Research Article
BibTex RIS Cite

Theoretical Calculations and Molecular Docking Analysis of 4-(2-(4-Bromophenyl)Hydrazineylidene)-3,5-Diphenyl-4H-Pyrazole Molecule

Year 2024, Volume: 10 Issue: 4, 786 - 802, 31.12.2024
https://doi.org/10.28979/jarnas.1516154

Abstract

The molecular structure of 4-(2-(4-bromophenyl)hydrazineylidene)-3,5-diphenyl-4h-pyrazole (BHDH) molecule, which is a pyrazole derivative, was investigated theoretically using the Gaussian 09 program according to the Moller-Plesset (MP2) method. The MP2 method was optimized for these theoretical calculations using DGDZVP and 6-311G(d,p) basis sets. By taking geometric structures, Highest-Energy Molecular Orbital (HOMO) and Lowest-Energy Molecular Orbital (LUMO) analysis, Mulliken Atomic Charges, Molecular Electrostatic Potential (MEPS), Nonlinear Optical (NLO) features, and Natural Bond Orbital (NBO) images of the molecule from this optimized structure were analyzed. In the continuation of the study, Absorbed, Distributed, Metabolized, and Excreted (ADME) analysis was performed to evaluate the BHDH molecule as a drug. Many possible drugs for treating various medical diseases have taken their place in the world market. Drug interactions involve combinations with drugs or other substances that change the effect of a drug on the body. Molecular docking analysis of BHDH molecule on obesity disease was performed with acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. The highest binding energies and binding conformations between ligands and enzymes were predicted.

