Araştırma Makalesi
BibTex RIS Kaynak Göster

Maksimum Entropi Modelleme Kullanarak Avrupa Yer Sincabı'nın İki Soyhattı Arasındaki İklim Tercihinin Tahmini

Yıl 2020, , 328 - 341, 29.12.2020
https://doi.org/10.28979/jarnas.844850

Öz

Kaynakça

  • Balaz, I., Jancova, A., & Ambros, M. (2008). Restitution of the European ground squirrel (Spermophilus citellus) in Slovakia. Lynx (Praha), NS 39, 235–240. Retrieved from: https://www.researchgate.net/publication/288338501
  • Baltag, E.Ş., Zaharia, G., Fasolă, L., & Constantin, I. (2014). European Ground Squirrel (Mammalia: Ro-dentia) population from Eastern Romania: density, distribution and threats. European Scientific Jo-urnal, 94–101. Retrieved from: https://www.researchgate.net/publication/271844575
  • Barkaszi, Z., & Zagorodniuk, I. (2018). Living on the edge: distribution patterns of steppe mammals in Transcarpathia (Ukraine). Studia Biologica, 12, 75–94. https://doi.org/10.30970/sbi.1203.573
  • Benda, P. & Ivanova, T. (2003). Long-eared bats, Genus Plecotus (Mammalia: Chiroptera), in Bulgaria: a revision of systematic and distributional status. Bulletin of the Natural History Museum, 172, 157–172. Retrieved from: https://www.researchgate.net/publication/228492914
  • Birks, H.J.B., & Willis K.J. (2008). Alpines, trees, and refugia in Europe. Plant Ecology & Diversity, 1, 147–160. https://doi.org/10.1080/17550870802349146
  • Brown, J.L. (2014). SDMtoolbox: a python-based GIS toolkit for landscape genetic, biogeographic, and species distribution model analyses. Methods in Ecology and Evolution, 5(7), 694–700. https://doi.org/10.1111/2041-210X.12200
  • Brown, J.L., Bennett, J.R., & French, C.M. (2017). SDMtoolbox 2.0: the next generation Python-based GIS toolkit for landscape genetic, biogeographic, and species distribution model analyses. PeerJ, 5:e4095.
  • Coroiu, C., Kryštufek, B., Vohralík, V., & Zagorodnyuk, I. (2008). Spermophilus citellus. The IUCN Red List of Threatened Species 2008: e.T20472A92 4055. http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T20472A9204055.en. Downloaded on 17 October 2019.
  • Diakou, A. Kapantaidakis, E., & Youlatos, D. (2015). Endoparasites of the European ground squirrel (Spermophilus citellus) (Rodentia: Sciuridae) in central Macedonia, Greece. Journal of Natural His-tory, 49(5-8), 359–370. https://doi.org/10.1080/00222933.2013.825025
  • Elith, J., Phillips, S.J., Hastie, T., Dudík, M., Chee, Y.E., & Yates, C.J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17(1), 43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x
  • Engler, R., Guisan, A., & Rechsteiner, L. (2004). An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. Journal of Applied Ecology, 41, 263–274. https://doi.org/10.1111/j.0021-8901.2004.00881.x
  • Feng, X., Park, D.S., Liang, Y., Pandey, R., & Papeş, M. (2019). Collinearity in ecological niche modeling: Confusions and challenges. Ecology and Evolution, 9(18), 10365–10376. https://doi.org/10.1002/ece3.5555
  • Fortelius, M. (2011). Neogene of the Old World Database of Fossil Mammals. University of Helsinki. Ret-rieved from: https://researchportal.helsinki.fi/en/equipments/now-new-and-old-worlds-fossil-mammal-database
  • Fourcade, Y., Engler, J.O., Rödder, D., & Secondi, J. (2014). Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for cor-recting sampling bias. PloS One, 9(5), e97122. https://doi.org/10.1371/journal.pone.00971221
  • Gedeon, C.I., Váczi, O., Koósz, B., & Altbäcker, V. (2011). Morning release into artificial burrows with retention caps facilitates success of European ground squirrel (Spermophilus citellus) translocations. European Journal of Wildlife Research, 57(5), 1101–1105. https://doi.org/10.1007/s10344-011-0504-3
  • Gedeon, C.I., Boross, G., Németh, A., & Altbäcker, V. (2012). Release site manipulation to favour Euro-pean ground squirrel Spermophilus citellus translocations: translocation and habitat manipulation. Wildlife Biology, 18(1), 97–104. https://doi.org/10.2981/10-124
  • Guisan, A., Tingley, R., Baumgartner, J.B., Naujokaitis-Lewis, I., Sutcliffe, P.R., Tulloch, A.I., Regan, T.J., Brotons, L., McDonald‐Madden, E., Mantyka‐Pringle, C., Martin, T.G., Rhodes, J.R., Maggini, R., Setterfield, S.A., Elith, J., Schwartz M.W., Wintle, B.A., Broennimann, O., Austin M., Ferrier, S., Kearney, M.R., Possingham, H.P., & Buckley, Y.M. (2013). Predicting species distributions for conservation decisions. Ecology Letters, 16(12), 1424–1435. https://doi.org/10.1111/ele.12189
  • Gündüz, İ., Jaarola, M., Tez, C., Yeniyurt, C., Polly, P.D., & Searle, J.B. (2007). Multigenic and morpho-metric differentiation of ground squirrels (Spermophilus, Scuiridae, Rodentia) in Turkey, with a desc-ription of a new species. Molecular Phylogenetics and Evolution, 43, 916–935. https://doi.org/10.1016/j.ympev.2007.02.021
  • Gür, H. (2013). The effects of the late Quaternary glacial-interglacial cycles on Anatolian ground squirrels: range expansion during the glacial periods. Biological Journal of the Linnean Society, 109, 19–32. https://doi.org/10.1111/bij.12026
  • Gür, H., Perktaş, U., & Gür, M.K. (2017). Do climate-driven altitudinal range shifts explain the intraspeci-fic diversification of a narrow ranging montane mammal, Taurus ground squirrels? Mammal Rese-arch, 63(2), 197–211. https://doi.org/10.1007/s13364-017-0347-8
  • Haberl, W., Kryštufek, B. & Hoffmann, I.E. (2012). Distribution and assessment of endangered European ground squirrel (Spermophilus citellus gradojevici) populations in south-eastern Macedonia (FY-ROM). 3rd European Congress of Conservation Biology, Glasgow, Scotland. Retrieved from: https://www.researchgate.net/publication/323322689
  • Hanley, J.A., & McNeil, B.J. (1982). The meaning and use of the area under a receiver operating characte-ristic (ROC) curve. Radiology, 143, 29–36. https://doi.org/10.1148/radiology.143.1.7063747
  • Harrison, R.G., Bogdanowicz, S.M., Hoffmann, R.S., Yensen, E., Sherman, P.W. (2003). Phylogeny and evolutionary history of the ground squirrel (Rodentia: Marmotinae). Journal of Mammalian Evolu-tion, 10, 249–276. https://doi.org/10.1023/B:JOMM.0000015105.96065.f0
  • Hewitt, G. (2000). The genetic legacy of the Quaternary ice ages. Nature, 405(6789), 907–913. https://doi.org/10.1038/35016000
  • Hewitt, G.M. (1996). Some genetic consequences of ice ages, and their role in divergence and speciation. Biological Journal of the Linnean Society, 58, 247–276. https://doi.org/10.1006/bijl.1996.0035
