Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2022, Cilt: 8 Sayı: 3, 527 - 542, 25.09.2022
https://doi.org/10.28979/jarnas.1024247

Öz

Kaynakça

  • Abdollahiparsa, H., Homami, P., & Khoshnoudian, F. (2016). Effect of vertical component of an earthquake on steel frames considering soil-structure interaction. KSCE Journal of Civil Engineering, 20(7), 2790-2801. https://doi.org/10.1007/s12205-016-0687-y
  • AFAD (2021). Türkiye Deprem Tehlike Haritası. https://tdth.afad.gov.tr/
  • AFAD (2020a). İzmir Seferihisar Depremi-Duyuru 81. Erişim tarihi:07.12.2020, https://www.afad.gov.tr/izmir-seferihisar-depremiduyuru-81-26112020---2100
  • AFAD Deprem Dairesi Başkanlığı. (2020b). 30 Ekim 2020 Sisam Adası (İzmir Seferihisar Açıkları) Mw 6.6 Depremi Raporu. Erişim Tarihi: 18.12.2020, https://deprem.afad.gov.tr/depremdokumanlari/2065
  • Akkar, S., Kale, Ö., Yakut, A., & Ceken, U. (2018). Ground-motion characterization for the probabilistic seismic hazard assessment in Turkey. Bulletin of Earthquake Engineering, 16(8), 3439-3463. https://doi.org/10.1007/s10518-017-0101-2
  • Akkar, S., Azak, T., Çan, T., Çeken, U., Tümsa, M. D., Duman, T. Y., ... & Zülfikar, Ö. (2018a). Evolution of seismic hazard maps in Turkey. Bulletin of Earthquake Engineering, 16(8), 3197-3228. https://doi.org/10.1007/s10518-018-0349-1
  • Akkar, S., Azak, Çan, T., Çeken, U., Demircioğlu, M.B., Duman,T., Kartal,R.F., (2014). Türkiye Sismik Tehlike Haritasının Güncellenmesi. (UDAP-Ç-13-06). In Ulusal Deprem Araştırma Programı; Disaster and Emergency Management Presidency Press: Ankara, Turkey, Available online: http://www.deprem.gov.tr/belgeler2016/tsth.Pdf (2014) (Erişim tarihi: 22 Haziran 2021).
  • Aksoylu, C., Mobark, A., Hakan Arslan, M., Hakkı Erkan, İ. (2020). A comparative study on ASCE 7-16, TBEC-2018 and TEC-2007 for reinforced concrete buildings. Revista de la construcción, 19(2), 282-305. http://dx.doi.org/10.7764/rdlc.19.2.282
  • Ambraseys, N. N., Douglas, J. (2003). Effect of vertical ground motions on horizontal response of structures. International Journal of Structural Stability and Dynamics, 3(02), 227-265. https://doi.org/10.1142/S0219455403000902
  • Baş, S., Sevinç, M., Kalkan, İ., Aykaç,S. (2015). Düşey deprem etkisi altındaki çok katlı betonarme yapıların davranışının incelenmesi, 3. Türkiye Deprem Mühendisliği ve Sismoloji Konferansı, İzmir, Türkiye. http://www.tdmd.org.tr/TR/Genel/pdf2015/TDMSK_063.pdf
  • Büyüksaraç, A., Işık, E., Harirchian, E. (2021). A case study for determination of seismic risk priorities in Van (Eastern Turkey). Earthquakes and Structures, 20(4), 445-455. https://doi.org/10.12989/eas.2021.20.4.445
  • Chopra, A. K. (1966). The importance of the vertical component of earthquake motions. Bulletin of the Seismological Society of America, 56(5), 1163-1175. https://doi.org/10.1785/BSSA0560051163
  • Çeken, U., Dalyan, İ., Kılıç, N., Köksal, T.S., Tekin, B.M. (2017). Türkiye deprem tehlike haritaları interaktif web uygulaması. 4. Uluslararası Deprem Mühendisliği ve Sismoloji Konferansı 11-13 Ekim 2017 – Eskişehir). http://www.tdmd.org.tr/TR/Genel/4UDMSK/pdf2017/4008.pdf
  • Çelik Yapıların Tasarım, Hesap ve Yapım Esaslarına Dair Yönetmelik, (2016). https://www.imo.org.tr/resimler/dosya_ekler/5ba6a974eb906bf_ek.pdf
  • Doğan, E., Elmas, M. (2004). Binalarda düşey deprem etkisinin zaman tanım alanında hesap yöntemi ile incelenmesi. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(1), 9-17. http://www.saujs.sakarya.edu.tr/tr/download/article-file/192893
  • Eren,G., Beyen, K. (2015). Düşey deprem etkisinde tipik bir binada gözlenen performansın tartışılması. 8UDMK, İstanbul, Türkiye. s.199-211. https://www.imo.org.tr/resimler/ekutuphane/pdf/17371_51_01.pdf
  • Eren, G., Beyen,K., (2017). Tarihi yapı davranışına zemin, mesnet, yatay ve düşey deprem koşullarının etkisi, Uluslararası Katılımlı 6. Tarihi Yapıların Korunması ve Güçlendirilmesi Sempozyumu, Istanbul, Türkiye. s.401-410. https://www.imo.org.tr/resimler/ekutuphane/pdf/17952_15_50.pdf
  • Gürel, M.A., Kısa, M. (2002). Deprem Hareketinin Düşey Bileşeninin Çeşitli Yapı Elemanları Üzerindeki Etkileri ve Hasar Potansiyeli. Uluslararası Yapı ve Deprem Mühendisliği Sempozyumu ECAS2002, Ankara, s. 118-125. http://bupim.com/yayinlar/bupim-pdf/ECAS20.pdf
  • Işık, E., Kutanis, M., Bal, İ.E. (2016). Displacement of the buildings according to site-specific earthquake spectra. Periodica Polytechnica Civil Engineering, 60(1), 37-43. https://doi.org/10.3311/PPci.7661