References

  • J. V. Faria, P. F. Vegi, A. G. C. Miguita, M. S. Dos Santos, N. Boechat, A. M. R. Bernardino, Recently reported biological activities of pyrazole compounds, Bioorganic and Medicinal Chemistry 25 (21) (2017) 5891–5903.
  • A. M. Youssef, E. G. Neeland, E. B. Villanueva, M. S. White, I. M. El-Ashmawy, B. Patrick, A. Klegeris, A. S. Abd–El–Aziz, Synthesis and biological evaluation of novel pyrazole compounds, Bioorganic and Medicinal Chemistry 18 (15) (2010) 5685–5696.
  • H. Ma, S. Chen, Z. Liu, Y. Sun, Theoretical elucidation on the inhibition mechanism of pyridine–pyrazole compound: A Hartree Fock study, Journal of Molecular Structure: THEOCHEM 774 (1-3) (2006) 19–22.
  • A. R. Thomas, Y. S. Mary, K. Resmi, B. Narayana, B. Sarojini, G. Vijayakumar, C. Van Alsenoy, Two neoteric pyrazole compounds as potential anti-cancer agents: Synthesis, electronic structure, physico-chemical properties and docking analysis, Journal of Molecular Structure (1181) (2019) 455–466.
  • B. E. Levin, Factors promoting and ameliorating the development of obesity, Physiology and Behavior 86 (5) (2005) 633–639.
  • R. Dent, R. McPherson, M. E. Harper, Factors affecting weight loss variability in obesity, Metabolism 113 (154388) (2020).
  • B. E. Levin, Developmental gene environment interactions affecting systems regulating energy homeostasis and obesity, Frontiers in Neuroendocrinology 31 (3) (2010) 270–283.
  • L. S. Adair, Child and adolescent obesity: Epidemiology and developmental perspectives, Physiology Behavior 94 (1) (2008) 8–16.
  • I. Orhan, B. Şener, M. Choudhary, A. Khalid, Acetylcholinesterase and butyrylcholinesterase inhibitory activity of some Turkish medicinal plants, Journal of Ethnopharmacology 91 (1) (2004) 57–60.
  • G. Chuiko, V. Podgornaya, Y. Zhelnin, Acetylcholinesterase and butyrylcholinesterase activities in brain and plasma of freshwater teleosts: Cross–species and cross-family differences, Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 135 (1) (2003) 55–61.
  • R. Scacchi, M. Ruggeri, R. M. Corbo, Variation of the butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) genes in coronary artery disease, Clinica Chimica Acta 412 (15–16) (2011) 1341–1344.
  • F-G. Koçanc, B. Aslım, Structure and functions of acetylcholinesterase and acetylcholinesterase inhibitory activity of plants, Manas Journal of Agriculture Veterinary and Life Sciences 6 (1) (2016) 19–35.
  • O. Christiansen, Møller–Plesset perturbation theory for vibrational wave functions, The Journal of Chemical Physics 119 (12) (2003) 5773–5781.
  • T. Takatani, C. D. Sherrill, Performance of spin–component-scaled Møller–Plesset theory (SCS–MP2) for potential energy curves of noncovalent interactions, Physical Chemistry Chemical Physics 9 (46) (2007) 6106–6114.
  • F. Turkan, A. Cetin, P. Taslimi, İ. Gulçin, Some pyrazoles derivatives: Potent carbonic anhydrase, α‐glycosidase, and cholinesterase enzymes inhibitors, Archiv der Pharmazie 351 (10) (2018) 1800200.
  • T. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M.A. Robb, J. R. Cheeseman, G. Scalmani, V. P. G. A. Barone, G. A. Petersson, H. J. R. Nakatsuji, Gaussian 16 Revision C.01. Gaussian Inc, Wallingford, Connecticut, 2016.
