su Bitkileri (Deniz
bitkilerinin biyolojisi, ekolojisi, yetiştirme
teknikleri). İzmir, Ege Üniversitesi Su Ürünleri
Fakültesi Yayınları. 15-47p.
- Cirik, Ş., Şen, E. & Ak, İ. (2010). Brown algae Cystoseira
barbata (Stackhouse) C. Agardh culture and
changes in it chemical composition. Journal of
fisheriessciences.com, 4(4), 354-361. DOI:
10.3153/jfscom.2010038
- Djeridane, A., Yousfi, M., Nadjemi, B., Boutassouna,
D., Stocker, P. & Vidal, N. (2006). Antioxidant
activity of some algerian medicinal plants extracts
containing phenolic compounds. Food Chemistry,
97(4), 654-660. DOI:
10.1016/j.foodchem.2005.04.028
- Falkowski, P.G. & LaRoche, J. (1991). Acclimation to
Spectral Irradiance in Algae. Journal of
Phycology, 27(1), 8-14. DOI: 10.1111/j.0022-
3646.1991.00008.x
- FAO. (2021). The State of World Fisheries and
Aquaculture 2019. Sustainability in action FAO
Fisheries and Aquaculture Department, Rome,
224p.
- Fethi, M. & Ghedifa, A.B. (2019). Optimum ranges of
combined abiotic factor for Gracilaria gracilis
aquaculture. Journal of Applied Phycology, 31(5),
3025-3040. https://doi.org/10.1007/s10811-019-
01826-5.
- Folch, J., Lees, M. & Sloane Stanley, G.H. (1957). A
simple method for the isolation and purification of
total lipides from animal tissues. Journal of
Biological Chemistry, 226(1), 497-509.
- Guillard, R.R.L. (1975). Culture of Phytoplankton for
Feeding Marine Invertebrates. In: Smith, W.L.,
Chanley, M.H. (Ed), Culture of Marine
Invertebrate Animals. Springer, Boston, 29-60p.
- Hanisak, M.D. (1987). Cultivation of Gracilaria and other
macroalgae in Florida for energy production. In
Bird, K.T., Benson, P.H. (Ed), Seaweed
Cultivation for Renewable Resources. Elsevier,
Amsterdam, 191-218p.
- Hurd, C.L., Harrison, P.J., Bischof, K. & Lobban, C. S.
(2014). Seaweed Ecology and Physiology.
Cambridge, Cambridge University Press.15-
215p.
- Jeffrey, S.W. & Humphrey, G.F. (1975). New
spectrophotometric equations for determining
chlorophylls a, b, c1 and c2 in higher plants, algae
and natural phytoplankton. Biochemie und
Physiologie der Pflanzen, 167(2), 191-194. DOI:
10.1016/S0015-3796(17)30778-3
- Kim, J. K., Mao, Y., Kraemer, G. & Yarish, C. (2015).
Growth and pigment content of Gracilaria
tikvahiae McLachlan under fluorescent and LED
lighting. Aquaculture, 436, 52-57. DOI:
10.1016/j.aquaculture.2014.10.037
- Kim, Y.S., Choi, H.G. & Nam, K.W. (2006). Phenology
of Chondrus ocellatus in Cheongsapo near Busan,
Korea. Journal of Applied Phycology, 18, 551-
556.
- Koru, E., Cirik, S., Turan, G., Ak, İ. & Başaran, A.
(2008). Gracilaria verrucosa (Hudson) Papenfuss
Kültürüne Farklı Işık Yoğunluklarının Etkisi. Ege
Journal of Fisheries and Aquatic Sciences, 25(3),
187-190.
- Lakshminarayana, R., Vijay, K., Ambedkar, R., Ranga
Rao, A. & Ravishankar, G.A. (2022). Biological
Activities and Health Benefits of Seaweed
Carotenoids with Special Reference to
Fucoxanthin. In: Ranga Rao, A., Ravishankar,
G.A. (Ed), Sustainable Global Resources of
Seaweeds Volume 2. Springer, Cham, 539-558p.
- Lüning, K. (2005). Endogenus rhytms and day length
effects in macroalgal development. In: Andersen
,R.A. (Ed.). Algal culturing techniques. Elsevier
Academic Press, San Diego, 347-364p.
- Machalek, K. M., Davison, I.R., & Falkowski, P. G.
(1996). Thermal acclimation and
photoacclimation of photosynthesis in the brown
alga Laminaria saccharina. Plant, Cell &
Environment, 19(9), 1005-1016. DOI:
10.1111/j.1365-3040.1996.tb00207.x
- Marinho-Soriano, E. & Bourret, E. (2003). Effects of
season on the yield and quality of agar from
Gracilaria species (Gracilariaceae, Rhodophyta).
