Araştırma Makalesi
BibTex RIS Kaynak Göster

Corrosion Behaviors’ Investigation of Carbide Coatings Developed for Sulphuric Acid Recovery Systems

Yıl 2024, , 21 - 32, 15.03.2024
https://doi.org/10.28979/jarnas.1318159

Öz

In this study, corrosion resistance of cobalt and nickel, which are known to have high corrosion resistance, reinforced tungsten carbide coatings applied to low carbon stainless steel material surfaces to reduce corrosion-induced losses in sulphuric acid recovery systems were investigated. During the recovery of sulphuric acid, aggressive sulphur systems in the baths cause the metal surface to dissolve and therefore a high amount of material loss occurs. In order to minimize corrosion induced material loss, 316 L stainless steel surfaces were coated with an interlayer of 95% nickel and 5% aluminium alloy, and then tungsten carbide coatings were synthesized on the surfaces of substrate materials reinforced with 13% cobalt and 13% nickel, respectively by thermal spraying method to further reduce the corrosion rate. Characterization of the produced coatings were carried out by X-ray diffraction (XRD), scanning electron microscope (SEM), optical microscope, image analyzer, and surface roughness device. The standard potentiodynamic polarization characteristics of the coatings for 1M H2SO4 solution at room temperature were investigated with a potentiostat/galvanostat device. As the obtained results, nickel reinforced tungsten carbide coatings with nickel aluminium interlayer showed the highest corrosion resistance against sulfuric acid environment with 0,41 mm/year corrosion rate. As a result of the article, the corrosion resistance of 316L stainless steels in sulfuric acid systems was improved by 5.02 and 3.15 times, respectively.

