Derleme
BibTex RIS Kaynak Göster

Use of Artificial Intelligence in Microbiology

Yıl 2022, Cilt: 2 Sayı: 2, 1 - 12, 26.08.2022

Öz

Artificial intelligence which be heard in 1950s has been developed gre-atly in the last 15 years. That technology is programmed by imitating human brain and may be used in sectors like tourism, real estate, building and production sector. One of the sectors that artificial intelligence affe-cts highly is Health sector. Microbiology is being defined as discipline that works on microorganisms. Definition of microorganisms, infections and infectious diseases are the topics of Microbiology. Nowadays, ar-tificial intelligence applications that being used currently; has being a great support to decisions of scientist and helping them to maintain pub-lic health. With progression of technology, artificial intelligence which will be improving, will be heard a lot because of time, cost and quality improvements on microbiology researches. The aim of this study is to contribute to the literature by compiling examples of artifici-al intelligence applications used in the field of microbiology and to show the contributions that artificial intelligence can make to this field.

Kaynakça

  • 1. Öztemel E. Yapay Sinir Ağları. Papatya Yayıncılık, 2003; s.13-15
  • 2. A. G. H. Pirim, “YAPAY ZEKA”, Yaşar Üniversitesi E-Dergisi, vol. 1, no. 1, pp. 81-93, Jun. 2006, doi:10.19168/jyu.72783
  • 3. Büyükgöze S, Dereli E. “Dijital Sağlık Uygulamalarında Yapay Zeka.” VI. Uluslararası Bilimsel ve Mesleki Çalışmalar Kong-resi-Fen ve Sağlık, 2019; 07-10.
  • 4. Atamer M, Koçak C, Yetişmeyen A, Gürsel A ve Gürsoy A. Mikrobiyoloji. Gürsel, A (Editör). Ankara Üniversitesi Zıraat Fakültesi Su Teknolojisi Bölümü Ders Kitabı. Ankara; 2007
  • 5. Hamet P, Tremblay J. Artificial İntelligence in Medicine. Me-tabolism Clinical and Experimental, 69, 36-40, doi: 10.1016/j.metabol.2017.01.011.
  • 6. Kaplan J. Artificial İntelligence What Everyone Ne-eds To Know. Oxford University Press, 2016, 1-7, doi:10.1177/0170840618792173
  • 7. Atav A. İlaçların Diğer İlaçlar İle Etkileşimlerinin Uzman Sis-tem İle Belirlenmesi (Doktora Tezi) İstanbul Maltepe Üniversi-tesi; 2020
  • 8. Atalay M, Çelik, E. Artificial Intelligence And Machine Lear-ning Applications In Big Data Analysis. Mehmet Akif Ersoy Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 2017, 9.22: 155-172, doi: 10.20875/makusobed.309727
  • 9. Bilge U. Tıpta Yapay Zeka ve Uzman Sistemler. Türkiye Bili-şim Derneği Kongresi, 2007, 113-118.
  • 10. TeknolojiOrg. Makine Öğrenmesi Algoritmaları [Internet]. Tur-key: Teknoloji Org; 2020 August [cited 2020 Dec 18]. Available from: https://teknoloji.org/makine-ogrenmesi-nedir-makine-og-renmesi-algoritmalari11.
  • 11. Great Learning. What is Artificial Intelligence? How does AI work, Types and Future of it? [Internet]. My Great Learning; 2022 Jan 19 Available from: https://www.mygreatlearning.com/blog/what-is-artificial-intelligence/
  • 12. Sevli O, Başer V. G. Covid-19 Salgınına Yönelik Zaman Serisi Verileri ile Prophet Model Kullanarak Makine Öğrenmesi Te-melli Vaka Tahminlemesi. Avrupa Bilim ve Teknoloji Dergisi, 2020, 19: 827-835.
  • 13. Beyaz. Derin Öğrenme (Deep Learning) Nedir? [Internet]. Tur-key; Beyaz Net; 2019 Aralık 10. [cited 2020 Dec 18] Available from: https://www.beyaz.net/tr/yazilim/makaleler/derin_ogren-me_deep_learning_nedir.html
  • 14. Pesapane F. et al. Artificial intelligence as a medical device in radiology: ethical and regulatory issues in Europe and the Uni-ted States. Insights into imaging, 2018, 9.5: 745-753.
