Araştırma Makalesi
BibTex RIS Kaynak Göster

Aerodynamic Performance Improvement with Morphing Winglet Design

Yıl 2021, Cilt: 5 Sayı: 1, 16 - 21, 30.06.2021

Öz

The aim of this study is to reduce unnecessary lift and minimize drag at the same time when the aircraft reaches a certain speed level by using the active morphing method during flight. In this study, the flight performance was improved by designing a morphing winglet . Aerodynamic analysis of the wing in flat level flight at speeds of 15, 20 and 25 m / s has been performed. Morphing winglet of the wing was analyzed separately at 0-20-45-60-75 degree toe angles at speeds of 10-15-20-25-30 m / s. Optimum parameters have been determined to achieve maximum lift and minimum drag.

Kaynakça

  • Y. R. Ding, Y. C. Liu, and F. B. Hsiao, "The application of extended Kalman filtering to autonomous formation flight of small UAV system." International Journal of Intelligent Unmanned Systems (2013).
  • S. N. Skinner, and H. Z. Behtash, "State-of-the-art in aerodynamic shape optimisation methods." Applied Soft Computing 62 (2018): 933-962.
  • A. Jahangirian, and A. Shahrokhi, "Aerodynamic shape optimization using efficient evolutionary algorithms and unstructured CFD solver." Computers & Fluids 46.1 (2011): 270-276.
  • G. W. Burgreen, O. Baysal, and M. E. Eleshaky, "Improving the efficiency of aerodynamic shape optimization." AIAA journal 32.1 (1994): 69-76.
  • G. Hugo, and D. W. Zingg, "Euler-equation-based drag minimization of unconventional aircraft configurations." Journal of Aircraft 53.5 (2016): 1361-1371.
  • O. Lana, et al. "Drag minimization based on the Navier–Stokes equations using a Newton–Krylov approach." AIAA Journal 53.6 (2015): 1555-1577.
  • Z. Lyu, and J. R. R. A. Martins, "Aerodynamic design optimization studies of a blended-wing-body aircraft." Journal of Aircraft 51.5 (2014): 1604-1617.
  • P. Panagiotou, P. Kaparos, and K. Yakinthos. "Winglet design and optimization for a MALE UAV using CFD." Aerospace Science and Technology 39 (2014): 190-205.
  • A. Allen, and C. Breitsamter, "Transport aircraft wake influenced by a large winglet and winglet flaps." Journal of aircraft 45.2 (2008): 686-699.
  • J. Weierman, and J. Jacob. "Winglet design and optimization for UAVs." 28th AIAA Applied Aerodynamics Conference. 2010.
  • T. Oktay, and S. Coban, "Lateral autonomous performance maximization of tactical unmanned aerial vehicles by integrated passive and active morphing." International Journal of Advanced Research in Engineering 3.1 (2017): 1-5.
  • S. Coban, "Different Autopilot Systems Design For a Small Fixed Wing Unmanned Aerial Vehicle." Avrupa Bilim ve Teknoloji Dergisi 17 (2019): 682-691.
  • M. Onal, et al., "Dikey İniş Kalkış Yapabilen Bir İHA’nın Azami Menzili ve Asgari Güç Gereksinimi İçin En Uygun Uçuş Parametrelerinin Belirlenmesi." Journal of Aviation 3.2: 106-112.
  • H. Acar, İHA Aerodinamik ve Uçuş Mekaniği. Ders Notları. İstanbul Teknik Üniversitesi. Mart 2019, Gebze.
Yıl 2021, Cilt: 5 Sayı: 1, 16 - 21, 30.06.2021

Öz

Kaynakça

  • Y. R. Ding, Y. C. Liu, and F. B. Hsiao, "The application of extended Kalman filtering to autonomous formation flight of small UAV system." International Journal of Intelligent Unmanned Systems (2013).
  • S. N. Skinner, and H. Z. Behtash, "State-of-the-art in aerodynamic shape optimisation methods." Applied Soft Computing 62 (2018): 933-962.
  • A. Jahangirian, and A. Shahrokhi, "Aerodynamic shape optimization using efficient evolutionary algorithms and unstructured CFD solver." Computers & Fluids 46.1 (2011): 270-276.
  • G. W. Burgreen, O. Baysal, and M. E. Eleshaky, "Improving the efficiency of aerodynamic shape optimization." AIAA journal 32.1 (1994): 69-76.
  • G. Hugo, and D. W. Zingg, "Euler-equation-based drag minimization of unconventional aircraft configurations." Journal of Aircraft 53.5 (2016): 1361-1371.
  • O. Lana, et al. "Drag minimization based on the Navier–Stokes equations using a Newton–Krylov approach." AIAA Journal 53.6 (2015): 1555-1577.
  • Z. Lyu, and J. R. R. A. Martins, "Aerodynamic design optimization studies of a blended-wing-body aircraft." Journal of Aircraft 51.5 (2014): 1604-1617.
  • P. Panagiotou, P. Kaparos, and K. Yakinthos. "Winglet design and optimization for a MALE UAV using CFD." Aerospace Science and Technology 39 (2014): 190-205.
  • A. Allen, and C. Breitsamter, "Transport aircraft wake influenced by a large winglet and winglet flaps." Journal of aircraft 45.2 (2008): 686-699.
  • J. Weierman, and J. Jacob. "Winglet design and optimization for UAVs." 28th AIAA Applied Aerodynamics Conference. 2010.
  • T. Oktay, and S. Coban, "Lateral autonomous performance maximization of tactical unmanned aerial vehicles by integrated passive and active morphing." International Journal of Advanced Research in Engineering 3.1 (2017): 1-5.
  • S. Coban, "Different Autopilot Systems Design For a Small Fixed Wing Unmanned Aerial Vehicle." Avrupa Bilim ve Teknoloji Dergisi 17 (2019): 682-691.
  • M. Onal, et al., "Dikey İniş Kalkış Yapabilen Bir İHA’nın Azami Menzili ve Asgari Güç Gereksinimi İçin En Uygun Uçuş Parametrelerinin Belirlenmesi." Journal of Aviation 3.2: 106-112.
  • H. Acar, İHA Aerodinamik ve Uçuş Mekaniği. Ders Notları. İstanbul Teknik Üniversitesi. Mart 2019, Gebze.
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Uzay Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Metin Uzun 0000-0002-0744-3491

Sezer Çoban 0000-0001-6750-5001

Yayımlanma Tarihi 30 Haziran 2021
Gönderilme Tarihi 22 Şubat 2021
Kabul Tarihi 24 Haziran 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 5 Sayı: 1

Kaynak Göster

APA Uzun, M., & Çoban, S. (2021). Aerodynamic Performance Improvement with Morphing Winglet Design. Journal of Aviation, 5(1), 16-21.

Journal of Aviation - JAV 


www.javsci.com - editor@javsci.com


9210This journal is licenced under a Creative Commons Attiribution-NonCommerical 4.0 İnternational Licence