Bioresource Technology, 90(3), 329-333. DOI:
10.1016/s0960-8524(03)00112-3
- Marinho-Soriano, E., Fonseca, P.C., Carneiro, M.A.A.
& Moreira, W.S.C. (2006). Seasonal variation in
the chemical composition of two tropical
seaweeds. Bioresource Technology, 97(18), 2402-
2406. DOI: 10.1016/j.biortech.2005.10.014
- Mensi, F. (2019). Agar yield from R-phycoerythrin
extraction by-product of the red alga Gracilaria
verrucosa. Journal of Applied Phycology, 31(1),
741-751. DOI: 10.1007/s10811-018-1533-z
- Öztaşkent, C. & Ak, İ. (2021). Effect of LED light
sources on the growth and chemical composition
of brown seaweed Treptacantha barbata.
Aquaculture International, 29(1), 193-205. DOI:
10.1007/s10499-020-00619-9
- Percival, E. & Young, M. (1974). Carbohydrates of the
brown seaweeds: Part III. Desmarestia aculeata.
Carbohydrate Research, 32(2), 195-201. DOI:
10.1016/S0008-6215(00)82097-2
- Price, M.L., Van Scoyoc, S. & Butler, L.G. (1978). A
critical evaluation of the vanillin reaction as an
assay for tannin in sorghum grain. Journal of
agricultural and food chemistry, 26(5), 1214-
1218. DOI: 10.1021/jf60219a031
- Quettier-Deleu, C., Gressier, B., Vasseur, J., Dine, T.,
Brunet, C., Luyckx, M., Cazin, M., Cazin, J.-
C., Bailleul, F. & Trotin, F. (2000). Phenolic
compounds and antioxidant activities of
buckwheat (Fagopyrum esculentum Moench)
hulls and flour. Journal of Ethnopharmacology,
72(1), 35-42. DOI: 10.1016/S0378-
8741(00)00196-3
- Rodríguez-Sánchez, R., Ortiz-Butrón, R., Blas-
Valdivia, V., Hernández-García, A. & Cano-
Europa, E. (2012). Phycobiliproteins or c-
phycocyanin of Arthrospira (Spirulina) maxima
protect against hgcl2-caused oxidative stress and
renal damage. Food Chemistry, 135(4), 2359-
2365. DOI: 10.1016/j.foodchem.2012.07.063
- Tanna, B., Choudhary, B., Mishra, A., Yadav, S.,
Chauhan, O.P., Elansary, H.O., Shokralla, S.,
Zin El-Abedin, T.K. & Mahmoud, E.A. (2022).
Biochemical and Anti-proliferative activities of
seven abundant tropical red seaweeds confirm
nutraceutical potential of Grateloupia indica.
Arabian Journal of Chemistry, 15(6), 103868.
DOI: 10.1016/j.arabjc.2022.103868.
- Troell, M., Halling, C., Nilsson, A., Buschmann, A. H.,
Kautsky, N. & Kautsky, L. (1997). Integrated
marine cultivation of Gracilaria chilensis
(Gracilariales, Rhodophyta) and salmon cages for
reduced environmental impact and increased
economic output. Aquaculture, 156(1), 45-61.
DOI: 10.1016/S0044-8486(97)00080-X
- Wang, L., Shen, Z. Mu, H. Lin, Y. Zhang, J. & Jiang,
X. (2017). Impact of alkali pretreatment on yield,
physico-chemical and gelling properties of high
quality agar from Gracilaria tenuistipitata. Food
Hydrocolloids, 70, 356-362. DOI:
10.1016/j.foodhyd.2016.11.042
- Weinberger, F., Buchholz, B., Karez, R. & Wahl, M.
(2008). The invasive red alga Gracilaria
vermiculophylla in the Baltic Sea: adaptation to
brackish water may compensate for light
limitation. Aquatic Biology, 3(3), 251-264. DOI:
10.3354/ab00083
- Wu, H. (2016). Effect of Different Light Qualities on
Growth, Pigment Content, Chlorophyll
Fluorescence, and Antioxidant Enzyme Activity
in the Red Alga Pyropia haitanensis (Bangiales,
Rhodophyta). BioMed Research International,
2016, 7383918. DOI: 10.1155/2016/7383918
- Zhang, W., Zhu, C. & Chen, S. (2020). Effects of light
quality and photoperiod on growth and
photosynthetic pigment content of a Rhodophyta,
Gloiopeltis furcata. Fisheries Science, 86(2), 367-
373. DOI: 10.1007/s12562-020-01400-w.