  • 15. Ergezer H, Dikmen M, Özdemir E. Yapay sinir ağları ve tanıma sistemleri. PIVOLKA, 2003, 2.6: 14-17.
  • 16. Toklu H.Z, Eczacılık Uygulamalarında Akılcı İlaç Kullanımı. Turkiye Klinikleri J Pharmacol-Special Topics 2015;3(1):74-83
  • 17. “Role of dispensers in Promoting Rational Drug Use in Promo-ting Rational Drug Use: WHO Action Programme on Essential Drugs and International Network for the Rational Use of Drugs, Eğitim Programı, Nairobi, 1987.
  • 18. Chaturvedi, V.P., Mathur, A.G. ve Anand, A.C. Rational drug use – As common as common sense? Med J Armed Forces In-dia, 2012 Jul; 68(3): 206–208.
  • 19. Labovitz, D.L, Shafner, L, Reyes Gil, M., Virmani, D., Hanina, A. Using Artificial Intelligence to Reduce the Risk of Nonad-herence in Patients on Anticoagulation Therapy. Stroke, 48(5), 1416–1419
  • 20. Bluedot: Outbreak Intelligence Platform. [Internet]. [cited 2020 Dec 18]. Available from: https://bluedot.global/
  • 21. Özgüven Öztornacı B, Başbakkal Z.D, İlaç Hatalarının Ön-lenmesinde Yeni Dizayn Edilmiş Karar Destek Sistemi Örne-ği: Web Tabanlı İlaç Uygulama Ve Doz Hesaplama Programı, Uluslararası Sağlıkta Yapay Zekâ Kongresi 2020, Bildiri Kitabı, 34.
  • 22. Hardalaç, F., Kutbay, U. İlaç İlaç Etkileşimlerinin Jordan Elman Ağları Kullanılarak Sınıflandırılması. Journal of the Faculty of Engineering and Architecture of Gazi University, Cilt 29, No 1, 149-154.
  • 23. Pharmaino Science. [Internet] [cited 2020 Dec 18]. Available from: www.pharmaino.com
  • 24. Toklu, H.Z., Akıcı, A., Uysal, M.K., Dülger, G.A. Akılcı İlaç Kullanımı Sürecinde Hasta Uyuncuna Hekim ve Eczacının Kat-kısı. Türkiye Aile Hekimliği Dergisi, 2010 14(3):139-145.
  • 25. Uzun M.M, Mayıs 2020, COVID-19 ile Mücadelede Yapay Zekâ Uygulamaları. Ulisa12 Sayı:2, 45-51.
  • 26. MISHRA, Vijay. Artificial intelligence: the beginning of a new era in pharmacy profession. Asian Journal of Pharmaceutics (AJP): Free full text articles from Asian J Pharm, 2018, 12.02. doi: 10.22377/ajp.v12i02.2317
  • 27. Fleming N. How Artificial İntelligence İs Changing Drug Dis-covery, Nature, 2018, 557(7707), 55-57. doi: 10.1038/d41586-018-05267-x
  • 28. IBM. (2020). IBM Watson Health. [Internet]. [cited 2021 Jan. 2]. Available from: https://www.ibm.com/watsohealth/learn/ar-tificial-intelligence-medicine
  • 29. P. K. Donepudi, AI and Machine Learning in Retail Pharmacy: Systematic Review of Related Literature, ABC Journal of Ad-vanced Research, 2018,Volume 7, No 2. doi: 10.18034/abcjar.v7i2.514
  • 30. HATI International: Smart Hospitals. [Internet]. [cited 2021 Jan. 2]. Available from: https://www.sdglobaltech.com/ (2 Ocak 2021 tarihinde erişildi.)
  • 31. Sevice-Roboter: Was macht Charly in der Apotheke. [Internet]. [cited 2021 Jan. 2]. Available from: https://www.pharmazeutis-che-zeitung.de/was-macht-charly-in-der-apotheke/
  • 32. Del Rio-Bermudez C, Medrano I.H, Yebes L. et al. Towards A Symbiotic Relationship Between Big Data, Artificial İntelligen-ce, and Hospital Pharmacy. J of Pharm Policy and Pract, 2020, 13, 75. doi: 10.1186/s40545-020-00276-6
  • 33. This Robot Pharmacist Prepares Chemotherapy Drugs for Can-cer Patients. [Internet]. [cited 2021 Jan. 2]. Available from: htt-ps://www.roboticgizmos.com/robot-pharmacists/
  • 34. UAE’s First Robot Pharmacy. [Internet]. [cited 2021 Jan. 2]. Available from: https://zeenews.india.com/health/uaes-first-ro-bot-pharmacy-this-is-how-robotics-will-change-healthca-re-in-near-future-1967085
  • 35. Summerfield,M. R, Seagull F. J, Vaidya, N, Xiao, Y. Use of pharmacy delivery robots in intensive care units. American Journal of Health-System Pharmacy, 2011, Volume 68, 77–83. doi: 10.2146/ajhp100012