Kaynakça

  • U. Yurt, B. Dündar, E. Çınar, Jeopolimer betonlarda sülfürik asit etkisinin araştırılması, Düzce Üniversitesi Bilim ve Teknoloji Dergisi 8 (2) (2020) 1548–1561.
  • Ö. Tezel, S. Küçükkancabaş, E. Yıldız, Sürdürülebilir kalkınma hedefleri bakımından atık yönetimi uygulamalarının hanehalkı tarafından değerlendirilmesi: Edirne örneği, Trakya Üniversitesi Sosyal Bilimler Dergisi 22 (2) (2020) 941–957.
  • İ. Dehri, M. Özcan, H. Sözüsağlam, (2000). Polyester kaplamalı galvanize çelik üzerine SO2 ve NH3 gazlarının korozif etkilerinin EIS yöntemi ile belirlenmesi, VII. Uluslar Arası Korozyon Sempozyumu, İstanbul, 2000, p. 246.
  • Z. Ahmad, Principles of Corrosion Engineering and Corrosion Control, Butterworth-Heinemann, Oxford, 2006.
  • P. R. Roberge, Corrosion basics: An introduction, 3rd Edition, National Association of Corrosion Engineers, Houston, 1984.
  • J. Stokes, The Theory and Application of the HVOF Thermal Spray Process, Dublin City University, Dublin, 2005.
  • H. Çuğ H, M. E. E. Erhaima, Effect of Mn and Zr addition on microstructure, wear and corrosion behavior of Ti-6Al-4V composite biomaterials produced by powder metallurgy, Manufacturing Technologies and Applications 2 (2) (2021) 41–48.
  • H. V. Özkavak, Ş. Ş. Özcan, yüksek hızlı oksi-yakıt (HVOF) yöntemiyle kaplanmış çelik ve alüminyum alaşımlarının aşınma özelliklerinin taguchi metoduyla optimizasyonu, BEÜ Fen Bilimleri Dergisi 9 (2) (2020) 931–942.
  • G. Koga, R. Schulz, S. Savoie, A. Nascimento, Y. Drolet, C. Bolfarini, C. Kiminami, W. Botta, Microstructure and wear behavior of Fe-based amorphous HVOF coatings produced from commercial precursors, Surface and Coatings Technology 309 (2017) 938–944.
  • A. K. Lakshminarayanan, V. E. Annamalai, K. Elangovan, Identification of optimum friction stir spot welding process parameters controlling the properties of low carbon automotive steel joints, Jmaterrestechnol 4 (3) (2015) 262–272.
  • G. Singh, N. Bala, V. Chawla, High temperature oxidation behaviour of HVOF thermally sprayed NiCrAlY coating on T-91 boiler tube steel, Materialstoday: Proceedings, 4 (4) (2017) 5259–5265.
  • T. S. Sidhu, S. Prakash, R.D. Agrawal, State of the Art of HVOF Coating Investigations–A Review, Marine Technology Society Journal, 39 (2) (2017) 53–64.
  • N. Singh, G. Vinay, D. Mahajan, Cavitation erosion mechanisms of HVOF–sprayed Ni–based cermet coatings in 3.5% NaCl environment, Surface and Coatings Technology, 434 (9) (2022) 128194.
  • S. Candan, An investigation on corrosion behaviour of pressure infiltrated Al–Mg alloy/SiCp composites, Corrosion Science 51 (6) (2009) 1392–1398.
  • H. M. Zakaria, Microstructural and corrosion behavior of Al/SiC metal matrix composites, Ain Shams Engineering Journal, 5 (3) (2014) 831–838.
  • Y. H. Yoo, D. P. Le, J. G. Kim, S. K. Kim, P. V. Vinh, Corrosion behavior of TiN, TiAlN, TiAlSiN thin films deposited on tool steel in the 3.5 wt.% NaCl solution, Thin Solid Films 516 (11) (2008) 3544–3548.
  • M. Ishikawa, H. Enomoto, M. Matsuoka, C. Iwakura, Effect of tetraborate ions on electrodeposition of nickel-copper alloy from a pyrophosphate bath, Electrochimica Acta 39 (14) (1994) 2153–2157.
  • G. Qiao, T. Jing, N. Wang, Y. Gao, X. Zhao, J. Zhou, W. Wang, Effect of current density on microstructure and properties of bulk nanocrystalline Ni–Co alloys prepared by JED, Journal of The Electrochemical Society, 153 (5) (2006) C305–C308.
  • C. U. Atuanya, D. I. Ekweghiariri, Experimental correlation between varying processing properties and wear behaviour of ternary Ni-Co-SiO2 composites coating of mild steel, The International Journal of Advanced Manufacturing Technology, 88 (9–12) (2017) 2581–2588.
  • B. C. Oberländer, E. Lugscheider, Comparison of properties of coatings produced by laser cladding and conventional methods, Materials Science and Technology 8 (8) (1992) 657–665.
  • S. Islak, S. Buytoz, Microstructure properties of HVOF-sprayed NiCrBSi/WCCo-based composite coatings on AISI 1040 steel, Optoelectronics and Advanced Materials–Rapid Communications 7 (11–12) (2013) 900–903.
  • D. A. Stewart, P. H. Shipway, D. G. McCartney, (1999). Abrasive wear behaviour of conventional and nanocomposite HVOF–sprayed WC-Co coatings, Wear 225-229 (2) 789–798.
  • C. Lupi, A. Dell'Era, M. Pasquali, P. Imperatori, Composition, morphology, structural aspects and electrochemical properties of Ni–Co alloy coatings, Surface and Coatings Technology 205 (23–24) (2011) 5394–5399.
  • L. Wang, Y. Gao, Q. Xue, H. Liu, T. Xu, Microstructure and tribological properties of electrodeposited Ni–Co alloy deposits, Applied Surface Science 242 (3–4) (2005) 326–332.
  • R. Sruthi, G. S. Rampradheep, K. Raja, A review on natural plant extract as a green inhibitor for steel corrosion resistance. International Journal of Advanced Science and Technology 29 (3) (2020) 3529–3550.
Yıl 2024, , 21 - 32, 15.03.2024
https://doi.org/10.28979/jarnas.1318159

