BibTex RIS Kaynak Göster

On the quaternionic Bertrand curves of AW k -type in Euclidean space E³

Yıl 2019, Cilt: 2 Sayı: 3, 1 - 11, 01.10.2019

Öz

In this paper, We consider that the curvature conditions of AW k -type 1 ≤k≤ 3 quaternioniccurves in Euclidean space E3and investigates quaternionic Bertrand curves α : I → Q with k 6= 0and r 6= 0. Besides, we show that quaternionic Bertrand curves to be AW 2 -type and AW 3 -typequaternionic curves in E. But it is shown that there is no such a quaternionic Bertrand curve ofAW 1 -type

Kaynakça

  • [1] A. C. C¸ ¨oken, A. Tuna, On the quaternionic inclined curves in the semi-Euclidean space E4 2 , Appl. Math. Computation, 155, (2004), 373-389.
  • [2] C. Ozg¨ur, F. Gezgin, On some curves of AW(k)-type, Differ. Geom. Dyn. Syst, 7, (2005) , 74–80. ¨
  • [3] C¸ . Camcı, K. ˙Ilarslan, L. Kula, H.H. Hacısaliho˘glu, Harmonic curvatures and generalized helices in En, Chaos Solitons & Fractals, (2009), 40(5):2590–6.
  • [4] E. Ata, Y. Yaylı, Dual quaternions and dual projective spaces, Chaos Solitons & Fractals 40, (2009), 15(3):1255-1263.
  • [5] E. Ata, Y. Yaylı, Split quaternions and semi-Euclidean projective spaces, Chaos Solitons & Fractals 41, (2009), 30(4):1910-1915.
  • [6] F. Kahraman, ˙I. G¨ok, H.H. Hacısaliho˘glu, On the quaternionic B2-Slant Helices in the semi-Euclidean Space E4 2 , Appl. Math. Computation, 218, (2012), 6391-6400.
  • [7] ˙I. G¨ok ˙I, O. Z. Okuyucu, F. Kahraman and H. H. Hacisaliho˘glu, On the Quaternionic B2-Slant Helices in the Euclidean Space E4 , Adv. Appl. Clifford Algebras, 21 (2011), 707–719.
  • [8] K. Arslan, C. Ozg¨ur, Curves and surfaces of AW(k)-type, Geometry and Topology of Submanifolds, ¨ IX (Valenciennes/Lyan/Leuven,1997), World. Sci. Publishing, River Edge, NJ, (1999), pp. 21–26.
  • [9] K. Bharathi, M. Nagaraj, Quaternion valued function of a real Serret-Frenet formulae, Indian J. Pure Appl. Math, 16, (1985), 741-756.
  • [10] M. Karada˘g, A.˙I. Sivrida˘g, Kuaterniyonik E˘gilim C¸ izgileri i¸cin karakterizasyonlar, Erc. Unv. Fen ¨ Bil. Derg. 13 1-2, (1997), 37-53.
  • [11] M. K¨ulahcı, M. Bektas, M. Erg¨ut, Curves of AW(k)-type in 3-dimensional null cone, Physics Letters A 371, (2007), 275-277.
  • [12] M. K¨ulahcı, M. Bektas, M. Erg¨ut, On harmonic curvatures of a Frenet curve in Lorentzian space, Chaos Solitons & Fractals 41, (2009), 1668–1675.
  • [13] S. Izumiya, N. Takeuchi, Generic properties of helices and Bertrand curves, J. Geom., 74, (2002), 97–109.
  • [14] S. Izumiya, N. Takeuchi, New special curves and developable surfaces, Turkish J. Math., 28 (2), (2004), 153–163.
  • [15] S. Kızıltu˘g, Y. Yaylı, Bertrand curves of AW(k)-type in according to the Equiform Geometry of the Galilean Space, Abstract and Applied Analysis Volume, (2014), Article ID 402360, 6 pages. [16] S. Kızıltu˘g, Y. Yaylı, On the quaternionic Mannheim curves of Aw(k)-type in Euclidean space E3 42(2), (2015).
Yıl 2019, Cilt: 2 Sayı: 3, 1 - 11, 01.10.2019