  • 36. Benlioğlu K, Özyılmaz Ü. (2017). Mikrobiyoloji. Adnan Men-deres Üniversitesi Zıraat Fakültesi Ders Notu.
  • 37. Baysal B. (2020). Mikrobiyolojiye Giriş-1. İstanbul Gelişim Üniversitesi Sağlık Bilimleri Fakültesi Ders Notu.
  • 38. Kaynak Onurdağ F. (2020). Viroloji. Trakya Üniversitesi Ecza-cılık Fakültesi Ders Notu.
  • 39. Medicana. [Internet]. [cited 2021 Feb. 18]. Available from: www.medicana.com
  • 40. Zıelıńskı B, et al. Deep learning approach to bacterial colony classification. PloS one, 2017, 12.9: e0184554. doi: 10.1371/journal.pone.0184554
  • 41. Smith K.P, et al. Applications of artificial intelligence in cli-nical microbiology diagnostic testing. Clinical Microbio-logy Newsletter, 2020, 42.8: 61-70. doi: 10.1016/j.clinmic-news.2020.03.006
  • 42. Iadanza E, et al. Gut microbiota and artificial intelligence ap-proaches: A scoping review. Health and Technology, 2020, 1-16. doi:10.1007/s12553-020-00486-7
  • 43. https://www.enbiosis.com/tr/ (5 Nisan 2020’de erişildi)
  • 44. Abusharekh E. K, et al. Diagnosis of hepatitis virus using artifi-cial neural network. 2018.
  • 45. Hayati M, Biller P, Colıjn C. Predicting the short-term success of human influenza virus variants with machine learning. Pro-ceedings of the Royal Society B, 2020, 287.1924: 20200319. doi:10.1098/rspb.2020.0319
  • 46. WHO. Situation by Region, Country, Territory & Area. [Inter-net]. [cited 2021 Apr. 10]. Available from: https://covid19.who.int/table
  • 47. WHO. Covid-19. [Internet]. [cited 2021 Apr. 10]. Available from: https://covid19.who.int/table
  • 48. Bhattacharya S, et al. Deep learning and medical image pro-cessing for coronavirus (COVID-19) pandemic: A survey. Sus-tainable cities and society, 2021, 65: 102589. doi: 10.1016/j.scs.2020.102589
  • 49. Wang S, et al. A deep learning algorithm using CT images to screen for Corona Virus Disease (COVID-19). European Radi-ology, 2021, 1-9. doi: 10.1101/2020.02.14.20023028;
  • 50. Jın C. et al. Development and evaluation of an artificial intel-ligence system for COVID-19 diagnosis. Nature communicati-ons, 2020, 11.1: 1-14. doi: 10.1038/s41467-020-18685-1
  • 51. Massachusetts Institute of Tecnology. [Internet]. [cited 2021 Apr. 10]. https://news.mit.edu/2020/covid-19-cough-cellpho-ne-detection-1029
  • 52. Zıelıński B, et al. Deep learning approach to describe and clas-sify fungi microscopic images. PloS one, 2020, 15.6: e0234806. doi:10.1371/journal.pone.0234806
  • 53. Agrebi S, Larbi A. Use of artificial intelligence in infectious diseases. In: Artificial intelligence in precision health. Acade-mic Press, 2020. p. 415-438. doi: 10.1016/B978-0-12-817133-2.00018-5
  • 54. Microbiology Society. [Internet]. [cited 2021 Apr. 12]. Ava-ilable from: https://microbiologysociety.org/members-out-reach-resources/outreach-resources/antibiotics-unearthed/antibiotics-and-antibiotic-resistance/what-are-antibiotics-and-how-do-they-work.html
  • 55. Stoke J. M, et al. A deep learning approach to antibiotic dis-covery. Cell, 2020, 180.4: 688-702. e13. doi:10.1016/j.cell.2020.01.021
  • 56. IBM. AI Finds New Peptideshttps://www.ibm.com/blogs/rese-arch/2021/03/ai-finds-new-peptides/(13 Nisan 2021 tarihinde erişildi)
  • 57. Lv J, Deng S, Zhang Le. A review of artificial intelligence app-lications for antimicrobial resistance. Biosafety and Health, 2020, 3.1: 22-31. doi:10.1016/j.bsheal.2020.08.003
  • 58. Yu, Victor L. “Antimicrobial Selection by a Compu-ter”. JAMA. 1979, 242 (12): 1279–82. doi:10.1001/jama.1979.03300120033020
  • 59. Pesapane, F, Volonté, C, Codari, M, and Sardanelli, F. Artifi-cial intelligence as a medical device in radiology: ethical and regulatory issues in Europe and the United States. Insights into imaging, 2018, 9(5), 745-753. doi:10.1007/s13244-018-0645-y