  • S. Release, 1: Maestro, Schrodinger, LLC, New York, 2019.
  • BIOVIA Discovery Studio D. SYSTÈMES BIOVIA Corporate Europe, BIOVIA 334 Cambridge Science Park Cambridge, 2016. http://accelrys.com/products/collaborativescience/biovia-discovery-studio.
  • K. Gören, M. Bağlan, İ. Çakmak, Theoretical investigation of 1H and 13C NMR spectra of diethanol amine dithiocarbamate RAFT agent, Journal of the Institute of Science and Technology 12 (3) (2022) 1677–1689.
  • K. Gören, Ü. Yıldıko, Aldose reductase evaluation against diabetic complications using ADME and molecular docking studies and DFT calculations of spiroindoline derivative molecule, Süleyman Demirel University Journal of Natural and Applied Sciences 28 (2) (2024) 281–292.
  • R. Renjith, Y. S. Mary, C. Y. Panicker, H. T. Varghese, M. Pakosińska-Parys, C. Van Alsenoy, T. Manojkumar, Spectroscopic (FT-IR, FT-Raman), first order hyperpolarizability, NBO analysis, HOMO and LUMO analysis of 1, 7, 8, 9-tetrachloro-10, 10-dimethoxy-4-[3-(4-phenylpiperazin-1-yl) propyl]-4-azatricyclo [5.2. 1.02, 6] dec-8-ene-3, 5-dione by density functional methods, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 124 (2014) 500–513.
  • K. Gören, M. Bağlan, Ü. Yıldıko, Melanoma cancer evaluation with ADME and molecular docking analysis, DFT calculations of (E)-methyl 3-(1-(4-methoxybenzyl)-2,3-dioxoindolin-5-yl)-acrylate molecule, Journal of the Institute of Science and Technology 14 (3) (2024) 1186–1199.
  • K. Gören, M. Bağlan, Ü. Yıldıko, V. Tahiroğlu, Molecular docking and DFT analysis of thiazolidinone-bis Schiff base for anti-cancer and anti-urease activity, Journal of the Institute of Science and Technology 14 (2) (2024) 822–834.
  • M. Arivazhagan, V. Subhasini, R. Kavitha, R. Senthilkumar, The spectroscopic (FT-IR, FT-Raman), MESP, first order hyperpolarizability, NBO analysis, HOMO and LUMO analysis of 1, 5-dimethyl napthalene by density functional method, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 131 (2014) 636–646.
  • M. Suhasini, E. Sailatha, S. Gunasekaran, G. Ramkumaar, Vibrational and electronic investigations, thermodynamic parameters, HOMO and LUMO analysis on Lornoxicam by density functional theory, Journal of Molecular Structure 1100 (2015) 116–128.
  • M. Bağlan, K. Gören, Ü. Yıldıko, HOMO–LUMO, NBO, NLO, MEP analysis and molecular docking using DFT calculations in DFPA molecule, International Journal of Chemistry and Technology 7 (1) (2023) 38–47.
  • P. Demir, F. Akman, Molecular structure, spectroscopic characterization, HOMO and LUMO analysis of PU and PCL grafted onto PEMA-co-PHEMA with DFT quantum chemical calculations, Journal of Molecular Structure 1134 (2017) 404–415.
  • M. Bağlan, Ü. Yıldıko, K. Gören, Computational Investigation of 5.5'',7''-trihydroxy-3,7-dimethoxy-4'-4'''-O-biflavone from Flavonoids Using DFT Calculations and Molecular Docking, Adıyaman University Journal of Science 12 (2) (2022) 283–298.
