Araştırma Makalesi
BibTex RIS Kaynak Göster

Eğrisel Fiber Yollu İkili Motorlu-Kanat Sisteminin Aeroelastik Enerji Optimizasyonu

Yıl 2020, Cilt: 4 Sayı: 1, 1 - 14, 24.06.2020
https://doi.org/10.30518/jav.668240

Öz

Bu çalışmada, bir çift motorlu kompozit kanat sisteminin aeroelastik enerji tepkisi, sıralı karesel programlama (SQP) yöntemine göre optimize edilmiştir. Değişken sertlik, TWB'nin laminatlarının, öngörülen yollara sahip eğrisel liflerle oluşturulmasıyla elde edilir. Spanverse lokasyonların ve motor kütlesinin TWB'nin aeroelastik özellikleri üzerindeki etkisini hesaba katmak için, yeni yönlendirme denklemleri Hamilton'un varyasyon prensibi kullanılarak elde edilir. Kağıt, farklı çift motor kanadı konfigürasyonu için geliştirilmiş aeroelastik özelliklere sahip arzu edilen lif yollarından faydalanmayı amaçlamaktadır. Ritz tabanlı çözüm metodolojisi, Wagner'in fonksiyonuna dayanan sıkıştırılamaz sıkıştırılmamış kararsız aerodinamik model ile denklemleri çözmek için kullanılır. Aeroelastik sistemin toplam enerjisine dayanan yeni bir optimizasyon stratejisi tanıtıldı. Maliyet fonksiyonu olarak önerilen toplam enerji, iki motor lokasyonunun dört optimizasyon değişkeni ve iki parametreli konak yapısı eğrisel fiber açısı açısından en aza indirilir. Toplam enerji, kinetik ve potansiyel enerjinin kontrollü tepkilerinin belirli bir zaman aralığına entegre edilmesiyle elde edilir. Minimum toplam enerji, en yüksek çarpışma performansına yol açan ideal optimizasyon değişkenlerinin bir göstergesidir. Sayısal sonuçlar, optimizasyon değişkenlerinin aeroelastik sistemin toplam enerjisi üzerindeki etkinliğini gösterir ve minimum toplam enerji ve geliştirilmiş aeroelastik özellikler durumunda sokulan değişkenlerin optimal değerlerini belirler.