  • 60. Labovitz, D.L., Shafner, L., Reyes Gil, M., Virmani, D., Hani-na, A. Using Artificial Intelligence to Reduce the Risk of Nona-dherence in Patients on Anticoagulation Therapy. Stroke, 2017, 48(5), 1416–1419. doi:10.1161/STROKEAHA.116.016281
  • 61. Kaptan F, Antivirallerin Doğru Kullanımı. XVIII. Türk Klinik Mikrobiyoloji ve İnfeksiyon Hastalıkları Kongresi, 22-26 Mart 2017, İzmir.
  • 62. Dar B. P. W, Öksüz Z, Algül Ö. Antiviral ilaçlardaki gelişmeler ve değerlendirilmesi. Mersin Üniversitesi Tıp Fakültesi Lok-man Hekim Tıp Tarihi ve Folklorik Tıp Dergisi, 9.2: 160-170. doi: 10.31020/mutftd.555760
  • 63. Beck B. R, et al. Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) th- 12 JAIHS 2022; 2(2):1-12Ergüven ve ark.rough a drug-target interaction deep learning model. Computa-tional and structural biotechnology journal, 2020, 18: 784-790. doi: 10.1016/j.csbj.2020.03.025
  • 64. Blasıak A, et al. IDentif. AI: Artificial Intelligence Pinpo-ints Remdesivir in Combination with Ritonavir and Lopina-vir as an Optimal Regimen Against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). medRxiv, 2020. doi:10.1101/2020.05.04.20088104
  • 65. T.C Sağlık Bakanlığı. Covid-19 Aşısı Bilgilendirme Platformu [Internet]. [cited 2021 Apr. 15]. Available from: https://covi-d19asi.saglik.gov.tr/
  • 66. Sağlık Düşüncesi ve Tıp Kültürü Platformu. [Internet]. [cited 2021 Apr. 15] Available from: http://sdplatform.com/Dergi/777/Asi-karsitligi.aspx, 29
  • 67. Pharmaino Science. Mrna Aşısına Yapay Zeka Katkısı. [Inter-net]. [cited 2021 Apr. 15] Available from: https://pharmaino.com/modernanin-basarisi-mrna-asisina-yapay-zeka-katkisi/
  • 68. Dorıgatti I, et al. Refined efficacy estimates of the Sanofi Pas-teur dengue vaccine CYD-TDV using machine learning. Nature communications, 2018, 9.1: 1-9. Doi: 10.1038/s41467-018-06006-6
  • 69. Adlassnig K. P, Blacky A, Koller W. Artificial-intelligence-ba-sed hospital-acquired infection control. Stud Health Technol Inform, 2009, 149: 103-110. doi: 10.3233/978-1-60750-050-6-103
  • 70. Milli Eğitim Bakanlığı Hasta ve Yaşlı Hizmetleri. Enfeksiyon Kontrolü. 2016. [Internet]. [cited 2021 Apr. 15] Available from: http://www.megep.meb.gov.tr/mte_program_modul/moduller/Enfeksiyon%20Kontrol%C3%BC.pdf
  • 71. Büke Ç. Enfeksiyon Kontrol Programları Nasıl Oluşturulmalı? Ege Üniversitesi Tıp Fakültesi Enfeksiyon Hastalıkları ve Kli-nik Mikrobiyoloji Anabilim Dalı Erişim: https://www.klimik.org.tr/wp-content/uploads/2012/02/1282011143926-15Mart2008_C_Buke.pdf (15 Nisan 2021 tarihinde erişildi)
  • 72. Lin L, Hou Z. Combat COVID-19 with artificial intelligence and big data. Journal of travel medicine, 2020, 27.5: taaa080. doi.org:10.1093/jtm/taaa080
  • 73. Scardoni A, et al. Artificial intelligence-based tools to control healthcare associated infections: A systematic review of the literature. Journal of infection and public health, 2020. doi: 10.1016/j.jiph.2020.06.006
  • 74. Vaishya R, et al. Artificial Intelligence (AI) applications for CO-VID-19 pandemic. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 2020, 14.4: 337-339. doi.org:10.1016/j.dsx.2020.04.012
  • 75. Hayat Eve Sığar. [Internet]. [cited 2021 Apr. 20] Available from: https://hayatevesigar.saglik.gov.tr/ (20 Nisan 2021 tarihinde eri-şildi)
  • 76. “Microbiology”. Available from: Nature.com. Nature Portfolio (of Springer Nature)77. Chung, King-thom; Liu, Jong-kang: Pioneers in Microbiology: The Human Side of Science. (World Scientific Publishing, 2017, ISBN 978-9813202948)