  • M. Bağlan, K. Gören, Ü. Yıldıko, DFT Computations and Molecular Docking Studies of 3-(6-(3-aminophenyl)thiazolo1,2,4triazol-2-yl)-2H-chromen-2-one (ATTC) Molecule, Hittite Journal of Science and Engineering 10 (1) (2023) 11–19.
  • M. Arivazhagan, V. Subhasini, R. Kavitha, R. Senthilkumar, The spectroscopic (FT-IR, FT-Raman), MESP, first order hyperpolarizability, NBO analysis, HOMO and LUMO analysis of 1,5-dimethyl naphthalene by density functional method, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 131 (2014) 636–646.
  • M. Bağlan, Ü. Yıldıko, K. Gören, Dft Calculations And Molecular Docking Study In 6-(2-Pyrrolidinone-5-yl)-Epicatechin Molecule From Flavonoids, Eskişehir Technical University Journal of Science and Technology B-Theoretical Sciences 11 (1) (2023) 43–55.
  • A. Mahmood, S. U. D. Khan, U. A. Rana, M. R. S. A. Janjua, M. H. Tahir, M. F. Nazar, Y. Song, Effect of thiophene rings on UV/visible spectra and nonlinear optical (NLO) properties of triphenylamine based dyes: A quantum chemical perspective, Journal of Physical Organic Chemistry 28 (6) (2015) 418–422.
  • E. Çimen, V. Tahiroğlu, 3-[1-(5-Amino-[1,3,4]tiadiazol-2-il)-2-(1H-imidazol-4-il)-etilimino]-2,3-dihidro-indol-2-on Theoretical Study of the Molecule, Turkish Journal of Nature and Science 13 (2) (2024) 6–13.
  • K. Gören, E. Çimen, V. Tahiroğlu, Ü. Yildiko, Moleculer Docking and Theoretical Analysis of the (E)-5-((Z)-4- methylbenzylidene)-2-(((E)-4-methylbenzylidene)hydrazineylidene)-3-phenylthiazolidin-4-one Molecule, Bitlis Eren University Journal of Science 13 (3) (2024) 659–672.
  • M. Govindarajan, M. Karabacak, Spectroscopic properties, NLO, HOMO–LUMO and NBO analysis of 2,5-Lutidine, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 96 (2012) 421–435.
  • N. Lohit, A. K. Singh, A. Kumar, H. Singh, J. P. Yadav, K. Singh, P. Kumar, Description and in silico ADME studies of US-FDA approved drugs or drugs under clinical trial which violate the Lipinski's rule of 5, Letters in Drug Design Discovery 21 (8) (2024) 1334–1358.
  • M. P. Gleeson, A. Hersey, S. Hannongbua, In-silico ADME models: A general assessment of their utility in drug discovery applications, Current Topics in Medicinal Chemistry 11 (4) (2011) 358–381.
  • S. Yenigun, Y. Basar, Y. Ipek, L. Behcet, I. Demirtas, T. Özen, Comprehensive evaluation of Ixoroside: An iridoid glycoside from Nepeta aristata and N. baytopii, assessing antioxidant, antimicrobial, enzyme inhibitory, DNA protective properties, with computational and pharmacokinetic analyses, Journal of Biologically Active Products from Nature 14 (3) (2024) 286–315.
  • R. Riaz, S. Parveen, M. Rashid, N. Shafiq, Combined experimental and theoretical insights: Spectroscopic and molecular investigation of polyphenols from fagonia indica via DFT, UV–vis, and FT-IR approaches, ACS Omega 9 (1) (2023) 730–740.
  • A. A. Tanrıverdi, K. Altun, Ü. Yıldıko, İ. Çakmak, Structural and spectral properties of 4-(4-(1-(4-Hydroxyphenyl)-1-phenylethyl)phenoxy)phthalonitrile: Analysis by TD-DFT method, ADME analysis and docking studies, International Journal of Chemistry and Technology 5 (2) (2021) 147–155.
Year 2024, Volume: 10 Issue: 4, 786 - 802, 31.12.2024
https://doi.org/10.28979/jarnas.1516154