Kaynakça

  • [1] Che, Q. L., Han, J., L., and Yun, H., W., “Flutter analysis of wings subjected to engine thrusts,” Journal of Vibration Engineering, Vol. 25, No. 2, 2012, pp. 110-116.
  • [2] Hodges, D., H., Patil, M., J., Chae, S., “Effect of thrust on bending-torsion flutter of wings,” Journal of Aircraft, Vol. 39, 2002, p. 371-376.
  • [3] Mardanpour, P., Hodges, D.H., Neuhart, R., Graybeal, N., “Engine placement effect on nonlinear trim and stability of flying wing aircraft,” Journal of Aircraft, 2013, doi:10.2514/1.C031955.
  • [4] Mardanpour, P., Richards, P.W., Nabipour, O., Hodges, D.H., “Effect of multiple engine placement on aeroelastic trim and stability of flying wing aircraft,” In: Proceedings of the 54th AIAA/ASME/ASCE/AHS/ASC Structures, [5] Mazidi, A., Fazelzadeh, S., A., “The flutter of a swept aircraft wing with a powered-engine,” Journal of Aerospace Engineering, Vol. 23, 2010, pp. 243–250.
  • [6] Fazelzadeh S. A., Azadi M., Azadi E., “Suppression of nonlinear aeroelastic vibration of a wing/store under gust effects using an adaptive-robust controller,” Journal of Vibration and Control, Vol. 23, No. 7, 2017, pp. 1206-1217.
  • [7] Amoozgar, M. R., Irani, S., and Vio, G., A., “Aeroelastic instability of a composite wing with a powered-engine,” Journal of Fluids Structures, Vol. 36, 2013, pp. 70–82.
  • [8] Stodieck, O., Cooper, J., E., Weaver, P., M., and Kealy, P., “Aeroelastic Tailoring of a Representative Wing Box Using Tow-Steered Composites,” AIAA Journal, Vol. 55, No. 4, pp. 1425-1439, 2017.
  • [9] Librescu, L., Song, O., Thin walled composite beam theory and application, USA: Springer, 2006.
  • [10] Farsadi, T., Rahmanian, M., Kayran, A., “Geometrically nonlinear aeroelastic behavior of pretwisted composite wings modeled as thin walled beams,” Journal of Fluids and Structures, Vol. 83, pp. 259-292, 2018.
  • [11] Farsadi, T., Hasbestan, J., “Calculation of flutter and dynamic behavior of advanced composite swept wings with tapered cross section in unsteady incompressible flow,” Mechanics of Advanced Materials and Structures, 2017, doi.org/10.1080/15376494.2017.1387322.
  • [12] Qin, Z., Librescu, L., “Aeroelastic instability of aircraft wings modeled as anisotropic composite thin-walled beams in incompressible flow,” Journal of Fluids and Structures, Vol. 18, No. 1, 2003, 43–61.
  • [13] Farsadi, T., Sener, O., Kayran, A., “Free vibration analysis of uniform and asymmetric composite pretwisted rotating thin walled beam,” In Proceedings of the International Mechanical Engineering Congress and Exposition, Advances in Aerospace Technology, IMECE2017-70531, 3–9 November 2017, Florida, USA.
  • [14] Librescu, L. and Song, O., “Dynamics of Composite Aircraft Wings Carrying External Stores,” AIAA Journal, Vol. 46, No. 3, March 2008.
  • [15] Gjerek, B., Drazumeric, R., Kosel, F., “Flutter behavior of a flexible airfoil: Multi-parameter experimental study,” Aerospace Science and Technology, Vol. 36, 2014, pp. 75–86. [16] Attaran, A., Majid, D., L., Basri, S., Rafie, A., S., Abdullah, E., J., “Structural optimization of an aeroelastically tailored composite flat plate made of woven fiberglass/epoxy,” Aerospace Science and Technology, Vol. 15, 2011, pp. 393–401.
  • [17] Guo, S., “Aeroelastic optimization of an aerobatic aircraft wing structure,” Aerospace Science and Technology, Vol., No.11, 2007, pp. 396–404.
  • [18] Zamani, Z., Haddadpour, H. and Ghazavi, M., “Curvilinear fiber optimization tools for design thin walled beams,” Thin-Walled Structures, Vol. 49, No. 3, 2011, pp. 448-454.
  • [19] Haddadpour, H., Zamani, Z., “Curvilinear fiber optimization tools for aeroelastic design of composite wings,” Journal of Fluids and Structures, Vol. 33, 2012, pp. 180-190.
  • [20] Gurdal, Z., and Olmedo, R., “In-plane response of laminates with spatially varying fiber orientations: variable stiffness concept,” AIAA Journal, Vol. 31, No. 4, 1993.
  • [21] Gürdal, Z., Tatting, B.,F., and Wu, C., K., “Variable stiffness composite panels: Effects of stiffness variation on the in-plane and buckling response,” Composites Part A: Applied Science and Manufacturing, Vol. 39, 2008, pp. 911-922.
  • [22] Akhavan, H., Ribeiro, P., “Natural modes of vibration of variable stiffness composite laminates with curvilinear fibers,” Composite Structures, Vol. 93, No. 11, 2011, pp. 3040-3047.
  • [23] Gunay, M., G., Timarci, T., “Static analysis of thin-walled laminated composite closed-section beams with variable stiffness,” Composite Structures, Vol. 182, 2017, pp. 67-78.
  • [24] Farsadi, T., Asadi, D., & Kurtaran, H. “Flutter improvement of a thin walled wing-engine system by applying curvilinear fiber path”. Aerospace Science and Technology, 93, 2019, 105353

Sequential Quadratic Optimization of Aeroelastic Energy of Twin-Engine Wing System with Curvilinear Fiber Path