Yapay Zeka’nın Mikrobiyolojide Kullanımı

Yıl 2022, Cilt: 2 Sayı: 2, 1 - 12, 26.08.2022

Öz

1950’li yıllarda ismini duymaya başladığımız yapay zeka kavramı özel-likle son 15 yılda çok büyük gelişmeler göstermiştir. İnsan beynine ait işleyişin taklit edilmesi ile oluşturulan bu teknoloji, turizm, emlak, in-şaat, üretim gibi pek çok sektörde kullanılmaktadır. Yapay zekanın etki-lediği en önemli alanlardan bir tanesi de sağlık sektörüdür. Mikrobiyo-loji, mikroorganizmaları inceleyen bilim dalı olarak tanımlanmaktadır. Mikroorganizmaların tanımlanması, enfeksiyon hastalıkları ve bulaşıcı hastalıklar, bu hastalıkların tedavisi ve kontrolü gibi konular bu bilim da-lının ilgilendiği konular arasındadır. Günümüzde mikrobiyoloji alanında kullanılan yapay zeka uygulamaları bilim insanlarına iyi bir karar destek mekanizması rolünde yer alarak halk sağlığının korunmasında yardımcı olmaktadır. Teknolojinin daha da ilerlemesiyle etkisini arttırmaya de-vam edecek olan yapay zeka teknolojisi, sağlık ekosisteminin bir üyesi olan mikrobiyoloji alanında zaman, maliyet ve kaliteye katkısı açısından adından daha sık söz ettirmeye devam edecektir. Bu çalışmanın amacı mikrobiyoloji alanında kullanılan yapay zeka uygulama örneklerini der-leyerek literatüre katkı sağlamak ve yapay zekanın bu alana sunabileceği katkıları göstermektir.