  • Hijmans, R.J., Cameron, S.E., Parra, J.L., & Albert, D.L. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978. http://doi.wiley.com/10.1002/joc.1276
  • Hijmans, R.J., & Graham, C.H. (2006). Testing the ability of climate envelope models to predict the effect of climate change on species distributions. Global Change Biology, 12, 2272–2281. https://doi.org/10.1111/j.1365-2486.2006.01256.x
  • Hoffmann, I.E., Millesi, E., Huber, S., Everts, L.G., Dittami, J. P. (2003). Population Dynamics of Euro-pean Ground Squirrels (Spermophilus citellus) in a Suburban Area. Journal of Mammalogy, 84(2), 615–626. https://doi.org/10.1644/1545-1542(2003)084<0615:PDOEGS>2.0.CO;2
  • Hoffmann, I.E., Turrini, T., & Brenner, M. (2008). Do European ground squirrels in Austria adjust their life history to anthropogenic influence? Lynx (Praha), 39(2), 241–250. Retrieved from: https://www.researchgate.net/publication/259475994
  • Hulová, Š., & Sedláček, F. (2008). Population genetic structure of the European ground squirrel in the Czech Republic. Conservation Genetics, 9, 615–625. https://doi.org/10.1007/s10592-007-9378-z.
  • Janák, M., Marhoul, P., & Matějů, J. (2013). Action Plan for the Conservation of the European Ground Squirrel Spermophilus citellus in the European Union. Retrieved from: https://ec.europa.eu/environment/nature/conservation/species/action_plans
  • Janderková, J., Matějů, J., Schnitzerová, P., Petruš, J., Sedláček, J., & Uhlíková, J. (2011). Soil characteris-tics at Spermophilus citellus localities in the Czech Republic (Rodentia, Sciuridae). Lynx, 42, 99–111. Retrieved from: https://publikace.nm.cz/file/722e0fe453a88e35d055598c2b0f6c48/16927/99-111_Janderkov%C3%A1.pdf
  • Katona, K., Váczi. O., & Altbäcker V. (2002). Topographic distribution and daily activity of the European ground squirrel population in Bugacpuszta, Hungary. Acta Theriologica, 47(1), 45–54. https://doi.org/10.1007/BF03193565
  • Koshev, Y.S. (2009). Distribution, isolation and recent status of European ground squirrel (Spermophilus citellus L.) in Pazardzhik district, Bulgaria. Annual of Shumen University “Konstantin Preslavsky”, Faculty of Natural Sciences, Vol. XIX B6: 97-109. ISSN: 1311-834X. https://www.researchgate.net/publication/258452659
  • Koshev, Y.S., Kachamakova, M., Arangelov, S., & Ragyov, D. (2019). Translocations of European ground squirrel (Spermophilus citellus) along altitudinal gradient in Bulgaria – an overview. Nature Conser-vation, 35, 63–95. https://doi.org/10.3897/natureconservation.35.30911
  • Kryštufek, B. (1999). Spermophilus citellus (Linnaeus, 1766). 190-191 pp. In the atlas of European mam-mals (Mitchell-Jones A. J.ed.). Academic Press London, United Kingdom.
  • Kryštufek, B., & Vohralík, V. (2005). Mammals of Turkey and Cyprus, Vol. 2: Rodentia I: Sciuridae, Di-podidae, Gliridae, Arvicolinae, Annales Majora Koper, Slovenia.
  • Kryštufek, B., Bryja, J., & Buzan, E.V. (2009). Mitochondrial phylogeography of the European ground squirrel, Spermophilus citellus, yields evidence on refugia for steppic taxa in the southern Balkans. Heredity, 103, 129–135. https://doi.org/10.1038/hdy.2009.41
  • Kryštufek, B., Nedyalkov, Nedko., Astrin, J.J., & Hutterer, R. (2018). News from the Balkan refugium: Thrace has an endemic mole species (Mammalia: Talpidae). Bonn Zoological Bulletin, 67(1), 41–57. Retrieved from: https://www.researchgate.net/publication/328019990
  • Kurten, B. (1968). Pleistocene Mammals of Europe. Weidenfeld & Nicolson, London.
  • Ramos-Lara, N., Koprowski, J.L., Kryštufek, B., Hoffmann, I.E. (2014). Spermophilus citellus (Rodentia: Sciuridae). Mammalian Species, 46(913), 71–87. https://doi.org/10.1644/913.1
  • Löbbová, D., & Hapl, E. (2014). Conservation of European ground squirrel (Mammalia: Rodentia) in Slo-vakia: Results of current reintroduction programme. Slovak Raptor Journal, 8, 105–112. https://doi.org/10.2478/srj-2014-0012
  • Luoto, M., Pöyry, J., Heikkinen, R.K., & Saarinen, K. (2005). Uncertainty of bioclimate envelope models based on geographical distribution of species. Global Ecology and Biogeography, 14, 575–84. https://doi.org/10.1111/j.1466-822X.2005.00186.x
  • Matěju, J., Nová, P., Uhlíková, J., Hulová, Š., & Cepáková, E., (2008). Distribution of the European gro-und squirrel (Spermophilus citellus) in the Czech Republic in 2002–2008. Lynx, 39, 277–294. Retrie-ved from: https://publikace.nm.cz/file/128af2d7b6eae61b13dec15d7a2b9ec2/16133/Mat%C4%9Bj%C5%AF2008lynx2.pdf
  • Matějů, J., Hulová, Š., Nová, P., Cepáková, E., Marhoul, P., & Uhlíková, J. (2010). Action plan for the European Ground Squirrel (Spermophilus citellus) in the Czech Republic. Charles University and Agency for Nature and Landscape Protection of the Czech Republic, Prague. Retrieved from: https://ec.europa.eu/environment/nature/conservation/species/action_plans
  • Matějů, J., Říčanová, Š., Poláková, S., Ambros, M., Kala, B., Matějů, K., & Kratochvíl L. (2012). Method of releasing and number of animals are determinants for the success of European ground squirrel (Spermophilus citellus) reintroductions. European Journal of Wildlife Research, 58(2), 473–482. https://doi.org/10.1007/s10344-011-0597-8
  • Mráz, P., & Ronikier, M. (2016). Biogeography of the Carpathians: evolutionary and spatial facets of bio-diversity. Biological Journal of the Linnean Society, 119, 528–559. https://doi.org/10.1111/bij.12918
  • Musil, R. (1985). Paleobiography of terrestrial communities in Europe during the last glacial. Acta Musei Nationalis Pragae XLI B, no. 1-2: 25–56. Retrieved from: http://fi.nm.cz/en/archive/
  • Pearson, R.G., Thuiller, W., Araújo, M.B., Martinez-Meyer, E., Brotons, L., Mcclean, C., Miles, L., Segu-rado, P., Dawson, T.P., & Lees, D.C. (2006). Model based uncertainty in species range prediction. Journal of Biogeography, 33, 1704–1711. https://doi.org/10.1111/j.1365-2699.2006.01460.x
  • Peltier, W.R. (1994). Ice Age Paleotopography. Science 265(5169), 195–201. https://doi.org/10.1126/science.265.5169.195 https://doi.org/10.1038/416626a
  • Peterson, A.T., Ortega-Huerta, M.A., Bartley, J., Sanchez-Cordero, V., Soberon, J., Buddemeier, R.H., & Stockwell, D.R. (2002). Future projections for Mexican faunas under global climate change scena-rios. Nature, 416(6881), 626–629. https://doi.org/10.1038/416626a
  • Petrova, A., & Vladimirov, V. (2010). Balkan endemics in the Bulgarian flora. Phytologia Balcanica, 16(2), 293–311. Retrieved from: https://www.researchgate.net/publication/268180051