Öz

Kaynakça

  • U. Yurt, B. Dündar, E. Çınar, Jeopolimer betonlarda sülfürik asit etkisinin araştırılması, Düzce Üniversitesi Bilim ve Teknoloji Dergisi 8 (2) (2020) 1548–1561.
  • Ö. Tezel, S. Küçükkancabaş, E. Yıldız, Sürdürülebilir kalkınma hedefleri bakımından atık yönetimi uygulamalarının hanehalkı tarafından değerlendirilmesi: Edirne örneği, Trakya Üniversitesi Sosyal Bilimler Dergisi 22 (2) (2020) 941–957.
  • İ. Dehri, M. Özcan, H. Sözüsağlam, (2000). Polyester kaplamalı galvanize çelik üzerine SO2 ve NH3 gazlarının korozif etkilerinin EIS yöntemi ile belirlenmesi, VII. Uluslar Arası Korozyon Sempozyumu, İstanbul, 2000, p. 246.
  • Z. Ahmad, Principles of Corrosion Engineering and Corrosion Control, Butterworth-Heinemann, Oxford, 2006.
  • P. R. Roberge, Corrosion basics: An introduction, 3rd Edition, National Association of Corrosion Engineers, Houston, 1984.
  • J. Stokes, The Theory and Application of the HVOF Thermal Spray Process, Dublin City University, Dublin, 2005.
  • H. Çuğ H, M. E. E. Erhaima, Effect of Mn and Zr addition on microstructure, wear and corrosion behavior of Ti-6Al-4V composite biomaterials produced by powder metallurgy, Manufacturing Technologies and Applications 2 (2) (2021) 41–48.
  • H. V. Özkavak, Ş. Ş. Özcan, yüksek hızlı oksi-yakıt (HVOF) yöntemiyle kaplanmış çelik ve alüminyum alaşımlarının aşınma özelliklerinin taguchi metoduyla optimizasyonu, BEÜ Fen Bilimleri Dergisi 9 (2) (2020) 931–942.
  • G. Koga, R. Schulz, S. Savoie, A. Nascimento, Y. Drolet, C. Bolfarini, C. Kiminami, W. Botta, Microstructure and wear behavior of Fe-based amorphous HVOF coatings produced from commercial precursors, Surface and Coatings Technology 309 (2017) 938–944.
  • A. K. Lakshminarayanan, V. E. Annamalai, K. Elangovan, Identification of optimum friction stir spot welding process parameters controlling the properties of low carbon automotive steel joints, Jmaterrestechnol 4 (3) (2015) 262–272.
  • G. Singh, N. Bala, V. Chawla, High temperature oxidation behaviour of HVOF thermally sprayed NiCrAlY coating on T-91 boiler tube steel, Materialstoday: Proceedings, 4 (4) (2017) 5259–5265.
  • T. S. Sidhu, S. Prakash, R.D. Agrawal, State of the Art of HVOF Coating Investigations–A Review, Marine Technology Society Journal, 39 (2) (2017) 53–64.
  • N. Singh, G. Vinay, D. Mahajan, Cavitation erosion mechanisms of HVOF–sprayed Ni–based cermet coatings in 3.5% NaCl environment, Surface and Coatings Technology, 434 (9) (2022) 128194.
  • S. Candan, An investigation on corrosion behaviour of pressure infiltrated Al–Mg alloy/SiCp composites, Corrosion Science 51 (6) (2009) 1392–1398.
  • H. M. Zakaria, Microstructural and corrosion behavior of Al/SiC metal matrix composites, Ain Shams Engineering Journal, 5 (3) (2014) 831–838.
  • Y. H. Yoo, D. P. Le, J. G. Kim, S. K. Kim, P. V. Vinh, Corrosion behavior of TiN, TiAlN, TiAlSiN thin films deposited on tool steel in the 3.5 wt.% NaCl solution, Thin Solid Films 516 (11) (2008) 3544–3548.
  • M. Ishikawa, H. Enomoto, M. Matsuoka, C. Iwakura, Effect of tetraborate ions on electrodeposition of nickel-copper alloy from a pyrophosphate bath, Electrochimica Acta 39 (14) (1994) 2153–2157.
  • G. Qiao, T. Jing, N. Wang, Y. Gao, X. Zhao, J. Zhou, W. Wang, Effect of current density on microstructure and properties of bulk nanocrystalline Ni–Co alloys prepared by JED, Journal of The Electrochemical Society, 153 (5) (2006) C305–C308.
  • C. U. Atuanya, D. I. Ekweghiariri, Experimental correlation between varying processing properties and wear behaviour of ternary Ni-Co-SiO2 composites coating of mild steel, The International Journal of Advanced Manufacturing Technology, 88 (9–12) (2017) 2581–2588.
  • B. C. Oberländer, E. Lugscheider, Comparison of properties of coatings produced by laser cladding and conventional methods, Materials Science and Technology 8 (8) (1992) 657–665.
  • S. Islak, S. Buytoz, Microstructure properties of HVOF-sprayed NiCrBSi/WCCo-based composite coatings on AISI 1040 steel, Optoelectronics and Advanced Materials–Rapid Communications 7 (11–12) (2013) 900–903.
  • D. A. Stewart, P. H. Shipway, D. G. McCartney, (1999). Abrasive wear behaviour of conventional and nanocomposite HVOF–sprayed WC-Co coatings, Wear 225-229 (2) 789–798.
  • C. Lupi, A. Dell'Era, M. Pasquali, P. Imperatori, Composition, morphology, structural aspects and electrochemical properties of Ni–Co alloy coatings, Surface and Coatings Technology 205 (23–24) (2011) 5394–5399.
  • L. Wang, Y. Gao, Q. Xue, H. Liu, T. Xu, Microstructure and tribological properties of electrodeposited Ni–Co alloy deposits, Applied Surface Science 242 (3–4) (2005) 326–332.
  • R. Sruthi, G. S. Rampradheep, K. Raja, A review on natural plant extract as a green inhibitor for steel corrosion resistance. International Journal of Advanced Science and Technology 29 (3) (2020) 3529–3550.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kaplama Teknolojisi
Bölüm Araştırma Makalesi
Yazarlar