Kaynakça

  • 1. Öztemel E. Yapay Sinir Ağları. Papatya Yayıncılık, 2003; s.13-15
  • 2. A. G. H. Pirim, “YAPAY ZEKA”, Yaşar Üniversitesi E-Dergisi, vol. 1, no. 1, pp. 81-93, Jun. 2006, doi:10.19168/jyu.72783
  • 3. Büyükgöze S, Dereli E. “Dijital Sağlık Uygulamalarında Yapay Zeka.” VI. Uluslararası Bilimsel ve Mesleki Çalışmalar Kong-resi-Fen ve Sağlık, 2019; 07-10.
  • 4. Atamer M, Koçak C, Yetişmeyen A, Gürsel A ve Gürsoy A. Mikrobiyoloji. Gürsel, A (Editör). Ankara Üniversitesi Zıraat Fakültesi Su Teknolojisi Bölümü Ders Kitabı. Ankara; 2007
  • 5. Hamet P, Tremblay J. Artificial İntelligence in Medicine. Me-tabolism Clinical and Experimental, 69, 36-40, doi: 10.1016/j.metabol.2017.01.011.
  • 6. Kaplan J. Artificial İntelligence What Everyone Ne-eds To Know. Oxford University Press, 2016, 1-7, doi:10.1177/0170840618792173
  • 7. Atav A. İlaçların Diğer İlaçlar İle Etkileşimlerinin Uzman Sis-tem İle Belirlenmesi (Doktora Tezi) İstanbul Maltepe Üniversi-tesi; 2020
  • 8. Atalay M, Çelik, E. Artificial Intelligence And Machine Lear-ning Applications In Big Data Analysis. Mehmet Akif Ersoy Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 2017, 9.22: 155-172, doi: 10.20875/makusobed.309727
  • 9. Bilge U. Tıpta Yapay Zeka ve Uzman Sistemler. Türkiye Bili-şim Derneği Kongresi, 2007, 113-118.
  • 10. TeknolojiOrg. Makine Öğrenmesi Algoritmaları [Internet]. Tur-key: Teknoloji Org; 2020 August [cited 2020 Dec 18]. Available from: https://teknoloji.org/makine-ogrenmesi-nedir-makine-og-renmesi-algoritmalari11.
  • 11. Great Learning. What is Artificial Intelligence? How does AI work, Types and Future of it? [Internet]. My Great Learning; 2022 Jan 19 Available from: https://www.mygreatlearning.com/blog/what-is-artificial-intelligence/
  • 12. Sevli O, Başer V. G. Covid-19 Salgınına Yönelik Zaman Serisi Verileri ile Prophet Model Kullanarak Makine Öğrenmesi Te-melli Vaka Tahminlemesi. Avrupa Bilim ve Teknoloji Dergisi, 2020, 19: 827-835.
  • 13. Beyaz. Derin Öğrenme (Deep Learning) Nedir? [Internet]. Tur-key; Beyaz Net; 2019 Aralık 10. [cited 2020 Dec 18] Available from: https://www.beyaz.net/tr/yazilim/makaleler/derin_ogren-me_deep_learning_nedir.html
  • 14. Pesapane F. et al. Artificial intelligence as a medical device in radiology: ethical and regulatory issues in Europe and the Uni-ted States. Insights into imaging, 2018, 9.5: 745-753.
  • 15. Ergezer H, Dikmen M, Özdemir E. Yapay sinir ağları ve tanıma sistemleri. PIVOLKA, 2003, 2.6: 14-17.
  • 16. Toklu H.Z, Eczacılık Uygulamalarında Akılcı İlaç Kullanımı. Turkiye Klinikleri J Pharmacol-Special Topics 2015;3(1):74-83
  • 17. “Role of dispensers in Promoting Rational Drug Use in Promo-ting Rational Drug Use: WHO Action Programme on Essential Drugs and International Network for the Rational Use of Drugs, Eğitim Programı, Nairobi, 1987.
  • 18. Chaturvedi, V.P., Mathur, A.G. ve Anand, A.C. Rational drug use – As common as common sense? Med J Armed Forces In-dia, 2012 Jul; 68(3): 206–208.
  • 19. Labovitz, D.L, Shafner, L, Reyes Gil, M., Virmani, D., Hanina, A. Using Artificial Intelligence to Reduce the Risk of Nonad-herence in Patients on Anticoagulation Therapy. Stroke, 48(5), 1416–1419
  • 20. Bluedot: Outbreak Intelligence Platform. [Internet]. [cited 2020 Dec 18]. Available from: https://bluedot.global/
  • 21. Özgüven Öztornacı B, Başbakkal Z.D, İlaç Hatalarının Ön-lenmesinde Yeni Dizayn Edilmiş Karar Destek Sistemi Örne-ği: Web Tabanlı İlaç Uygulama Ve Doz Hesaplama Programı, Uluslararası Sağlıkta Yapay Zekâ Kongresi 2020, Bildiri Kitabı, 34.
  • 22. Hardalaç, F., Kutbay, U. İlaç İlaç Etkileşimlerinin Jordan Elman Ağları Kullanılarak Sınıflandırılması. Journal of the Faculty of Engineering and Architecture of Gazi University, Cilt 29, No 1, 149-154.
  • 23. Pharmaino Science. [Internet] [cited 2020 Dec 18]. Available from: www.pharmaino.com
  • 24. Toklu, H.Z., Akıcı, A., Uysal, M.K., Dülger, G.A. Akılcı İlaç Kullanımı Sürecinde Hasta Uyuncuna Hekim ve Eczacının Kat-kısı. Türkiye Aile Hekimliği Dergisi, 2010 14(3):139-145.
  • 25. Uzun M.M, Mayıs 2020, COVID-19 ile Mücadelede Yapay Zekâ Uygulamaları. Ulisa12 Sayı:2, 45-51.
  • 26. MISHRA, Vijay. Artificial intelligence: the beginning of a new era in pharmacy profession. Asian Journal of Pharmaceutics (AJP): Free full text articles from Asian J Pharm, 2018, 12.02. doi: 10.22377/ajp.v12i02.2317
  • 27. Fleming N. How Artificial İntelligence İs Changing Drug Dis-covery, Nature, 2018, 557(7707), 55-57. doi: 10.1038/d41586-018-05267-x