Öz

Kaynakça

  • [1] A. C. C¸ ¨oken, A. Tuna, On the quaternionic inclined curves in the semi-Euclidean space E4 2 , Appl. Math. Computation, 155, (2004), 373-389.
  • [2] C. Ozg¨ur, F. Gezgin, On some curves of AW(k)-type, Differ. Geom. Dyn. Syst, 7, (2005) , 74–80. ¨
  • [3] C¸ . Camcı, K. ˙Ilarslan, L. Kula, H.H. Hacısaliho˘glu, Harmonic curvatures and generalized helices in En, Chaos Solitons & Fractals, (2009), 40(5):2590–6.
  • [4] E. Ata, Y. Yaylı, Dual quaternions and dual projective spaces, Chaos Solitons & Fractals 40, (2009), 15(3):1255-1263.
  • [5] E. Ata, Y. Yaylı, Split quaternions and semi-Euclidean projective spaces, Chaos Solitons & Fractals 41, (2009), 30(4):1910-1915.
  • [6] F. Kahraman, ˙I. G¨ok, H.H. Hacısaliho˘glu, On the quaternionic B2-Slant Helices in the semi-Euclidean Space E4 2 , Appl. Math. Computation, 218, (2012), 6391-6400.
  • [7] ˙I. G¨ok ˙I, O. Z. Okuyucu, F. Kahraman and H. H. Hacisaliho˘glu, On the Quaternionic B2-Slant Helices in the Euclidean Space E4 , Adv. Appl. Clifford Algebras, 21 (2011), 707–719.
  • [8] K. Arslan, C. Ozg¨ur, Curves and surfaces of AW(k)-type, Geometry and Topology of Submanifolds, ¨ IX (Valenciennes/Lyan/Leuven,1997), World. Sci. Publishing, River Edge, NJ, (1999), pp. 21–26.
  • [9] K. Bharathi, M. Nagaraj, Quaternion valued function of a real Serret-Frenet formulae, Indian J. Pure Appl. Math, 16, (1985), 741-756.
  • [10] M. Karada˘g, A.˙I. Sivrida˘g, Kuaterniyonik E˘gilim C¸ izgileri i¸cin karakterizasyonlar, Erc. Unv. Fen ¨ Bil. Derg. 13 1-2, (1997), 37-53.
  • [11] M. K¨ulahcı, M. Bektas, M. Erg¨ut, Curves of AW(k)-type in 3-dimensional null cone, Physics Letters A 371, (2007), 275-277.
  • [12] M. K¨ulahcı, M. Bektas, M. Erg¨ut, On harmonic curvatures of a Frenet curve in Lorentzian space, Chaos Solitons & Fractals 41, (2009), 1668–1675.
  • [13] S. Izumiya, N. Takeuchi, Generic properties of helices and Bertrand curves, J. Geom., 74, (2002), 97–109.
  • [14] S. Izumiya, N. Takeuchi, New special curves and developable surfaces, Turkish J. Math., 28 (2), (2004), 153–163.
  • [15] S. Kızıltu˘g, Y. Yaylı, Bertrand curves of AW(k)-type in according to the Equiform Geometry of the Galilean Space, Abstract and Applied Analysis Volume, (2014), Article ID 402360, 6 pages. [16] S. Kızıltu˘g, Y. Yaylı, On the quaternionic Mannheim curves of Aw(k)-type in Euclidean space E3 42(2), (2015).
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Some Notes on the Extendibility of an Especial Family of Diophantine 𝑷𝟐 Pairs
Yazarlar

Sezai Kızıltuğ Bu kişi benim

Gökhan Mumcu

Yayımlanma Tarihi 1 Ekim 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 2 Sayı: 3

Kaynak Göster

APA Kızıltuğ, S., & Mumcu, G. (2019). On the quaternionic Bertrand curves of AW k -type in Euclidean space E³. Journal of Advanced Mathematics and Mathematics Education, 2(3), 1-11.