  • Işık, E. (2021). A comparative study on the structural performance of an RC building based on updated seismic design codes: case of Turkey. Challenge Journal of Structural Mechanics, 7(3), 123-134. https://doi.org/10.20528/cjsmec.2021.03.002
  • Işık, E., Harirchian, E., Bilgin, H., Jadhav, K. (2021). The effect of material strength and discontinuity in RC structures according to different site-specific design spectra. Research on Engineering Structures and Materials. 7(3) 413-430. http://dx.doi.org/10.17515/resm2021.273st0303
  • Işık, E., Büyüksaraç, A., Ekinci, Y. L., Aydın, M. C., Harirchian, E. (2020). The effect of site-specific design spectrum on earthquake-building parameters: A case study from the Marmara region (NW Turkey). Applied Sciences, 10(20), 7247. https://doi.org/10.3390/app10207247
  • Kadid, A., Yahiaoui, D., Chebili, R. (2010). Behaviour of reinforced concrete buildings under simultaneous horizontal and vertical ground motions. Asıan Journal Of Civil Engineering (Building And Housing), 11(4), 463-476. https://www.sid.ir/en/journal/ViewPaper.aspx?id=185518
  • Kalkan, E., Graizer, V. (2007). Multi-component ground motion response spectra for coupled horizontal, vertical, angular accelerations and tilt. ISET Journal of Earthquake Technology, 44(1), 259-284. http://home.iitk.ac.in/~vinaykg/Iset485.pdf
  • Karasin, İ.B., Işık, E., Demirci, A., Aydın, M.C. (2020). Coğrafi konuma özel tasarım spektrumlarının betonarme yapı performansına etkisi. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 11(3), 1319-1330. https://doi.org/10.24012/dumf.682377
  • Kim, S.J., Holub, C.J., Elnashai, A.S. (2011). Analytical assessment of the effect of vertical earthquake motion on RC bridge piers. Journal of Structural Engineering, 137(2), 252-260. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000306
  • Koçer, M., Nakipoğlu, A., Öztürk, B., Al-hagri, M. G., Arslan, M. H. (2018). Deprem kuvvetine esas spektral ivme değerlerinin TBDY 2018 ve TDY 2007’ye göre karşılaştırılması. Selçuk-Teknik Dergisi, 17(2), 43-58. http://sutod.selcuk.edu.tr/sutod/article/view/437
  • Kunnath, S. K., Erduran, E., Chai, Y. H., Yashinsky, M. (2008). Effect of near-fault vertical ground motions on seismic response of highway overcrossings. Journal of Bridge Engineering, 13(3), 282-290. https://doi.org/10.1061/(ASCE)1084-0702(2008)13:3(282)
  • Kutanis, M., Ulutaş, H., Işik, E. (2018). PSHA of Van province for performance assessment using spectrally matched strong ground motion records. Journal of Earth System Science, 127(7), 1-14. https://doi.org/10.1007/s12040-018-1004-6
  • Loghman, V., Khoshnoudian, F., Banazadeh, M. (2015). Effect of vertical component of earthquake on seismic responses of triple concave friction pendulum base-isolated structures. Journal of Vibration and Control, 21(11), 2099-2113. https://doi.org/10.1177/1077546313503359
  • Özmen, B. (2012). Türkiye deprem bölgeleri haritalarının tarihsel gelişimi. Türkiye Jeoloji Bülteni, 55(1), 43-55. https://www.jmo.org.tr/resimler/ekler/742ef3153c914cf_ek.pdf
  • Özmen, B., Pampal, S. (2017). Türkiye Deprem Bölgeleri Haritalarının Evrimi. 4. Uluslararası Deprem Mühendisliği ve Sismoloji Konferansı, Eskişehir, Türkiye. http://www.tdmd.org.tr/TR/Genel/4UDMSK/pdf2017/3708.pdf
  • Papazoglou, A.J., Elnashai, A.S. (1996). Analytical and field evidence of the damaging effect of vertical earthquake ground motion. Earthquake Engineering & Structural Dynamics, 25(10), 1109-1137.https://doi.org/10.1002/(SICI)1096-9845(199610)25:10<1109::AID-
  • SAP2000, Version 17, Computers and Structures, Inc., Berkeley, California
  • Tazarv, M. Linear Time History Analysis of MDOF Structure by Mode Superposition Method. http://alum.sharif.edu/~tazarv/
  • TBDY-2018: Türkiye Bina Deprem Yönetmeliği; T.C. Resmi Gazete: Ankara, Turkey, (2018). https://www.afad.gov.tr/ (Erişim tarihi:1 Haziran 2021).
  • Yavaş, M., Teloğlu,A.N., Celep, Z. (2019). Türkiye Bina Deprem Yönetmeliği’nde binaların taşıyıcı sisteminde tanımlanan düşey deprem etkisi üzerine. In International Conference on Earthquake Engineering and Seismology (5ICEES), 8, s.11. https://www.researchgate.net/publication/337622103_Turkiye_Bina_Deprem_Yonetmeligi'nde_Binalarin_Tasiyici_Sisteminde_Tanimlanan_Dusey_Deprem_Etkisi_Uzerine