Abstract

References

  • J. V. Faria, P. F. Vegi, A. G. C. Miguita, M. S. Dos Santos, N. Boechat, A. M. R. Bernardino, Recently reported biological activities of pyrazole compounds, Bioorganic and Medicinal Chemistry 25 (21) (2017) 5891–5903.
  • A. M. Youssef, E. G. Neeland, E. B. Villanueva, M. S. White, I. M. El-Ashmawy, B. Patrick, A. Klegeris, A. S. Abd–El–Aziz, Synthesis and biological evaluation of novel pyrazole compounds, Bioorganic and Medicinal Chemistry 18 (15) (2010) 5685–5696.
  • H. Ma, S. Chen, Z. Liu, Y. Sun, Theoretical elucidation on the inhibition mechanism of pyridine–pyrazole compound: A Hartree Fock study, Journal of Molecular Structure: THEOCHEM 774 (1-3) (2006) 19–22.
  • A. R. Thomas, Y. S. Mary, K. Resmi, B. Narayana, B. Sarojini, G. Vijayakumar, C. Van Alsenoy, Two neoteric pyrazole compounds as potential anti-cancer agents: Synthesis, electronic structure, physico-chemical properties and docking analysis, Journal of Molecular Structure (1181) (2019) 455–466.
  • B. E. Levin, Factors promoting and ameliorating the development of obesity, Physiology and Behavior 86 (5) (2005) 633–639.
  • R. Dent, R. McPherson, M. E. Harper, Factors affecting weight loss variability in obesity, Metabolism 113 (154388) (2020).
  • B. E. Levin, Developmental gene environment interactions affecting systems regulating energy homeostasis and obesity, Frontiers in Neuroendocrinology 31 (3) (2010) 270–283.
  • L. S. Adair, Child and adolescent obesity: Epidemiology and developmental perspectives, Physiology Behavior 94 (1) (2008) 8–16.
  • I. Orhan, B. Şener, M. Choudhary, A. Khalid, Acetylcholinesterase and butyrylcholinesterase inhibitory activity of some Turkish medicinal plants, Journal of Ethnopharmacology 91 (1) (2004) 57–60.
  • G. Chuiko, V. Podgornaya, Y. Zhelnin, Acetylcholinesterase and butyrylcholinesterase activities in brain and plasma of freshwater teleosts: Cross–species and cross-family differences, Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 135 (1) (2003) 55–61.
  • R. Scacchi, M. Ruggeri, R. M. Corbo, Variation of the butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) genes in coronary artery disease, Clinica Chimica Acta 412 (15–16) (2011) 1341–1344.
  • F-G. Koçanc, B. Aslım, Structure and functions of acetylcholinesterase and acetylcholinesterase inhibitory activity of plants, Manas Journal of Agriculture Veterinary and Life Sciences 6 (1) (2016) 19–35.
  • O. Christiansen, Møller–Plesset perturbation theory for vibrational wave functions, The Journal of Chemical Physics 119 (12) (2003) 5773–5781.
  • T. Takatani, C. D. Sherrill, Performance of spin–component-scaled Møller–Plesset theory (SCS–MP2) for potential energy curves of noncovalent interactions, Physical Chemistry Chemical Physics 9 (46) (2007) 6106–6114.
  • F. Turkan, A. Cetin, P. Taslimi, İ. Gulçin, Some pyrazoles derivatives: Potent carbonic anhydrase, α‐glycosidase, and cholinesterase enzymes inhibitors, Archiv der Pharmazie 351 (10) (2018) 1800200.
  • T. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M.A. Robb, J. R. Cheeseman, G. Scalmani, V. P. G. A. Barone, G. A. Petersson, H. J. R. Nakatsuji, Gaussian 16 Revision C.01. Gaussian Inc, Wallingford, Connecticut, 2016.
  • S. Release, 1: Maestro, Schrodinger, LLC, New York, 2019.
  • BIOVIA Discovery Studio D. SYSTÈMES BIOVIA Corporate Europe, BIOVIA 334 Cambridge Science Park Cambridge, 2016. http://accelrys.com/products/collaborativescience/biovia-discovery-studio.
  • K. Gören, M. Bağlan, İ. Çakmak, Theoretical investigation of 1H and 13C NMR spectra of diethanol amine dithiocarbamate RAFT agent, Journal of the Institute of Science and Technology 12 (3) (2022) 1677–1689.
  • K. Gören, Ü. Yıldıko, Aldose reductase evaluation against diabetic complications using ADME and molecular docking studies and DFT calculations of spiroindoline derivative molecule, Süleyman Demirel University Journal of Natural and Applied Sciences 28 (2) (2024) 281–292.
  • R. Renjith, Y. S. Mary, C. Y. Panicker, H. T. Varghese, M. Pakosińska-Parys, C. Van Alsenoy, T. Manojkumar, Spectroscopic (FT-IR, FT-Raman), first order hyperpolarizability, NBO analysis, HOMO and LUMO analysis of 1, 7, 8, 9-tetrachloro-10, 10-dimethoxy-4-[3-(4-phenylpiperazin-1-yl) propyl]-4-azatricyclo [5.2. 1.02, 6] dec-8-ene-3, 5-dione by density functional methods, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 124 (2014) 500–513.
  • K. Gören, M. Bağlan, Ü. Yıldıko, Melanoma cancer evaluation with ADME and molecular docking analysis, DFT calculations of (E)-methyl 3-(1-(4-methoxybenzyl)-2,3-dioxoindolin-5-yl)-acrylate molecule, Journal of the Institute of Science and Technology 14 (3) (2024) 1186–1199.