  • Phillips, S.J., Dudík, M., & Schapire, R.E. (2004). A maximum entropy approach to species distribution modeling. In: Proceedings of the 21st International Conference on Machine Learning. NewYork, NY: ACM Press, 655–662. Retrieved from: https://www.researchgate.net/publication/221345128
  • Phillips, S.J., Anderson, R.P., & Schapire, R.E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
  • Phillips, S.J., Dudík, M., & Schapire, R.E. (2017a). MaxEnt software for modeling species niches and dist-ributions. Version 3.4.1. Available from: https://biodiversityinformatics.amnh.org/open_source/maxent
  • Phillips, S.J., Anderson, R.P., Dudík, M., Schapire, R.E., & Blair, M.E. (2017b). Opening the black box: an open‐source release of Maxent. Ecography, 40(7), 887–893. https://doi.org/10.1111/ecog.03049
  • Pollard, D., & Thompson, S.L. (1997). Climate and ice-sheet mass balance at the last glacial maximum from the GENESIS version 2 global climate model. Quaternary Science Reviews, 16, 841–863. https://doi.org/10.1016/S0277-3791(96)00115-1
  • Popova, L.V., Maul, L.C., Zagorodniuk, I.V., Veklych, Y.M., Shydlovskiy, P.S., Pogodina, N.V., Bondar K.M., Strukova, T.V., & Parfitt, S.A. (2019). Good fences make good neighbours’: Concepts and re-cords of range dynamics in ground squirrels and geographical barriers in the Pleistocene of the Cir-cum Black Sea area. Quaternary International, 509, 103–120. https://doi.org/10.1016/j.quaint.2018.03.023
  • O’Donnell, M.S., & Ignizio, D.A. (2012). Bioclimatic predictors for supporting ecological applications in the conterminous United States: U.S. Geological Survey Data Series 691, 10. Available from: https://pubs.usgs.gov/ds/691
  • Qiao, H., Escobar, L.E., & Peterson, T. (2017). Accessible areas in ecological niche comparisons of invasi-ve species: Recognized but still overlooked. Scientific Reports, 7(1), 1213. https://doi.org/10.1038/s41598-017-01313-2
  • Özkurt, Ş., Yiğit, N., Çolak, E., Sözen, M., Gharakheloo M.M. (2005). Observations on the ecology, repro-duction and behavior of Spermophilus Bennett, 1835 (Mammalia: Rodentia) in Turkey. Turkish Jo-urnal of Zoology, 29(1), 91–99. Retrieved from: https://www.researchgate.net/publication/260081812
  • Říčanová, S., Bryja, J., Cosson, J.F., Gedeon, C., Choleva, L., Ambros, M., & Sedláček, F. (2011). Deple-ted genetic variation of the European ground squirrel in Central Europe in both microsatellites and the major histocompatibility complex gene: implication for conservation. Conservation Genetics, 12, 1115–1129.https://doi.org/10.1007/s10592-011-0213-1
  • Říčanová, Š., Koshev, Y., Říčan, O., Ćosić, N., Ćirović, D., Sedláček, F., & Bryja, J. (2013). Multilocus phylogeography of the European ground squirrel: cryptic interglacial refugia of continental climate in Europe. Molecular Ecology, 22(16), 4256–4269. https://doi.org/10.1111/mec.12382
  • Santel, W., von Koenigswald, W. (1998). Preliminary report on themiddle Pleistocene small mammal fau-na from Yarimburgaz Cave in Turkish Thrace. Eiszeitalter & Gegenwart, 48, 162–169. https://doi.org/10.3285/eg.48.1.14, 1998 10.3390/genes8110292
  • Savić, I., Ćirović, D., & Bugarski-Stanojević, V. (2017). Exceptional Chromosomal Evolution and Cryptic Speciation of Blind Mole Rats Nannospalax leucodon (Spalacinae, Rodentia) from South-Eastern Eu-rope. Genes, 8(11), 292. https://doi.org/10.3390/genes8110292
  • Stewart, J.R., & Lister, A. M. (2001). Cryptic northern refugia and the origins of the modern biota. Trends in Ecology & Evolution, 16(11), 608–613. https://doi.org/10.1016/S0169-5347(01)02338-2
  • Stewart, JR., Lister, A.M, Barnes, I., & Dalén, L. (2010). Refugia revisited: individualistic responses of species in space and time. Proceedings Biological Sciences, 277(1682), 661–671. https://doi.org/10.1098/rspb.2009.1272
  • Stojak, J., & Tarnowska, E. (2019). Polish suture zone as the goblet of truth in post-glacial history of mammals in Europe. Mammalian Research, 64, 463–475. https://doi.org/10.1007/s13364-019-00433-6
  • Stojak, J., Borowik, T., Górny, M., McDevitt, A.D., & Wójcik J.M. (2019). Climatic influences on the genetic structure and distribution of the common vole and field vole in Europe. Mammal Research, 64, 19–29. https://doi.org/10.1007/s13364-018-0395-8
  • Swets, J. (1988). Measuring the accuracy of diagnostic systems. Science, 240(4857), 1285–1293. https://doi.org/10.1126/science.3287615
  • Tiryaki, D. (2015). Türkiye Spermophilus Cuvier, 1825 (Mammalia: Rodentia) türlerinin filocoğrafyası, filo-genisi ve soy hattı sınırlarının detaylı incelenmesi, Doktora Tezi, Ondokuz Mayıs Üniversitesi, Fen Bilimleri Enstitüsü. Samsun, Turkey. Retrieved from: http://libra.omu.edu.tr/tezler/87349.pdf
  • Tzvetkov, J., & Koshev, Y. (2016). GIS habitat model of potential distribution of European ground squirrel (Spermophilus citellus) in Bulgaria. Belgrade, Serbia, 6th European Ground Squirrel Meeting. https://doi.org/10.13140/RG.2.2.26177.97124
  • Váczi, O., & Altbäcker, V. (1999). Füves repülőterek ürgeállományának felmérése. Természetvédelmi Köz-lemények, 8, 205–214. Retrieved from: https://adtplus.arcanum.hu/hu/view/TermeszetvedelmiKozlemenyek_08
  • Valchovski, H., & Mısırlıoğlu İ.M. (2017). Review of earthworm (Clitellata: Lumbricidae, Criodrilidae, Acanthodrilidae) biodiversity of thracе in Bulgaria, Turkey and Greece. Sakarya Üniversitesi Fen Bi-limleri Enstitüsü Dergisi, 21(6), 1325–1330. https://doi.org/10.16984/saufenbilder.306021
  • Van Horne, B. (2003). Conservation of ground squirrels. In: Wolff JO, Sherman PW, eds. Rodent societies: an ecological and evolutionary perspective. Chicago, IL: University of Chicago Press, 463–471.
  • Wilson, D.E., & Reeder, D.M. (2005). Mammal Species of the World. A Taxonomic and Geographic Refe-rence. 3rd ed. Johns Hopkins University Press, Baltimore. Wisz, M.S., Hijmans, R.J., Li, J., Peterson, A.T., Graham, C.H., & Guisan, A. (2008). Effects of sample size on the performance of species distribution models. Diversity and Distributions, 14(5), 763–773. https://doi.org/10.1111/j.1472-4642.2008.00482.x
  • Youlatos, D., Boutsis Y., Pantis, J.D. & Hadjicharalambous, H. (2007). Activity patterns of European gro-und squirrels (Spermophilus citellus) in a cultivated field in northern Greece. Mammalia, 71(4), 183–186. https://doi.org/10.1515/MAMM.2007.030
  • Zaharia, G., Petrencu, L., & Baltag E.S. (2016). Site selection of European ground squirrels (Spermophilus citellus) in Eastern Romania and how they are influenced by climate, relief, and vegetation. Turkish Journal of Zoology, 40, 917–924. https://doi.org/10.3906/zoo-1505-28