Yıl 2020, Cilt: 4 Sayı: 1, 1 - 14, 24.06.2020
https://doi.org/10.30518/jav.668240

Öz

In the present study, the aeroelastic energy response of a twin-engine composite wing system is optimized based on sequential quadratic programming (SQP) method. The variable stiffness is acquired by constructing laminates of thin wall beam (TWB) with curvilinear fibers having prescribed paths. In order to account the effect of spanwise locations and mass of the engines on the aeroelastic characteristics of TWB, the novel governing equations of motion are obtained using Hamilton's variational principle. The paper aims to exploit desirable fiber paths with improved aeroelastic properties for different twin-engine wing configuration. Ritz based solution methodology is employed to solve the equations with coupled incompressible unsteady aerodynamic model based on Wagner’s function. A novel optimization strategy based on the total energy of the aeroelastic system is introduced. The proposed total energy, as a cost function, is minimized in terms of four optimization variables of two engine’s locations and wing structure curvilinear fiber angle with two design parameters. The total energy is obtained by integrating responses of kinetic and potential energy in a specific time interval. The minimum total energy is an indication of ideal optimization variables which leads to the optimum flutter performance. Numerical results demonstrate the effectiveness of the optimization variables on the total energy of the aeroelastic system and determine the optimal values of introduced variables in case of minimum total energy and improved aeroelastic characteristics.