The Effect of Vertical Earthquake Motion on Steel Structures Behaviour in Different Seismic Zones

Yıl 2022, Cilt: 8 Sayı: 3, 527 - 542, 25.09.2022
https://doi.org/10.28979/jarnas.1024247

Öz

Each geographical location has its own seismicity and this affects the seismic behaviour of structures. In this study, four different settlements with different seismicity such as İzmir, Bitlis, Samsun and Konya were considered. Seismic risks and parameters for these provinces were compared. Analyses were carried out separately for a ten-storey steel building with the same structural characteristics in each of these provinces. The sample building model was created by considering the provisions of Principles for the Design, Calculation and Construction of Steel Structures-2016 and Turkish Building Earthquake Code-2018. The nonlinear time history analysis method for the sample steel building was made separately for each province considering different earthquake directions, by using the SAP200 program. Records of the 2020 İzmir earthquake (Mw=6.9) were used in the analyses. The displacement, base shear force and moments were obtained for each province for each direction taken into account. The aim of the study is to reveal the effect of both earthquake direction and different seismic regions. The displacement, rotation, base shear force and moment values obtained in the provinces with higher PGA values were also higher. It was determined that the vertical earthquake effect did not significantly change the results obtained for the horizontal direction in this study.

Kaynakça

  • Abdollahiparsa, H., Homami, P., & Khoshnoudian, F. (2016). Effect of vertical component of an earthquake on steel frames considering soil-structure interaction. KSCE Journal of Civil Engineering, 20(7), 2790-2801. https://doi.org/10.1007/s12205-016-0687-y
  • AFAD (2021). Türkiye Deprem Tehlike Haritası. https://tdth.afad.gov.tr/
  • AFAD (2020a). İzmir Seferihisar Depremi-Duyuru 81. Erişim tarihi:07.12.2020, https://www.afad.gov.tr/izmir-seferihisar-depremiduyuru-81-26112020---2100
  • AFAD Deprem Dairesi Başkanlığı. (2020b). 30 Ekim 2020 Sisam Adası (İzmir Seferihisar Açıkları) Mw 6.6 Depremi Raporu. Erişim Tarihi: 18.12.2020, https://deprem.afad.gov.tr/depremdokumanlari/2065
  • Akkar, S., Kale, Ö., Yakut, A., & Ceken, U. (2018). Ground-motion characterization for the probabilistic seismic hazard assessment in Turkey. Bulletin of Earthquake Engineering, 16(8), 3439-3463. https://doi.org/10.1007/s10518-017-0101-2
  • Akkar, S., Azak, T., Çan, T., Çeken, U., Tümsa, M. D., Duman, T. Y., ... & Zülfikar, Ö. (2018a). Evolution of seismic hazard maps in Turkey. Bulletin of Earthquake Engineering, 16(8), 3197-3228. https://doi.org/10.1007/s10518-018-0349-1
  • Akkar, S., Azak, Çan, T., Çeken, U., Demircioğlu, M.B., Duman,T., Kartal,R.F., (2014). Türkiye Sismik Tehlike Haritasının Güncellenmesi. (UDAP-Ç-13-06). In Ulusal Deprem Araştırma Programı; Disaster and Emergency Management Presidency Press: Ankara, Turkey, Available online: http://www.deprem.gov.tr/belgeler2016/tsth.Pdf (2014) (Erişim tarihi: 22 Haziran 2021).
  • Aksoylu, C., Mobark, A., Hakan Arslan, M., Hakkı Erkan, İ. (2020). A comparative study on ASCE 7-16, TBEC-2018 and TEC-2007 for reinforced concrete buildings. Revista de la construcción, 19(2), 282-305. http://dx.doi.org/10.7764/rdlc.19.2.282