Estimation of the Climate Preference Between Two Lineages of Europe-an Ground Squirrel Using Maximum Entropy Modeling

Yıl 2020, , 328 - 341, 29.12.2020
https://doi.org/10.28979/jarnas.844850

Öz

Spermophilus citellus (Linnaeus, 1766), commonly referred to as the European ground squirrel, exists in specific areas of Central Europe and the Balkans. The species is currently listed as ‘‘vulnerable’’ on the IUCN Red List of Threatened Species. Recently genetic studies have shown that the species has two main lineages; the northern and the southern. The northern lineage shows distribution range at the central and western part of the Balkans and Central Europe, whereas the southern lineage is spread in a more limited area, which includes the southern and eastern parts of the Balkans. The purpose of this study is to reveal the potential geographic distribution in Last Glacial Maximum (approximately 22 kya), present and future (average 2070) periods of these lineages using Maximum Entropy modeling (MaxEnt). This study also contributes to comparing the distribution of two lineages between past, present and future periods. The final MaxEnt with ten replicate runs was constructed based on 80 occurrence records from Austria, Bulgaria, Czech Republic, Greece, Hungary, Slovakia, Serbia, Macedonia, Mol-dova, Romania, Turkey and Ukraine, and twelve abiotic bioclimatic variables obtained from WorldClim. Thus, it was attempted to estimate the importance of bioclimatic factors influencing the potential geographical distribution for each lineage as well as assessing the area under curve values. This study showed that the two lineages of the European ground squirrel had different geographic distribution patterns for past, present and future periods. More-over, the study will make important contributions to conservation studies such as management strategies, species action plans and translocation.