Kaynakça

  • [1] Che, Q. L., Han, J., L., and Yun, H., W., “Flutter analysis of wings subjected to engine thrusts,” Journal of Vibration Engineering, Vol. 25, No. 2, 2012, pp. 110-116.
  • [2] Hodges, D., H., Patil, M., J., Chae, S., “Effect of thrust on bending-torsion flutter of wings,” Journal of Aircraft, Vol. 39, 2002, p. 371-376.
  • [3] Mardanpour, P., Hodges, D.H., Neuhart, R., Graybeal, N., “Engine placement effect on nonlinear trim and stability of flying wing aircraft,” Journal of Aircraft, 2013, doi:10.2514/1.C031955.
  • [4] Mardanpour, P., Richards, P.W., Nabipour, O., Hodges, D.H., “Effect of multiple engine placement on aeroelastic trim and stability of flying wing aircraft,” In: Proceedings of the 54th AIAA/ASME/ASCE/AHS/ASC Structures, [5] Mazidi, A., Fazelzadeh, S., A., “The flutter of a swept aircraft wing with a powered-engine,” Journal of Aerospace Engineering, Vol. 23, 2010, pp. 243–250.
  • [6] Fazelzadeh S. A., Azadi M., Azadi E., “Suppression of nonlinear aeroelastic vibration of a wing/store under gust effects using an adaptive-robust controller,” Journal of Vibration and Control, Vol. 23, No. 7, 2017, pp. 1206-1217.
  • [7] Amoozgar, M. R., Irani, S., and Vio, G., A., “Aeroelastic instability of a composite wing with a powered-engine,” Journal of Fluids Structures, Vol. 36, 2013, pp. 70–82.
  • [8] Stodieck, O., Cooper, J., E., Weaver, P., M., and Kealy, P., “Aeroelastic Tailoring of a Representative Wing Box Using Tow-Steered Composites,” AIAA Journal, Vol. 55, No. 4, pp. 1425-1439, 2017.
  • [9] Librescu, L., Song, O., Thin walled composite beam theory and application, USA: Springer, 2006.
  • [10] Farsadi, T., Rahmanian, M., Kayran, A., “Geometrically nonlinear aeroelastic behavior of pretwisted composite wings modeled as thin walled beams,” Journal of Fluids and Structures, Vol. 83, pp. 259-292, 2018.
  • [11] Farsadi, T., Hasbestan, J., “Calculation of flutter and dynamic behavior of advanced composite swept wings with tapered cross section in unsteady incompressible flow,” Mechanics of Advanced Materials and Structures, 2017, doi.org/10.1080/15376494.2017.1387322.
  • [12] Qin, Z., Librescu, L., “Aeroelastic instability of aircraft wings modeled as anisotropic composite thin-walled beams in incompressible flow,” Journal of Fluids and Structures, Vol. 18, No. 1, 2003, 43–61.
  • [13] Farsadi, T., Sener, O., Kayran, A., “Free vibration analysis of uniform and asymmetric composite pretwisted rotating thin walled beam,” In Proceedings of the International Mechanical Engineering Congress and Exposition, Advances in Aerospace Technology, IMECE2017-70531, 3–9 November 2017, Florida, USA.
  • [14] Librescu, L. and Song, O., “Dynamics of Composite Aircraft Wings Carrying External Stores,” AIAA Journal, Vol. 46, No. 3, March 2008.
  • [15] Gjerek, B., Drazumeric, R., Kosel, F., “Flutter behavior of a flexible airfoil: Multi-parameter experimental study,” Aerospace Science and Technology, Vol. 36, 2014, pp. 75–86. [16] Attaran, A., Majid, D., L., Basri, S., Rafie, A., S., Abdullah, E., J., “Structural optimization of an aeroelastically tailored composite flat plate made of woven fiberglass/epoxy,” Aerospace Science and Technology, Vol. 15, 2011, pp. 393–401.
  • [17] Guo, S., “Aeroelastic optimization of an aerobatic aircraft wing structure,” Aerospace Science and Technology, Vol., No.11, 2007, pp. 396–404.
  • [18] Zamani, Z., Haddadpour, H. and Ghazavi, M., “Curvilinear fiber optimization tools for design thin walled beams,” Thin-Walled Structures, Vol. 49, No. 3, 2011, pp. 448-454.
  • [19] Haddadpour, H., Zamani, Z., “Curvilinear fiber optimization tools for aeroelastic design of composite wings,” Journal of Fluids and Structures, Vol. 33, 2012, pp. 180-190.
  • [20] Gurdal, Z., and Olmedo, R., “In-plane response of laminates with spatially varying fiber orientations: variable stiffness concept,” AIAA Journal, Vol. 31, No. 4, 1993.
  • [21] Gürdal, Z., Tatting, B.,F., and Wu, C., K., “Variable stiffness composite panels: Effects of stiffness variation on the in-plane and buckling response,” Composites Part A: Applied Science and Manufacturing, Vol. 39, 2008, pp. 911-922.
  • [22] Akhavan, H., Ribeiro, P., “Natural modes of vibration of variable stiffness composite laminates with curvilinear fibers,” Composite Structures, Vol. 93, No. 11, 2011, pp. 3040-3047.
  • [23] Gunay, M., G., Timarci, T., “Static analysis of thin-walled laminated composite closed-section beams with variable stiffness,” Composite Structures, Vol. 182, 2017, pp. 67-78.
  • [24] Farsadi, T., Asadi, D., & Kurtaran, H. “Flutter improvement of a thin walled wing-engine system by applying curvilinear fiber path”. Aerospace Science and Technology, 93, 2019, 105353
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Uzay Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Touraj Farsadi 0000-0003-0772-3992

Davood Asadi 0000-0002-2066-6016

Yayımlanma Tarihi 24 Haziran 2020
Gönderilme Tarihi 31 Aralık 2019
Kabul Tarihi 4 Haziran 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 4 Sayı: 1

Kaynak Göster

APA Farsadi, T., & Asadi, D. (2020). Sequential Quadratic Optimization of Aeroelastic Energy of Twin-Engine Wing System with Curvilinear Fiber Path. Journal of Aviation, 4(1), 1-14. https://doi.org/10.30518/jav.668240

Cited By

Fully Parametric Optimization Designs of Wing Components
International Journal of Aerospace Engineering
Zhendong Hu
https://doi.org/10.1155/2020/8841623

Journal of Aviation - JAV 


www.javsci.com - editor@javsci.com


9210This journal is licenced under a Creative Commons Attiribution-NonCommerical 4.0 İnternational Licence