  • K. Gören, M. Bağlan, Ü. Yıldıko, V. Tahiroğlu, Molecular docking and DFT analysis of thiazolidinone-bis Schiff base for anti-cancer and anti-urease activity, Journal of the Institute of Science and Technology 14 (2) (2024) 822–834.
  • M. Arivazhagan, V. Subhasini, R. Kavitha, R. Senthilkumar, The spectroscopic (FT-IR, FT-Raman), MESP, first order hyperpolarizability, NBO analysis, HOMO and LUMO analysis of 1, 5-dimethyl napthalene by density functional method, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 131 (2014) 636–646.
  • M. Suhasini, E. Sailatha, S. Gunasekaran, G. Ramkumaar, Vibrational and electronic investigations, thermodynamic parameters, HOMO and LUMO analysis on Lornoxicam by density functional theory, Journal of Molecular Structure 1100 (2015) 116–128.
  • M. Bağlan, K. Gören, Ü. Yıldıko, HOMO–LUMO, NBO, NLO, MEP analysis and molecular docking using DFT calculations in DFPA molecule, International Journal of Chemistry and Technology 7 (1) (2023) 38–47.
  • P. Demir, F. Akman, Molecular structure, spectroscopic characterization, HOMO and LUMO analysis of PU and PCL grafted onto PEMA-co-PHEMA with DFT quantum chemical calculations, Journal of Molecular Structure 1134 (2017) 404–415.
  • M. Bağlan, Ü. Yıldıko, K. Gören, Computational Investigation of 5.5'',7''-trihydroxy-3,7-dimethoxy-4'-4'''-O-biflavone from Flavonoids Using DFT Calculations and Molecular Docking, Adıyaman University Journal of Science 12 (2) (2022) 283–298.
  • M. Bağlan, K. Gören, Ü. Yıldıko, DFT Computations and Molecular Docking Studies of 3-(6-(3-aminophenyl)thiazolo1,2,4triazol-2-yl)-2H-chromen-2-one (ATTC) Molecule, Hittite Journal of Science and Engineering 10 (1) (2023) 11–19.
  • M. Arivazhagan, V. Subhasini, R. Kavitha, R. Senthilkumar, The spectroscopic (FT-IR, FT-Raman), MESP, first order hyperpolarizability, NBO analysis, HOMO and LUMO analysis of 1,5-dimethyl naphthalene by density functional method, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 131 (2014) 636–646.
  • M. Bağlan, Ü. Yıldıko, K. Gören, Dft Calculations And Molecular Docking Study In 6-(2-Pyrrolidinone-5-yl)-Epicatechin Molecule From Flavonoids, Eskişehir Technical University Journal of Science and Technology B-Theoretical Sciences 11 (1) (2023) 43–55.
  • A. Mahmood, S. U. D. Khan, U. A. Rana, M. R. S. A. Janjua, M. H. Tahir, M. F. Nazar, Y. Song, Effect of thiophene rings on UV/visible spectra and nonlinear optical (NLO) properties of triphenylamine based dyes: A quantum chemical perspective, Journal of Physical Organic Chemistry 28 (6) (2015) 418–422.
  • E. Çimen, V. Tahiroğlu, 3-[1-(5-Amino-[1,3,4]tiadiazol-2-il)-2-(1H-imidazol-4-il)-etilimino]-2,3-dihidro-indol-2-on Theoretical Study of the Molecule, Turkish Journal of Nature and Science 13 (2) (2024) 6–13.
  • K. Gören, E. Çimen, V. Tahiroğlu, Ü. Yildiko, Moleculer Docking and Theoretical Analysis of the (E)-5-((Z)-4- methylbenzylidene)-2-(((E)-4-methylbenzylidene)hydrazineylidene)-3-phenylthiazolidin-4-one Molecule, Bitlis Eren University Journal of Science 13 (3) (2024) 659–672.
  • M. Govindarajan, M. Karabacak, Spectroscopic properties, NLO, HOMO–LUMO and NBO analysis of 2,5-Lutidine, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 96 (2012) 421–435.
  • N. Lohit, A. K. Singh, A. Kumar, H. Singh, J. P. Yadav, K. Singh, P. Kumar, Description and in silico ADME studies of US-FDA approved drugs or drugs under clinical trial which violate the Lipinski's rule of 5, Letters in Drug Design Discovery 21 (8) (2024) 1334–1358.
  • M. P. Gleeson, A. Hersey, S. Hannongbua, In-silico ADME models: A general assessment of their utility in drug discovery applications, Current Topics in Medicinal Chemistry 11 (4) (2011) 358–381.
  • S. Yenigun, Y. Basar, Y. Ipek, L. Behcet, I. Demirtas, T. Özen, Comprehensive evaluation of Ixoroside: An iridoid glycoside from Nepeta aristata and N. baytopii, assessing antioxidant, antimicrobial, enzyme inhibitory, DNA protective properties, with computational and pharmacokinetic analyses, Journal of Biologically Active Products from Nature 14 (3) (2024) 286–315.
  • R. Riaz, S. Parveen, M. Rashid, N. Shafiq, Combined experimental and theoretical insights: Spectroscopic and molecular investigation of polyphenols from fagonia indica via DFT, UV–vis, and FT-IR approaches, ACS Omega 9 (1) (2023) 730–740.
  • A. A. Tanrıverdi, K. Altun, Ü. Yıldıko, İ. Çakmak, Structural and spectral properties of 4-(4-(1-(4-Hydroxyphenyl)-1-phenylethyl)phenoxy)phthalonitrile: Analysis by TD-DFT method, ADME analysis and docking studies, International Journal of Chemistry and Technology 5 (2) (2021) 147–155.
There are 40 citations in total.