  • Ambraseys, N. N., Douglas, J. (2003). Effect of vertical ground motions on horizontal response of structures. International Journal of Structural Stability and Dynamics, 3(02), 227-265. https://doi.org/10.1142/S0219455403000902
  • Baş, S., Sevinç, M., Kalkan, İ., Aykaç,S. (2015). Düşey deprem etkisi altındaki çok katlı betonarme yapıların davranışının incelenmesi, 3. Türkiye Deprem Mühendisliği ve Sismoloji Konferansı, İzmir, Türkiye. http://www.tdmd.org.tr/TR/Genel/pdf2015/TDMSK_063.pdf
  • Büyüksaraç, A., Işık, E., Harirchian, E. (2021). A case study for determination of seismic risk priorities in Van (Eastern Turkey). Earthquakes and Structures, 20(4), 445-455. https://doi.org/10.12989/eas.2021.20.4.445
  • Chopra, A. K. (1966). The importance of the vertical component of earthquake motions. Bulletin of the Seismological Society of America, 56(5), 1163-1175. https://doi.org/10.1785/BSSA0560051163
  • Çeken, U., Dalyan, İ., Kılıç, N., Köksal, T.S., Tekin, B.M. (2017). Türkiye deprem tehlike haritaları interaktif web uygulaması. 4. Uluslararası Deprem Mühendisliği ve Sismoloji Konferansı 11-13 Ekim 2017 – Eskişehir). http://www.tdmd.org.tr/TR/Genel/4UDMSK/pdf2017/4008.pdf
  • Çelik Yapıların Tasarım, Hesap ve Yapım Esaslarına Dair Yönetmelik, (2016). https://www.imo.org.tr/resimler/dosya_ekler/5ba6a974eb906bf_ek.pdf
  • Doğan, E., Elmas, M. (2004). Binalarda düşey deprem etkisinin zaman tanım alanında hesap yöntemi ile incelenmesi. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(1), 9-17. http://www.saujs.sakarya.edu.tr/tr/download/article-file/192893
  • Eren,G., Beyen, K. (2015). Düşey deprem etkisinde tipik bir binada gözlenen performansın tartışılması. 8UDMK, İstanbul, Türkiye. s.199-211. https://www.imo.org.tr/resimler/ekutuphane/pdf/17371_51_01.pdf
  • Eren, G., Beyen,K., (2017). Tarihi yapı davranışına zemin, mesnet, yatay ve düşey deprem koşullarının etkisi, Uluslararası Katılımlı 6. Tarihi Yapıların Korunması ve Güçlendirilmesi Sempozyumu, Istanbul, Türkiye. s.401-410. https://www.imo.org.tr/resimler/ekutuphane/pdf/17952_15_50.pdf
  • Gürel, M.A., Kısa, M. (2002). Deprem Hareketinin Düşey Bileşeninin Çeşitli Yapı Elemanları Üzerindeki Etkileri ve Hasar Potansiyeli. Uluslararası Yapı ve Deprem Mühendisliği Sempozyumu ECAS2002, Ankara, s. 118-125. http://bupim.com/yayinlar/bupim-pdf/ECAS20.pdf
  • Işık, E., Kutanis, M., Bal, İ.E. (2016). Displacement of the buildings according to site-specific earthquake spectra. Periodica Polytechnica Civil Engineering, 60(1), 37-43. https://doi.org/10.3311/PPci.7661
  • Işık, E. (2021). A comparative study on the structural performance of an RC building based on updated seismic design codes: case of Turkey. Challenge Journal of Structural Mechanics, 7(3), 123-134. https://doi.org/10.20528/cjsmec.2021.03.002
  • Işık, E., Harirchian, E., Bilgin, H., Jadhav, K. (2021). The effect of material strength and discontinuity in RC structures according to different site-specific design spectra. Research on Engineering Structures and Materials. 7(3) 413-430. http://dx.doi.org/10.17515/resm2021.273st0303
  • Işık, E., Büyüksaraç, A., Ekinci, Y. L., Aydın, M. C., Harirchian, E. (2020). The effect of site-specific design spectrum on earthquake-building parameters: A case study from the Marmara region (NW Turkey). Applied Sciences, 10(20), 7247. https://doi.org/10.3390/app10207247
  • Kadid, A., Yahiaoui, D., Chebili, R. (2010). Behaviour of reinforced concrete buildings under simultaneous horizontal and vertical ground motions. Asıan Journal Of Civil Engineering (Building And Housing), 11(4), 463-476. https://www.sid.ir/en/journal/ViewPaper.aspx?id=185518
