A Face Authentication System Using Landmark Detection
Year 2021,
Volume: 1 Issue: 1, 28 - 34, 30.08.2021
Velican Ercan
M. Erdal Özbek
Abstract
Biometric data is the key for many security applications. Authentication relies on the individual’s measurable biometric properties collected as features. In this study, a face authentication system is built to be used in opening the entrance door accessing to the apartments and housing estates. The proposed system consists of three stages. In the first stage, landmarks on the face are captured using a deep neural network. Then six selected features from the landmarks are extracted and traditional machine learning algorithms are used to authenticate users. In the last stage, a user interface is built. Face recognition tests achieved an accuracy rate of 89.79%.
References
- [1] A. K. Jain, A. Ross, and S. Pankanti, “Biometrics: A tool for information security,” IEEE Transactions on Information Forensics
and Security, vol. 1, no. 2, pp. 125-143, June 2006.
- [2] R. Spolaor, Q. Li, M. Monaro, M. Conti, L. Gamberini, and G. Sartori, “Biometric authentication methods on smartphones: A
survey,” PsychNology Journal, vol. 14, no. 2-3, pp. 87-98, 2016.
- [3] S. B. Thorat, S. K. Nayak, and J. P. Dandale, “Facial recognition technology: An analysis with scope in India,” arXiv preprint,
arXiv:1005.4263, 2010.
- [4] C. A. Hansen, Face Recognition, Institute for Computer Science University of Tromso, Norway, 2009.
- [5] A. K. Jain and S. Z. Li, Handbook of Face Recognition, vol. 1, New York: Springer, 2011.
- [6] Wikipedia, The Free Encyclopedia, [online] Available at: https://en.wikipedia.org/wiki/Facial_recognition_system, [Accessed:
June 21, 2021].
- [7] L. Li, X. Mu, S. Li, and H. Peng, “A review of face recognition technology,” IEEE Access, vol. 8, pp. 139110-139120, 2020.
- [8] C. Li, R. Wang, J. Li, and L. Fei, “Face detection based on YOLOv3,” Recent Trends in Intelligent Computing, Communication
and Devices, vol. 1006, pp. 277-284, 2020.
- [9] C. Gürel, Development of a Face Recognition System, Master of Science Thesis, Atilim University, 2011.
- [10] M. Turk, M and A. Pentland, “Eigenfaces for recognition,” Journal of Cognitive Neuroscience, vol. 3, no. 1, pp. 71-86, 1991.
- [11] R. E. Schapire, Explaining Adaboost, In: Empirical Inference, Springer, Berlin, Heidelberg, pp. 37-52, 2013.
- [12] H. A. Rowley, S. Baluja, and T. Kanade, “Neural network-based face detection,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 20, no. 1, pp. 23-38, 1998.
- [13] W. S. Noble, “What is a support vector machine?,” Nature Biotechnology, vol. 24, no. 12, pp. 1565-1567, 2006.
- [14] C. Liu and H. Wechsler, “Independent component analysis of Gabor features for face recognition,” IEEE Transactions on Neural
Networks, vol. 14, pp. 919-928, 2003.
- [15] A. H. Boualleg, C. Bencheriet, and H. Tebbikh, “Automatic face recognition using neural network-PCA,” In Proc. 2nd Information
and Communication Technologies (ICTTA), Damascus, Syria, 2006, pp. 1920-1925.
- [16] Y. Song, Y. Kim, U. Chang, and H. B. Kwon, “Face recognition robust to left-right shadows facial symmetry,” Pattern Recognition,
vol. 39, pp. 1542-1545, 2006.
- [17] P. S. Prasad, R. Pathak, V. K. Gunjan, and H. V. R. Rao, “Deep learning based representation for face recognition,” ICCCE 2019,
Lecture Notes in Electrical Engineering, vol. 570, Springer, Singapore, 2020, pp. 419-424.
- [18] O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep face recognition,” In X. Xie, M. W. Jones, and G. K. L. Tam, editors,
Proceedings of the British Machine Vision Conference (BMVC), 2015, pp. 41.1-41.12.
- [19] X. Wu, R. He, Z. Sun, and T. Tan, “A light CNN for deep face representation with noisy labels,” IEEE Transactions on Information
Forensics and Security, vol. 13, no. 11, pp. 2884-2896, 2018.