Details

Primary Language English
Subjects Computational Chemistry
Journal Section Research Article
Authors

Kenan Gören 0000-0001-5068-1762

Mehmet Bağlan 0000-0002-7089-7111

Veysel Tahiroğlu 0000-0003-3516-5561

Ümit Yıldıko 0000-0001-8627-9038

Publication Date December 31, 2024
Submission Date July 14, 2024
Acceptance Date October 7, 2024
Published in Issue Year 2024 Volume: 10 Issue: 4

Cite

APA Gören, K., Bağlan, M., Tahiroğlu, V., Yıldıko, Ü. (2024). Theoretical Calculations and Molecular Docking Analysis of 4-(2-(4-Bromophenyl)Hydrazineylidene)-3,5-Diphenyl-4H-Pyrazole Molecule. Journal of Advanced Research in Natural and Applied Sciences, 10(4), 786-802. https://doi.org/10.28979/jarnas.1516154
AMA Gören K, Bağlan M, Tahiroğlu V, Yıldıko Ü. Theoretical Calculations and Molecular Docking Analysis of 4-(2-(4-Bromophenyl)Hydrazineylidene)-3,5-Diphenyl-4H-Pyrazole Molecule. JARNAS. December 2024;10(4):786-802. doi:10.28979/jarnas.1516154
Chicago Gören, Kenan, Mehmet Bağlan, Veysel Tahiroğlu, and Ümit Yıldıko. “Theoretical Calculations and Molecular Docking Analysis of 4-(2-(4-Bromophenyl)Hydrazineylidene)-3,5-Diphenyl-4H-Pyrazole Molecule”. Journal of Advanced Research in Natural and Applied Sciences 10, no. 4 (December 2024): 786-802. https://doi.org/10.28979/jarnas.1516154.
EndNote Gören K, Bağlan M, Tahiroğlu V, Yıldıko Ü (December 1, 2024) Theoretical Calculations and Molecular Docking Analysis of 4-(2-(4-Bromophenyl)Hydrazineylidene)-3,5-Diphenyl-4H-Pyrazole Molecule. Journal of Advanced Research in Natural and Applied Sciences 10 4 786–802.
IEEE K. Gören, M. Bağlan, V. Tahiroğlu, and Ü. Yıldıko, “Theoretical Calculations and Molecular Docking Analysis of 4-(2-(4-Bromophenyl)Hydrazineylidene)-3,5-Diphenyl-4H-Pyrazole Molecule”, JARNAS, vol. 10, no. 4, pp. 786–802, 2024, doi: 10.28979/jarnas.1516154.
ISNAD Gören, Kenan et al. “Theoretical Calculations and Molecular Docking Analysis of 4-(2-(4-Bromophenyl)Hydrazineylidene)-3,5-Diphenyl-4H-Pyrazole Molecule”. Journal of Advanced Research in Natural and Applied Sciences 10/4 (December 2024), 786-802. https://doi.org/10.28979/jarnas.1516154.
JAMA Gören K, Bağlan M, Tahiroğlu V, Yıldıko Ü. Theoretical Calculations and Molecular Docking Analysis of 4-(2-(4-Bromophenyl)Hydrazineylidene)-3,5-Diphenyl-4H-Pyrazole Molecule. JARNAS. 2024;10:786–802.
MLA Gören, Kenan et al. “Theoretical Calculations and Molecular Docking Analysis of 4-(2-(4-Bromophenyl)Hydrazineylidene)-3,5-Diphenyl-4H-Pyrazole Molecule”. Journal of Advanced Research in Natural and Applied Sciences, vol. 10, no. 4, 2024, pp. 786-02, doi:10.28979/jarnas.1516154.
Vancouver Gören K, Bağlan M, Tahiroğlu V, Yıldıko Ü. Theoretical Calculations and Molecular Docking Analysis of 4-(2-(4-Bromophenyl)Hydrazineylidene)-3,5-Diphenyl-4H-Pyrazole Molecule. JARNAS. 2024;10(4):786-802.


TR Dizin 20466


DOAJ 32869

EBSCO 32870

Scilit 30371                        

SOBİAD 20460


29804 JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).