Kaynakça

  • Balaz, I., Jancova, A., & Ambros, M. (2008). Restitution of the European ground squirrel (Spermophilus citellus) in Slovakia. Lynx (Praha), NS 39, 235–240. Retrieved from: https://www.researchgate.net/publication/288338501
  • Baltag, E.Ş., Zaharia, G., Fasolă, L., & Constantin, I. (2014). European Ground Squirrel (Mammalia: Ro-dentia) population from Eastern Romania: density, distribution and threats. European Scientific Jo-urnal, 94–101. Retrieved from: https://www.researchgate.net/publication/271844575
  • Barkaszi, Z., & Zagorodniuk, I. (2018). Living on the edge: distribution patterns of steppe mammals in Transcarpathia (Ukraine). Studia Biologica, 12, 75–94. https://doi.org/10.30970/sbi.1203.573
  • Benda, P. & Ivanova, T. (2003). Long-eared bats, Genus Plecotus (Mammalia: Chiroptera), in Bulgaria: a revision of systematic and distributional status. Bulletin of the Natural History Museum, 172, 157–172. Retrieved from: https://www.researchgate.net/publication/228492914
  • Birks, H.J.B., & Willis K.J. (2008). Alpines, trees, and refugia in Europe. Plant Ecology & Diversity, 1, 147–160. https://doi.org/10.1080/17550870802349146
  • Brown, J.L. (2014). SDMtoolbox: a python-based GIS toolkit for landscape genetic, biogeographic, and species distribution model analyses. Methods in Ecology and Evolution, 5(7), 694–700. https://doi.org/10.1111/2041-210X.12200
  • Brown, J.L., Bennett, J.R., & French, C.M. (2017). SDMtoolbox 2.0: the next generation Python-based GIS toolkit for landscape genetic, biogeographic, and species distribution model analyses. PeerJ, 5:e4095.
  • Coroiu, C., Kryštufek, B., Vohralík, V., & Zagorodnyuk, I. (2008). Spermophilus citellus. The IUCN Red List of Threatened Species 2008: e.T20472A92 4055. http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T20472A9204055.en. Downloaded on 17 October 2019.
  • Diakou, A. Kapantaidakis, E., & Youlatos, D. (2015). Endoparasites of the European ground squirrel (Spermophilus citellus) (Rodentia: Sciuridae) in central Macedonia, Greece. Journal of Natural His-tory, 49(5-8), 359–370. https://doi.org/10.1080/00222933.2013.825025
  • Elith, J., Phillips, S.J., Hastie, T., Dudík, M., Chee, Y.E., & Yates, C.J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17(1), 43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x
  • Engler, R., Guisan, A., & Rechsteiner, L. (2004). An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. Journal of Applied Ecology, 41, 263–274. https://doi.org/10.1111/j.0021-8901.2004.00881.x
  • Feng, X., Park, D.S., Liang, Y., Pandey, R., & Papeş, M. (2019). Collinearity in ecological niche modeling: Confusions and challenges. Ecology and Evolution, 9(18), 10365–10376. https://doi.org/10.1002/ece3.5555
  • Fortelius, M. (2011). Neogene of the Old World Database of Fossil Mammals. University of Helsinki. Ret-rieved from: https://researchportal.helsinki.fi/en/equipments/now-new-and-old-worlds-fossil-mammal-database
  • Fourcade, Y., Engler, J.O., Rödder, D., & Secondi, J. (2014). Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for cor-recting sampling bias. PloS One, 9(5), e97122. https://doi.org/10.1371/journal.pone.00971221
  • Gedeon, C.I., Váczi, O., Koósz, B., & Altbäcker, V. (2011). Morning release into artificial burrows with retention caps facilitates success of European ground squirrel (Spermophilus citellus) translocations. European Journal of Wildlife Research, 57(5), 1101–1105. https://doi.org/10.1007/s10344-011-0504-3
  • Gedeon, C.I., Boross, G., Németh, A., & Altbäcker, V. (2012). Release site manipulation to favour Euro-pean ground squirrel Spermophilus citellus translocations: translocation and habitat manipulation. Wildlife Biology, 18(1), 97–104. https://doi.org/10.2981/10-124
  • Guisan, A., Tingley, R., Baumgartner, J.B., Naujokaitis-Lewis, I., Sutcliffe, P.R., Tulloch, A.I., Regan, T.J., Brotons, L., McDonald‐Madden, E., Mantyka‐Pringle, C., Martin, T.G., Rhodes, J.R., Maggini, R., Setterfield, S.A., Elith, J., Schwartz M.W., Wintle, B.A., Broennimann, O., Austin M., Ferrier, S., Kearney, M.R., Possingham, H.P., & Buckley, Y.M. (2013). Predicting species distributions for conservation decisions. Ecology Letters, 16(12), 1424–1435. https://doi.org/10.1111/ele.12189
  • Gündüz, İ., Jaarola, M., Tez, C., Yeniyurt, C., Polly, P.D., & Searle, J.B. (2007). Multigenic and morpho-metric differentiation of ground squirrels (Spermophilus, Scuiridae, Rodentia) in Turkey, with a desc-ription of a new species. Molecular Phylogenetics and Evolution, 43, 916–935. https://doi.org/10.1016/j.ympev.2007.02.021
  • Gür, H. (2013). The effects of the late Quaternary glacial-interglacial cycles on Anatolian ground squirrels: range expansion during the glacial periods. Biological Journal of the Linnean Society, 109, 19–32. https://doi.org/10.1111/bij.12026
  • Gür, H., Perktaş, U., & Gür, M.K. (2017). Do climate-driven altitudinal range shifts explain the intraspeci-fic diversification of a narrow ranging montane mammal, Taurus ground squirrels? Mammal Rese-arch, 63(2), 197–211. https://doi.org/10.1007/s13364-017-0347-8
  • Haberl, W., Kryštufek, B. & Hoffmann, I.E. (2012). Distribution and assessment of endangered European ground squirrel (Spermophilus citellus gradojevici) populations in south-eastern Macedonia (FY-ROM). 3rd European Congress of Conservation Biology, Glasgow, Scotland. Retrieved from: https://www.researchgate.net/publication/323322689
  • Hanley, J.A., & McNeil, B.J. (1982). The meaning and use of the area under a receiver operating characte-ristic (ROC) curve. Radiology, 143, 29–36. https://doi.org/10.1148/radiology.143.1.7063747
  • Harrison, R.G., Bogdanowicz, S.M., Hoffmann, R.S., Yensen, E., Sherman, P.W. (2003). Phylogeny and evolutionary history of the ground squirrel (Rodentia: Marmotinae). Journal of Mammalian Evolu-tion, 10, 249–276. https://doi.org/10.1023/B:JOMM.0000015105.96065.f0
  • Hewitt, G. (2000). The genetic legacy of the Quaternary ice ages. Nature, 405(6789), 907–913. https://doi.org/10.1038/35016000
  • Hewitt, G.M. (1996). Some genetic consequences of ice ages, and their role in divergence and speciation. Biological Journal of the Linnean Society, 58, 247–276. https://doi.org/10.1006/bijl.1996.0035
  • Hijmans, R.J., Cameron, S.E., Parra, J.L., & Albert, D.L. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978. http://doi.wiley.com/10.1002/joc.1276