- [20] W. J. Baddar, J. Son, D. H. Kim, S. T. Kim, and Y. M. Ro, “A deep facial landmarks detection with facial contour and facial
components constraint,” In IEEE International Conference on Image Processing (ICIP), 2016, pp. 3209-3213.
- [21] M. Köstinger, P. Wohlhart, P. M. Roth, and H. Bischof, “Annotated facial landmarks in the wild: A large-scale, real-world database
for facial landmark localization,” In IEEE International Conference on Computer Vision Workshops (ICCV Workshops), 2011, pp.
2144-2151.
- [22] N. Agarwal, A. Krohn-Grimberghe, and R. Vyas, “Facial key points detection using deep convolutional neural networkNaimishNet,” arXiv preprint, arXiv:1710.00977, 2017.
- [23] Y. Bengio, “Facial keypoints detection,” [Online] Available at: https://www.kaggle.com/c/facial-keypoints-detection, [Accessed:
August 21, 2021].
- [24] E. P. Prokopakis, I. M. Vlastos, V. A. Picavet, T. G. Nolst, R. Thomas, C. Cingi, and P. W. Hellings, “The golden ratio in facial
symmetry,” Rhinology, vol. 51, no. 1, pp. 18-21, 2013.
- [25] P. S. Gaikwad, V. B. Kulkarni, “Face recognition using golden ratio for door access control system,” In: Merchant S. N., Warhade
K., Adhikari D. (eds), Advances in Signal and Data Processing, Lecture Notes in Electrical Engineering, vol. 703. Springer,
Singapore, 2021, pp. 209-231.
- [26] R. Feng and B. Prabhakaran, “A novel method for post-surgery face recognition using sum of facial parts recognition,” IEEE Winter
Conference on Applications of Computer Vision, 2014, pp. 1082-1089.
- [27] T. Dietterich, “Overfitting and undercomputing in machine learning,” ACM Computing Surveys, vol. 27, no. 3, pp. 326-327, 1995.
- [28] N. Cristianini and J. S. Taylor, An Introduction to Support Vector Machines and Other Kernel-based Learning Methods, Cambridge
University Press, 2000.
- [29] Python bindings for the Qt cross platform application toolkit, [online] https://pypi.org/project/PyQt5/, [Accessed: June 27, 2021]
Year 2021,
Volume: 1 Issue: 1, 28 - 34, 30.08.2021
Velican Ercan
M. Erdal Özbek
References
- [1] A. K. Jain, A. Ross, and S. Pankanti, “Biometrics: A tool for information security,” IEEE Transactions on Information Forensics
and Security, vol. 1, no. 2, pp. 125-143, June 2006.
- [2] R. Spolaor, Q. Li, M. Monaro, M. Conti, L. Gamberini, and G. Sartori, “Biometric authentication methods on smartphones: A
survey,” PsychNology Journal, vol. 14, no. 2-3, pp. 87-98, 2016.
- [3] S. B. Thorat, S. K. Nayak, and J. P. Dandale, “Facial recognition technology: An analysis with scope in India,” arXiv preprint,
arXiv:1005.4263, 2010.
- [4] C. A. Hansen, Face Recognition, Institute for Computer Science University of Tromso, Norway, 2009.
- [5] A. K. Jain and S. Z. Li, Handbook of Face Recognition, vol. 1, New York: Springer, 2011.
- [6] Wikipedia, The Free Encyclopedia, [online] Available at: https://en.wikipedia.org/wiki/Facial_recognition_system, [Accessed:
June 21, 2021].
- [7] L. Li, X. Mu, S. Li, and H. Peng, “A review of face recognition technology,” IEEE Access, vol. 8, pp. 139110-139120, 2020.
- [8] C. Li, R. Wang, J. Li, and L. Fei, “Face detection based on YOLOv3,” Recent Trends in Intelligent Computing, Communication
and Devices, vol. 1006, pp. 277-284, 2020.
- [9] C. Gürel, Development of a Face Recognition System, Master of Science Thesis, Atilim University, 2011.
- [10] M. Turk, M and A. Pentland, “Eigenfaces for recognition,” Journal of Cognitive Neuroscience, vol. 3, no. 1, pp. 71-86, 1991.