  • 28. IBM. (2020). IBM Watson Health. [Internet]. [cited 2021 Jan. 2]. Available from: https://www.ibm.com/watsohealth/learn/ar-tificial-intelligence-medicine
  • 29. P. K. Donepudi, AI and Machine Learning in Retail Pharmacy: Systematic Review of Related Literature, ABC Journal of Ad-vanced Research, 2018,Volume 7, No 2. doi: 10.18034/abcjar.v7i2.514
  • 30. HATI International: Smart Hospitals. [Internet]. [cited 2021 Jan. 2]. Available from: https://www.sdglobaltech.com/ (2 Ocak 2021 tarihinde erişildi.)
  • 31. Sevice-Roboter: Was macht Charly in der Apotheke. [Internet]. [cited 2021 Jan. 2]. Available from: https://www.pharmazeutis-che-zeitung.de/was-macht-charly-in-der-apotheke/
  • 32. Del Rio-Bermudez C, Medrano I.H, Yebes L. et al. Towards A Symbiotic Relationship Between Big Data, Artificial İntelligen-ce, and Hospital Pharmacy. J of Pharm Policy and Pract, 2020, 13, 75. doi: 10.1186/s40545-020-00276-6
  • 33. This Robot Pharmacist Prepares Chemotherapy Drugs for Can-cer Patients. [Internet]. [cited 2021 Jan. 2]. Available from: htt-ps://www.roboticgizmos.com/robot-pharmacists/
  • 34. UAE’s First Robot Pharmacy. [Internet]. [cited 2021 Jan. 2]. Available from: https://zeenews.india.com/health/uaes-first-ro-bot-pharmacy-this-is-how-robotics-will-change-healthca-re-in-near-future-1967085
  • 35. Summerfield,M. R, Seagull F. J, Vaidya, N, Xiao, Y. Use of pharmacy delivery robots in intensive care units. American Journal of Health-System Pharmacy, 2011, Volume 68, 77–83. doi: 10.2146/ajhp100012
  • 36. Benlioğlu K, Özyılmaz Ü. (2017). Mikrobiyoloji. Adnan Men-deres Üniversitesi Zıraat Fakültesi Ders Notu.
  • 37. Baysal B. (2020). Mikrobiyolojiye Giriş-1. İstanbul Gelişim Üniversitesi Sağlık Bilimleri Fakültesi Ders Notu.
  • 38. Kaynak Onurdağ F. (2020). Viroloji. Trakya Üniversitesi Ecza-cılık Fakültesi Ders Notu.
  • 39. Medicana. [Internet]. [cited 2021 Feb. 18]. Available from: www.medicana.com
  • 40. Zıelıńskı B, et al. Deep learning approach to bacterial colony classification. PloS one, 2017, 12.9: e0184554. doi: 10.1371/journal.pone.0184554
  • 41. Smith K.P, et al. Applications of artificial intelligence in cli-nical microbiology diagnostic testing. Clinical Microbio-logy Newsletter, 2020, 42.8: 61-70. doi: 10.1016/j.clinmic-news.2020.03.006
  • 42. Iadanza E, et al. Gut microbiota and artificial intelligence ap-proaches: A scoping review. Health and Technology, 2020, 1-16. doi:10.1007/s12553-020-00486-7
  • 43. https://www.enbiosis.com/tr/ (5 Nisan 2020’de erişildi)
  • 44. Abusharekh E. K, et al. Diagnosis of hepatitis virus using artifi-cial neural network. 2018.
  • 45. Hayati M, Biller P, Colıjn C. Predicting the short-term success of human influenza virus variants with machine learning. Pro-ceedings of the Royal Society B, 2020, 287.1924: 20200319. doi:10.1098/rspb.2020.0319
  • 46. WHO. Situation by Region, Country, Territory & Area. [Inter-net]. [cited 2021 Apr. 10]. Available from: https://covid19.who.int/table
  • 47. WHO. Covid-19. [Internet]. [cited 2021 Apr. 10]. Available from: https://covid19.who.int/table
  • 48. Bhattacharya S, et al. Deep learning and medical image pro-cessing for coronavirus (COVID-19) pandemic: A survey. Sus-tainable cities and society, 2021, 65: 102589. doi: 10.1016/j.scs.2020.102589
  • 49. Wang S, et al. A deep learning algorithm using CT images to screen for Corona Virus Disease (COVID-19). European Radi-ology, 2021, 1-9. doi: 10.1101/2020.02.14.20023028;
  • 50. Jın C. et al. Development and evaluation of an artificial intel-ligence system for COVID-19 diagnosis. Nature communicati-ons, 2020, 11.1: 1-14. doi: 10.1038/s41467-020-18685-1
  • 51. Massachusetts Institute of Tecnology. [Internet]. [cited 2021 Apr. 10]. https://news.mit.edu/2020/covid-19-cough-cellpho-ne-detection-1029
  • 52. Zıelıński B, et al. Deep learning approach to describe and clas-sify fungi microscopic images. PloS one, 2020, 15.6: e0234806. doi:10.1371/journal.pone.0234806
  • 53. Agrebi S, Larbi A. Use of artificial intelligence in infectious diseases. In: Artificial intelligence in precision health. Acade-mic Press, 2020. p. 415-438. doi: 10.1016/B978-0-12-817133-2.00018-5
  • 54. Microbiology Society. [Internet]. [cited 2021 Apr. 12]. Ava-ilable from: https://microbiologysociety.org/members-out-reach-resources/outreach-resources/antibiotics-unearthed/antibiotics-and-antibiotic-resistance/what-are-antibiotics-and-how-do-they-work.html
  • 55. Stoke J. M, et al. A deep learning approach to antibiotic dis-covery. Cell, 2020, 180.4: 688-702. e13. doi:10.1016/j.cell.2020.01.021