  • Hijmans, R.J., & Graham, C.H. (2006). Testing the ability of climate envelope models to predict the effect of climate change on species distributions. Global Change Biology, 12, 2272–2281. https://doi.org/10.1111/j.1365-2486.2006.01256.x
  • Hoffmann, I.E., Millesi, E., Huber, S., Everts, L.G., Dittami, J. P. (2003). Population Dynamics of Euro-pean Ground Squirrels (Spermophilus citellus) in a Suburban Area. Journal of Mammalogy, 84(2), 615–626. https://doi.org/10.1644/1545-1542(2003)084<0615:PDOEGS>2.0.CO;2
  • Hoffmann, I.E., Turrini, T., & Brenner, M. (2008). Do European ground squirrels in Austria adjust their life history to anthropogenic influence? Lynx (Praha), 39(2), 241–250. Retrieved from: https://www.researchgate.net/publication/259475994
  • Hulová, Š., & Sedláček, F. (2008). Population genetic structure of the European ground squirrel in the Czech Republic. Conservation Genetics, 9, 615–625. https://doi.org/10.1007/s10592-007-9378-z.
  • Janák, M., Marhoul, P., & Matějů, J. (2013). Action Plan for the Conservation of the European Ground Squirrel Spermophilus citellus in the European Union. Retrieved from: https://ec.europa.eu/environment/nature/conservation/species/action_plans
  • Janderková, J., Matějů, J., Schnitzerová, P., Petruš, J., Sedláček, J., & Uhlíková, J. (2011). Soil characteris-tics at Spermophilus citellus localities in the Czech Republic (Rodentia, Sciuridae). Lynx, 42, 99–111. Retrieved from: https://publikace.nm.cz/file/722e0fe453a88e35d055598c2b0f6c48/16927/99-111_Janderkov%C3%A1.pdf
  • Katona, K., Váczi. O., & Altbäcker V. (2002). Topographic distribution and daily activity of the European ground squirrel population in Bugacpuszta, Hungary. Acta Theriologica, 47(1), 45–54. https://doi.org/10.1007/BF03193565
  • Koshev, Y.S. (2009). Distribution, isolation and recent status of European ground squirrel (Spermophilus citellus L.) in Pazardzhik district, Bulgaria. Annual of Shumen University “Konstantin Preslavsky”, Faculty of Natural Sciences, Vol. XIX B6: 97-109. ISSN: 1311-834X. https://www.researchgate.net/publication/258452659
  • Koshev, Y.S., Kachamakova, M., Arangelov, S., & Ragyov, D. (2019). Translocations of European ground squirrel (Spermophilus citellus) along altitudinal gradient in Bulgaria – an overview. Nature Conser-vation, 35, 63–95. https://doi.org/10.3897/natureconservation.35.30911
  • Kryštufek, B. (1999). Spermophilus citellus (Linnaeus, 1766). 190-191 pp. In the atlas of European mam-mals (Mitchell-Jones A. J.ed.). Academic Press London, United Kingdom.
  • Kryštufek, B., & Vohralík, V. (2005). Mammals of Turkey and Cyprus, Vol. 2: Rodentia I: Sciuridae, Di-podidae, Gliridae, Arvicolinae, Annales Majora Koper, Slovenia.
  • Kryštufek, B., Bryja, J., & Buzan, E.V. (2009). Mitochondrial phylogeography of the European ground squirrel, Spermophilus citellus, yields evidence on refugia for steppic taxa in the southern Balkans. Heredity, 103, 129–135. https://doi.org/10.1038/hdy.2009.41
  • Kryštufek, B., Nedyalkov, Nedko., Astrin, J.J., & Hutterer, R. (2018). News from the Balkan refugium: Thrace has an endemic mole species (Mammalia: Talpidae). Bonn Zoological Bulletin, 67(1), 41–57. Retrieved from: https://www.researchgate.net/publication/328019990
  • Kurten, B. (1968). Pleistocene Mammals of Europe. Weidenfeld & Nicolson, London.
  • Ramos-Lara, N., Koprowski, J.L., Kryštufek, B., Hoffmann, I.E. (2014). Spermophilus citellus (Rodentia: Sciuridae). Mammalian Species, 46(913), 71–87. https://doi.org/10.1644/913.1
  • Löbbová, D., & Hapl, E. (2014). Conservation of European ground squirrel (Mammalia: Rodentia) in Slo-vakia: Results of current reintroduction programme. Slovak Raptor Journal, 8, 105–112. https://doi.org/10.2478/srj-2014-0012
  • Luoto, M., Pöyry, J., Heikkinen, R.K., & Saarinen, K. (2005). Uncertainty of bioclimate envelope models based on geographical distribution of species. Global Ecology and Biogeography, 14, 575–84. https://doi.org/10.1111/j.1466-822X.2005.00186.x
  • Matěju, J., Nová, P., Uhlíková, J., Hulová, Š., & Cepáková, E., (2008). Distribution of the European gro-und squirrel (Spermophilus citellus) in the Czech Republic in 2002–2008. Lynx, 39, 277–294. Retrie-ved from: https://publikace.nm.cz/file/128af2d7b6eae61b13dec15d7a2b9ec2/16133/Mat%C4%9Bj%C5%AF2008lynx2.pdf
  • Matějů, J., Hulová, Š., Nová, P., Cepáková, E., Marhoul, P., & Uhlíková, J. (2010). Action plan for the European Ground Squirrel (Spermophilus citellus) in the Czech Republic. Charles University and Agency for Nature and Landscape Protection of the Czech Republic, Prague. Retrieved from: https://ec.europa.eu/environment/nature/conservation/species/action_plans
  • Matějů, J., Říčanová, Š., Poláková, S., Ambros, M., Kala, B., Matějů, K., & Kratochvíl L. (2012). Method of releasing and number of animals are determinants for the success of European ground squirrel (Spermophilus citellus) reintroductions. European Journal of Wildlife Research, 58(2), 473–482. https://doi.org/10.1007/s10344-011-0597-8
  • Mráz, P., & Ronikier, M. (2016). Biogeography of the Carpathians: evolutionary and spatial facets of bio-diversity. Biological Journal of the Linnean Society, 119, 528–559. https://doi.org/10.1111/bij.12918
  • Musil, R. (1985). Paleobiography of terrestrial communities in Europe during the last glacial. Acta Musei Nationalis Pragae XLI B, no. 1-2: 25–56. Retrieved from: http://fi.nm.cz/en/archive/
  • Pearson, R.G., Thuiller, W., Araújo, M.B., Martinez-Meyer, E., Brotons, L., Mcclean, C., Miles, L., Segu-rado, P., Dawson, T.P., & Lees, D.C. (2006). Model based uncertainty in species range prediction. Journal of Biogeography, 33, 1704–1711. https://doi.org/10.1111/j.1365-2699.2006.01460.x
  • Peltier, W.R. (1994). Ice Age Paleotopography. Science 265(5169), 195–201. https://doi.org/10.1126/science.265.5169.195 https://doi.org/10.1038/416626a
  • Peterson, A.T., Ortega-Huerta, M.A., Bartley, J., Sanchez-Cordero, V., Soberon, J., Buddemeier, R.H., & Stockwell, D.R. (2002). Future projections for Mexican faunas under global climate change scena-rios. Nature, 416(6881), 626–629. https://doi.org/10.1038/416626a
  • Petrova, A., & Vladimirov, V. (2010). Balkan endemics in the Bulgarian flora. Phytologia Balcanica, 16(2), 293–311. Retrieved from: https://www.researchgate.net/publication/268180051
  • Phillips, S.J., Dudík, M., & Schapire, R.E. (2004). A maximum entropy approach to species distribution modeling. In: Proceedings of the 21st International Conference on Machine Learning. NewYork, NY: ACM Press, 655–662. Retrieved from: https://www.researchgate.net/publication/221345128