  • Kalkan, E., Graizer, V. (2007). Multi-component ground motion response spectra for coupled horizontal, vertical, angular accelerations and tilt. ISET Journal of Earthquake Technology, 44(1), 259-284. http://home.iitk.ac.in/~vinaykg/Iset485.pdf
  • Karasin, İ.B., Işık, E., Demirci, A., Aydın, M.C. (2020). Coğrafi konuma özel tasarım spektrumlarının betonarme yapı performansına etkisi. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 11(3), 1319-1330. https://doi.org/10.24012/dumf.682377
  • Kim, S.J., Holub, C.J., Elnashai, A.S. (2011). Analytical assessment of the effect of vertical earthquake motion on RC bridge piers. Journal of Structural Engineering, 137(2), 252-260. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000306
  • Koçer, M., Nakipoğlu, A., Öztürk, B., Al-hagri, M. G., Arslan, M. H. (2018). Deprem kuvvetine esas spektral ivme değerlerinin TBDY 2018 ve TDY 2007’ye göre karşılaştırılması. Selçuk-Teknik Dergisi, 17(2), 43-58. http://sutod.selcuk.edu.tr/sutod/article/view/437
  • Kunnath, S. K., Erduran, E., Chai, Y. H., Yashinsky, M. (2008). Effect of near-fault vertical ground motions on seismic response of highway overcrossings. Journal of Bridge Engineering, 13(3), 282-290. https://doi.org/10.1061/(ASCE)1084-0702(2008)13:3(282)
  • Kutanis, M., Ulutaş, H., Işik, E. (2018). PSHA of Van province for performance assessment using spectrally matched strong ground motion records. Journal of Earth System Science, 127(7), 1-14. https://doi.org/10.1007/s12040-018-1004-6
  • Loghman, V., Khoshnoudian, F., Banazadeh, M. (2015). Effect of vertical component of earthquake on seismic responses of triple concave friction pendulum base-isolated structures. Journal of Vibration and Control, 21(11), 2099-2113. https://doi.org/10.1177/1077546313503359
  • Özmen, B. (2012). Türkiye deprem bölgeleri haritalarının tarihsel gelişimi. Türkiye Jeoloji Bülteni, 55(1), 43-55. https://www.jmo.org.tr/resimler/ekler/742ef3153c914cf_ek.pdf
  • Özmen, B., Pampal, S. (2017). Türkiye Deprem Bölgeleri Haritalarının Evrimi. 4. Uluslararası Deprem Mühendisliği ve Sismoloji Konferansı, Eskişehir, Türkiye. http://www.tdmd.org.tr/TR/Genel/4UDMSK/pdf2017/3708.pdf
  • Papazoglou, A.J., Elnashai, A.S. (1996). Analytical and field evidence of the damaging effect of vertical earthquake ground motion. Earthquake Engineering & Structural Dynamics, 25(10), 1109-1137.https://doi.org/10.1002/(SICI)1096-9845(199610)25:10<1109::AID-
  • SAP2000, Version 17, Computers and Structures, Inc., Berkeley, California
  • Tazarv, M. Linear Time History Analysis of MDOF Structure by Mode Superposition Method. http://alum.sharif.edu/~tazarv/
  • TBDY-2018: Türkiye Bina Deprem Yönetmeliği; T.C. Resmi Gazete: Ankara, Turkey, (2018). https://www.afad.gov.tr/ (Erişim tarihi:1 Haziran 2021).
  • Yavaş, M., Teloğlu,A.N., Celep, Z. (2019). Türkiye Bina Deprem Yönetmeliği’nde binaların taşıyıcı sisteminde tanımlanan düşey deprem etkisi üzerine. In International Conference on Earthquake Engineering and Seismology (5ICEES), 8, s.11. https://www.researchgate.net/publication/337622103_Turkiye_Bina_Deprem_Yonetmeligi'nde_Binalarin_Tasiyici_Sisteminde_Tanimlanan_Dusey_Deprem_Etkisi_Uzerine
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İnşaat Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Ercan Işık 0000-0001-8057-065X