  • 56. IBM. AI Finds New Peptideshttps://www.ibm.com/blogs/rese-arch/2021/03/ai-finds-new-peptides/(13 Nisan 2021 tarihinde erişildi)
  • 57. Lv J, Deng S, Zhang Le. A review of artificial intelligence app-lications for antimicrobial resistance. Biosafety and Health, 2020, 3.1: 22-31. doi:10.1016/j.bsheal.2020.08.003
  • 58. Yu, Victor L. “Antimicrobial Selection by a Compu-ter”. JAMA. 1979, 242 (12): 1279–82. doi:10.1001/jama.1979.03300120033020
  • 59. Pesapane, F, Volonté, C, Codari, M, and Sardanelli, F. Artifi-cial intelligence as a medical device in radiology: ethical and regulatory issues in Europe and the United States. Insights into imaging, 2018, 9(5), 745-753. doi:10.1007/s13244-018-0645-y
  • 60. Labovitz, D.L., Shafner, L., Reyes Gil, M., Virmani, D., Hani-na, A. Using Artificial Intelligence to Reduce the Risk of Nona-dherence in Patients on Anticoagulation Therapy. Stroke, 2017, 48(5), 1416–1419. doi:10.1161/STROKEAHA.116.016281
  • 61. Kaptan F, Antivirallerin Doğru Kullanımı. XVIII. Türk Klinik Mikrobiyoloji ve İnfeksiyon Hastalıkları Kongresi, 22-26 Mart 2017, İzmir.
  • 62. Dar B. P. W, Öksüz Z, Algül Ö. Antiviral ilaçlardaki gelişmeler ve değerlendirilmesi. Mersin Üniversitesi Tıp Fakültesi Lok-man Hekim Tıp Tarihi ve Folklorik Tıp Dergisi, 9.2: 160-170. doi: 10.31020/mutftd.555760
  • 63. Beck B. R, et al. Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) th- 12 JAIHS 2022; 2(2):1-12Ergüven ve ark.rough a drug-target interaction deep learning model. Computa-tional and structural biotechnology journal, 2020, 18: 784-790. doi: 10.1016/j.csbj.2020.03.025
  • 64. Blasıak A, et al. IDentif. AI: Artificial Intelligence Pinpo-ints Remdesivir in Combination with Ritonavir and Lopina-vir as an Optimal Regimen Against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). medRxiv, 2020. doi:10.1101/2020.05.04.20088104
  • 65. T.C Sağlık Bakanlığı. Covid-19 Aşısı Bilgilendirme Platformu [Internet]. [cited 2021 Apr. 15]. Available from: https://covi-d19asi.saglik.gov.tr/
  • 66. Sağlık Düşüncesi ve Tıp Kültürü Platformu. [Internet]. [cited 2021 Apr. 15] Available from: http://sdplatform.com/Dergi/777/Asi-karsitligi.aspx, 29
  • 67. Pharmaino Science. Mrna Aşısına Yapay Zeka Katkısı. [Inter-net]. [cited 2021 Apr. 15] Available from: https://pharmaino.com/modernanin-basarisi-mrna-asisina-yapay-zeka-katkisi/
  • 68. Dorıgatti I, et al. Refined efficacy estimates of the Sanofi Pas-teur dengue vaccine CYD-TDV using machine learning. Nature communications, 2018, 9.1: 1-9. Doi: 10.1038/s41467-018-06006-6
  • 69. Adlassnig K. P, Blacky A, Koller W. Artificial-intelligence-ba-sed hospital-acquired infection control. Stud Health Technol Inform, 2009, 149: 103-110. doi: 10.3233/978-1-60750-050-6-103
  • 70. Milli Eğitim Bakanlığı Hasta ve Yaşlı Hizmetleri. Enfeksiyon Kontrolü. 2016. [Internet]. [cited 2021 Apr. 15] Available from: http://www.megep.meb.gov.tr/mte_program_modul/moduller/Enfeksiyon%20Kontrol%C3%BC.pdf
  • 71. Büke Ç. Enfeksiyon Kontrol Programları Nasıl Oluşturulmalı? Ege Üniversitesi Tıp Fakültesi Enfeksiyon Hastalıkları ve Kli-nik Mikrobiyoloji Anabilim Dalı Erişim: https://www.klimik.org.tr/wp-content/uploads/2012/02/1282011143926-15Mart2008_C_Buke.pdf (15 Nisan 2021 tarihinde erişildi)
  • 72. Lin L, Hou Z. Combat COVID-19 with artificial intelligence and big data. Journal of travel medicine, 2020, 27.5: taaa080. doi.org:10.1093/jtm/taaa080
  • 73. Scardoni A, et al. Artificial intelligence-based tools to control healthcare associated infections: A systematic review of the literature. Journal of infection and public health, 2020. doi: 10.1016/j.jiph.2020.06.006
  • 74. Vaishya R, et al. Artificial Intelligence (AI) applications for CO-VID-19 pandemic. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 2020, 14.4: 337-339. doi.org:10.1016/j.dsx.2020.04.012
  • 75. Hayat Eve Sığar. [Internet]. [cited 2021 Apr. 20] Available from: https://hayatevesigar.saglik.gov.tr/ (20 Nisan 2021 tarihinde eri-şildi)
  • 76. “Microbiology”. Available from: Nature.com. Nature Portfolio (of Springer Nature)77. Chung, King-thom; Liu, Jong-kang: Pioneers in Microbiology: The Human Side of Science. (World Scientific Publishing, 2017, ISBN 978-9813202948)
Toplam 76 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yapay Zeka (Diğer)
Bölüm Derlemeler
Yazarlar

Ömrüm Ergüven

Suzan Ökten

Yayımlanma Tarihi 26 Ağustos 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 2 Sayı: 2

Kaynak Göster

Vancouver Ergüven Ö, Ökten S. Yapay Zeka’nın Mikrobiyolojide Kullanımı. JAIHS. 2022;2(2):1-12.