Erhan Özkan 0000-0002-3849-6713

Erken Görünüm Tarihi 15 Mart 2024
Yayımlanma Tarihi 15 Mart 2024
Gönderilme Tarihi 22 Haziran 2023
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Özkan, E. (2024). Corrosion Behaviors’ Investigation of Carbide Coatings Developed for Sulphuric Acid Recovery Systems. Journal of Advanced Research in Natural and Applied Sciences, 10(1), 21-32. https://doi.org/10.28979/jarnas.1318159
AMA Özkan E. Corrosion Behaviors’ Investigation of Carbide Coatings Developed for Sulphuric Acid Recovery Systems. JARNAS. Mart 2024;10(1):21-32. doi:10.28979/jarnas.1318159
Chicago Özkan, Erhan. “Corrosion Behaviors’ Investigation of Carbide Coatings Developed for Sulphuric Acid Recovery Systems”. Journal of Advanced Research in Natural and Applied Sciences 10, sy. 1 (Mart 2024): 21-32. https://doi.org/10.28979/jarnas.1318159.
EndNote Özkan E (01 Mart 2024) Corrosion Behaviors’ Investigation of Carbide Coatings Developed for Sulphuric Acid Recovery Systems. Journal of Advanced Research in Natural and Applied Sciences 10 1 21–32.
IEEE E. Özkan, “Corrosion Behaviors’ Investigation of Carbide Coatings Developed for Sulphuric Acid Recovery Systems”, JARNAS, c. 10, sy. 1, ss. 21–32, 2024, doi: 10.28979/jarnas.1318159.
ISNAD Özkan, Erhan. “Corrosion Behaviors’ Investigation of Carbide Coatings Developed for Sulphuric Acid Recovery Systems”. Journal of Advanced Research in Natural and Applied Sciences 10/1 (Mart 2024), 21-32. https://doi.org/10.28979/jarnas.1318159.
JAMA Özkan E. Corrosion Behaviors’ Investigation of Carbide Coatings Developed for Sulphuric Acid Recovery Systems. JARNAS. 2024;10:21–32.
MLA Özkan, Erhan. “Corrosion Behaviors’ Investigation of Carbide Coatings Developed for Sulphuric Acid Recovery Systems”. Journal of Advanced Research in Natural and Applied Sciences, c. 10, sy. 1, 2024, ss. 21-32, doi:10.28979/jarnas.1318159.
Vancouver Özkan E. Corrosion Behaviors’ Investigation of Carbide Coatings Developed for Sulphuric Acid Recovery Systems. JARNAS. 2024;10(1):21-32.


TR Dizin 20466

ASCI Database31994



Academindex 30370    

SOBİAD 20460               

Scilit 30371                        

29804 As of 2024, JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).