Fatma Peker 0000-0002-0805-4367

Aydın Büyüksaraç 0000-0002-4279-4158

Erken Görünüm Tarihi 24 Eylül 2022
Yayımlanma Tarihi 25 Eylül 2022
Gönderilme Tarihi 16 Kasım 2021
Yayımlandığı Sayı Yıl 2022 Cilt: 8 Sayı: 3

Kaynak Göster

APA Işık, E., Peker, F., & Büyüksaraç, A. (2022). The Effect of Vertical Earthquake Motion on Steel Structures Behaviour in Different Seismic Zones. Journal of Advanced Research in Natural and Applied Sciences, 8(3), 527-542. https://doi.org/10.28979/jarnas.1024247
AMA Işık E, Peker F, Büyüksaraç A. The Effect of Vertical Earthquake Motion on Steel Structures Behaviour in Different Seismic Zones. JARNAS. Eylül 2022;8(3):527-542. doi:10.28979/jarnas.1024247
Chicago Işık, Ercan, Fatma Peker, ve Aydın Büyüksaraç. “The Effect of Vertical Earthquake Motion on Steel Structures Behaviour in Different Seismic Zones”. Journal of Advanced Research in Natural and Applied Sciences 8, sy. 3 (Eylül 2022): 527-42. https://doi.org/10.28979/jarnas.1024247.
EndNote Işık E, Peker F, Büyüksaraç A (01 Eylül 2022) The Effect of Vertical Earthquake Motion on Steel Structures Behaviour in Different Seismic Zones. Journal of Advanced Research in Natural and Applied Sciences 8 3 527–542.
IEEE E. Işık, F. Peker, ve A. Büyüksaraç, “The Effect of Vertical Earthquake Motion on Steel Structures Behaviour in Different Seismic Zones”, JARNAS, c. 8, sy. 3, ss. 527–542, 2022, doi: 10.28979/jarnas.1024247.
ISNAD Işık, Ercan vd. “The Effect of Vertical Earthquake Motion on Steel Structures Behaviour in Different Seismic Zones”. Journal of Advanced Research in Natural and Applied Sciences 8/3 (Eylül 2022), 527-542. https://doi.org/10.28979/jarnas.1024247.
JAMA Işık E, Peker F, Büyüksaraç A. The Effect of Vertical Earthquake Motion on Steel Structures Behaviour in Different Seismic Zones. JARNAS. 2022;8:527–542.
MLA Işık, Ercan vd. “The Effect of Vertical Earthquake Motion on Steel Structures Behaviour in Different Seismic Zones”. Journal of Advanced Research in Natural and Applied Sciences, c. 8, sy. 3, 2022, ss. 527-42, doi:10.28979/jarnas.1024247.
Vancouver Işık E, Peker F, Büyüksaraç A. The Effect of Vertical Earthquake Motion on Steel Structures Behaviour in Different Seismic Zones. JARNAS. 2022;8(3):527-42.


TR Dizin 20466

ASCI Database31994



Academindex 30370    

SOBİAD 20460               

Scilit 30371                        

29804 As of 2024, JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).