  • Phillips, S.J., Anderson, R.P., & Schapire, R.E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
  • Phillips, S.J., Dudík, M., & Schapire, R.E. (2017a). MaxEnt software for modeling species niches and dist-ributions. Version 3.4.1. Available from: https://biodiversityinformatics.amnh.org/open_source/maxent
  • Phillips, S.J., Anderson, R.P., Dudík, M., Schapire, R.E., & Blair, M.E. (2017b). Opening the black box: an open‐source release of Maxent. Ecography, 40(7), 887–893. https://doi.org/10.1111/ecog.03049
  • Pollard, D., & Thompson, S.L. (1997). Climate and ice-sheet mass balance at the last glacial maximum from the GENESIS version 2 global climate model. Quaternary Science Reviews, 16, 841–863. https://doi.org/10.1016/S0277-3791(96)00115-1
  • Popova, L.V., Maul, L.C., Zagorodniuk, I.V., Veklych, Y.M., Shydlovskiy, P.S., Pogodina, N.V., Bondar K.M., Strukova, T.V., & Parfitt, S.A. (2019). Good fences make good neighbours’: Concepts and re-cords of range dynamics in ground squirrels and geographical barriers in the Pleistocene of the Cir-cum Black Sea area. Quaternary International, 509, 103–120. https://doi.org/10.1016/j.quaint.2018.03.023
  • O’Donnell, M.S., & Ignizio, D.A. (2012). Bioclimatic predictors for supporting ecological applications in the conterminous United States: U.S. Geological Survey Data Series 691, 10. Available from: https://pubs.usgs.gov/ds/691
  • Qiao, H., Escobar, L.E., & Peterson, T. (2017). Accessible areas in ecological niche comparisons of invasi-ve species: Recognized but still overlooked. Scientific Reports, 7(1), 1213. https://doi.org/10.1038/s41598-017-01313-2
  • Özkurt, Ş., Yiğit, N., Çolak, E., Sözen, M., Gharakheloo M.M. (2005). Observations on the ecology, repro-duction and behavior of Spermophilus Bennett, 1835 (Mammalia: Rodentia) in Turkey. Turkish Jo-urnal of Zoology, 29(1), 91–99. Retrieved from: https://www.researchgate.net/publication/260081812
  • Říčanová, S., Bryja, J., Cosson, J.F., Gedeon, C., Choleva, L., Ambros, M., & Sedláček, F. (2011). Deple-ted genetic variation of the European ground squirrel in Central Europe in both microsatellites and the major histocompatibility complex gene: implication for conservation. Conservation Genetics, 12, 1115–1129.https://doi.org/10.1007/s10592-011-0213-1
  • Říčanová, Š., Koshev, Y., Říčan, O., Ćosić, N., Ćirović, D., Sedláček, F., & Bryja, J. (2013). Multilocus phylogeography of the European ground squirrel: cryptic interglacial refugia of continental climate in Europe. Molecular Ecology, 22(16), 4256–4269. https://doi.org/10.1111/mec.12382
  • Santel, W., von Koenigswald, W. (1998). Preliminary report on themiddle Pleistocene small mammal fau-na from Yarimburgaz Cave in Turkish Thrace. Eiszeitalter & Gegenwart, 48, 162–169. https://doi.org/10.3285/eg.48.1.14, 1998 10.3390/genes8110292
  • Savić, I., Ćirović, D., & Bugarski-Stanojević, V. (2017). Exceptional Chromosomal Evolution and Cryptic Speciation of Blind Mole Rats Nannospalax leucodon (Spalacinae, Rodentia) from South-Eastern Eu-rope. Genes, 8(11), 292. https://doi.org/10.3390/genes8110292
  • Stewart, J.R., & Lister, A. M. (2001). Cryptic northern refugia and the origins of the modern biota. Trends in Ecology & Evolution, 16(11), 608–613. https://doi.org/10.1016/S0169-5347(01)02338-2
  • Stewart, JR., Lister, A.M, Barnes, I., & Dalén, L. (2010). Refugia revisited: individualistic responses of species in space and time. Proceedings Biological Sciences, 277(1682), 661–671. https://doi.org/10.1098/rspb.2009.1272
  • Stojak, J., & Tarnowska, E. (2019). Polish suture zone as the goblet of truth in post-glacial history of mammals in Europe. Mammalian Research, 64, 463–475. https://doi.org/10.1007/s13364-019-00433-6
  • Stojak, J., Borowik, T., Górny, M., McDevitt, A.D., & Wójcik J.M. (2019). Climatic influences on the genetic structure and distribution of the common vole and field vole in Europe. Mammal Research, 64, 19–29. https://doi.org/10.1007/s13364-018-0395-8
  • Swets, J. (1988). Measuring the accuracy of diagnostic systems. Science, 240(4857), 1285–1293. https://doi.org/10.1126/science.3287615
  • Tiryaki, D. (2015). Türkiye Spermophilus Cuvier, 1825 (Mammalia: Rodentia) türlerinin filocoğrafyası, filo-genisi ve soy hattı sınırlarının detaylı incelenmesi, Doktora Tezi, Ondokuz Mayıs Üniversitesi, Fen Bilimleri Enstitüsü. Samsun, Turkey. Retrieved from: http://libra.omu.edu.tr/tezler/87349.pdf
  • Tzvetkov, J., & Koshev, Y. (2016). GIS habitat model of potential distribution of European ground squirrel (Spermophilus citellus) in Bulgaria. Belgrade, Serbia, 6th European Ground Squirrel Meeting. https://doi.org/10.13140/RG.2.2.26177.97124
  • Váczi, O., & Altbäcker, V. (1999). Füves repülőterek ürgeállományának felmérése. Természetvédelmi Köz-lemények, 8, 205–214. Retrieved from: https://adtplus.arcanum.hu/hu/view/TermeszetvedelmiKozlemenyek_08
  • Valchovski, H., & Mısırlıoğlu İ.M. (2017). Review of earthworm (Clitellata: Lumbricidae, Criodrilidae, Acanthodrilidae) biodiversity of thracе in Bulgaria, Turkey and Greece. Sakarya Üniversitesi Fen Bi-limleri Enstitüsü Dergisi, 21(6), 1325–1330. https://doi.org/10.16984/saufenbilder.306021
  • Van Horne, B. (2003). Conservation of ground squirrels. In: Wolff JO, Sherman PW, eds. Rodent societies: an ecological and evolutionary perspective. Chicago, IL: University of Chicago Press, 463–471.
  • Wilson, D.E., & Reeder, D.M. (2005). Mammal Species of the World. A Taxonomic and Geographic Refe-rence. 3rd ed. Johns Hopkins University Press, Baltimore. Wisz, M.S., Hijmans, R.J., Li, J., Peterson, A.T., Graham, C.H., & Guisan, A. (2008). Effects of sample size on the performance of species distribution models. Diversity and Distributions, 14(5), 763–773. https://doi.org/10.1111/j.1472-4642.2008.00482.x
  • Youlatos, D., Boutsis Y., Pantis, J.D. & Hadjicharalambous, H. (2007). Activity patterns of European gro-und squirrels (Spermophilus citellus) in a cultivated field in northern Greece. Mammalia, 71(4), 183–186. https://doi.org/10.1515/MAMM.2007.030
  • Zaharia, G., Petrencu, L., & Baltag E.S. (2016). Site selection of European ground squirrels (Spermophilus citellus) in Eastern Romania and how they are influenced by climate, relief, and vegetation. Turkish Journal of Zoology, 40, 917–924. https://doi.org/10.3906/zoo-1505-28
Toplam 78 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Sadık Demirtaş