- [11] R. E. Schapire, Explaining Adaboost, In: Empirical Inference, Springer, Berlin, Heidelberg, pp. 37-52, 2013.
- [12] H. A. Rowley, S. Baluja, and T. Kanade, “Neural network-based face detection,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 20, no. 1, pp. 23-38, 1998.
- [13] W. S. Noble, “What is a support vector machine?,” Nature Biotechnology, vol. 24, no. 12, pp. 1565-1567, 2006.
- [14] C. Liu and H. Wechsler, “Independent component analysis of Gabor features for face recognition,” IEEE Transactions on Neural
Networks, vol. 14, pp. 919-928, 2003.
- [15] A. H. Boualleg, C. Bencheriet, and H. Tebbikh, “Automatic face recognition using neural network-PCA,” In Proc. 2nd Information
and Communication Technologies (ICTTA), Damascus, Syria, 2006, pp. 1920-1925.
- [16] Y. Song, Y. Kim, U. Chang, and H. B. Kwon, “Face recognition robust to left-right shadows facial symmetry,” Pattern Recognition,
vol. 39, pp. 1542-1545, 2006.
- [17] P. S. Prasad, R. Pathak, V. K. Gunjan, and H. V. R. Rao, “Deep learning based representation for face recognition,” ICCCE 2019,
Lecture Notes in Electrical Engineering, vol. 570, Springer, Singapore, 2020, pp. 419-424.
- [18] O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep face recognition,” In X. Xie, M. W. Jones, and G. K. L. Tam, editors,
Proceedings of the British Machine Vision Conference (BMVC), 2015, pp. 41.1-41.12.
- [19] X. Wu, R. He, Z. Sun, and T. Tan, “A light CNN for deep face representation with noisy labels,” IEEE Transactions on Information
Forensics and Security, vol. 13, no. 11, pp. 2884-2896, 2018.
- [20] W. J. Baddar, J. Son, D. H. Kim, S. T. Kim, and Y. M. Ro, “A deep facial landmarks detection with facial contour and facial
components constraint,” In IEEE International Conference on Image Processing (ICIP), 2016, pp. 3209-3213.
- [21] M. Köstinger, P. Wohlhart, P. M. Roth, and H. Bischof, “Annotated facial landmarks in the wild: A large-scale, real-world database
for facial landmark localization,” In IEEE International Conference on Computer Vision Workshops (ICCV Workshops), 2011, pp.
2144-2151.
- [22] N. Agarwal, A. Krohn-Grimberghe, and R. Vyas, “Facial key points detection using deep convolutional neural networkNaimishNet,” arXiv preprint, arXiv:1710.00977, 2017.
- [23] Y. Bengio, “Facial keypoints detection,” [Online] Available at: https://www.kaggle.com/c/facial-keypoints-detection, [Accessed:
August 21, 2021].
- [24] E. P. Prokopakis, I. M. Vlastos, V. A. Picavet, T. G. Nolst, R. Thomas, C. Cingi, and P. W. Hellings, “The golden ratio in facial
symmetry,” Rhinology, vol. 51, no. 1, pp. 18-21, 2013.
- [25] P. S. Gaikwad, V. B. Kulkarni, “Face recognition using golden ratio for door access control system,” In: Merchant S. N., Warhade
K., Adhikari D. (eds), Advances in Signal and Data Processing, Lecture Notes in Electrical Engineering, vol. 703. Springer,
Singapore, 2021, pp. 209-231.
- [26] R. Feng and B. Prabhakaran, “A novel method for post-surgery face recognition using sum of facial parts recognition,” IEEE Winter
Conference on Applications of Computer Vision, 2014, pp. 1082-1089.
- [27] T. Dietterich, “Overfitting and undercomputing in machine learning,” ACM Computing Surveys, vol. 27, no. 3, pp. 326-327, 1995.
- [28] N. Cristianini and J. S. Taylor, An Introduction to Support Vector Machines and Other Kernel-based Learning Methods, Cambridge
University Press, 2000.
- [29] Python bindings for the Qt cross platform application toolkit, [online] https://pypi.org/project/PyQt5/, [Accessed: June 27, 2021]