Yayımlanma Tarihi 29 Aralık 2020
Gönderilme Tarihi 28 Şubat 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Demirtaş, S. (2020). Estimation of the Climate Preference Between Two Lineages of Europe-an Ground Squirrel Using Maximum Entropy Modeling. Journal of Advanced Research in Natural and Applied Sciences, 6(2), 328-341. https://doi.org/10.28979/jarnas.844850
AMA Demirtaş S. Estimation of the Climate Preference Between Two Lineages of Europe-an Ground Squirrel Using Maximum Entropy Modeling. JARNAS. Aralık 2020;6(2):328-341. doi:10.28979/jarnas.844850
Chicago Demirtaş, Sadık. “Estimation of the Climate Preference Between Two Lineages of Europe-an Ground Squirrel Using Maximum Entropy Modeling”. Journal of Advanced Research in Natural and Applied Sciences 6, sy. 2 (Aralık 2020): 328-41. https://doi.org/10.28979/jarnas.844850.
EndNote Demirtaş S (01 Aralık 2020) Estimation of the Climate Preference Between Two Lineages of Europe-an Ground Squirrel Using Maximum Entropy Modeling. Journal of Advanced Research in Natural and Applied Sciences 6 2 328–341.
IEEE S. Demirtaş, “Estimation of the Climate Preference Between Two Lineages of Europe-an Ground Squirrel Using Maximum Entropy Modeling”, JARNAS, c. 6, sy. 2, ss. 328–341, 2020, doi: 10.28979/jarnas.844850.
ISNAD Demirtaş, Sadık. “Estimation of the Climate Preference Between Two Lineages of Europe-an Ground Squirrel Using Maximum Entropy Modeling”. Journal of Advanced Research in Natural and Applied Sciences 6/2 (Aralık 2020), 328-341. https://doi.org/10.28979/jarnas.844850.
JAMA Demirtaş S. Estimation of the Climate Preference Between Two Lineages of Europe-an Ground Squirrel Using Maximum Entropy Modeling. JARNAS. 2020;6:328–341.
MLA Demirtaş, Sadık. “Estimation of the Climate Preference Between Two Lineages of Europe-an Ground Squirrel Using Maximum Entropy Modeling”. Journal of Advanced Research in Natural and Applied Sciences, c. 6, sy. 2, 2020, ss. 328-41, doi:10.28979/jarnas.844850.
Vancouver Demirtaş S. Estimation of the Climate Preference Between Two Lineages of Europe-an Ground Squirrel Using Maximum Entropy Modeling. JARNAS. 2020;6(2):328-41.


TR Dizin 20466

ASCI Database31994



Academindex 30370    

SOBİAD 20460               

Scilit 30371                        

29804 As of 2024, JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).