Research Article
BibTex RIS Cite

Mechanosensitive TRPV4 Trafficking Drives TGF-Β-Mediated Mesenchymal Transition in Colorectal Cancer

Year 2025, Volume: 9 Issue: 1, 218 - 229, 31.01.2025
https://doi.org/10.30621/jbachs.1606073

Abstract

Background and Purpose

Epithelial-to-mesenchymal transition (EMT) enhances the invasive potential of cancers, significantly affecting survival rates in metastatic disease. TGF-β, a potent EMT regulator enriched in colon cancer (CRC), is influenced by bioelectric and biophysical forces. While some ion channels and mechanical forces are linked, TGF-β-coupled mechanosensing mechanisms in CRC remain poorly understood. This study investigates the mechanosensitive ion channel TRPV4 and its role in TGF-β-induced EMT, focusing on channel trafficking and its functional implications in CRC.

Methods

We analyzed mechanosensitive ion channels mRNA expressions in CRC stages and evaluated their association with survival through Kaplan-Meier analysis. Correlations were analyzed with mesenchymal gene sets, soluble factors, and TGF-β signaling. Immunofluorescence was used to visualize TRPV4 localization in untreated and 10 ng/mL TGF-β1-treated colon cell lines. Functional studies involved co-stimulation with TGF-β1 and TRPV4 modulators (GSK101 and HC-067047) to assess EMT-related changes.

Results

TRPV4 mRNA is elevated in CRC, with TRPV4-001 as the predominant isoform. High expression correlated with poor survival, EMT signatures, and TGF-β1 signaling . TGF-β1 induced out-of-nucleus TRPV4 translocation. TRPV4 inhibition reduced TGF-β-induced N-cadherin expression, mitigating EMT.

Conclusion

TRPV4 regulates TGF-β-induced EMT through trafficking mechanisms. Its inhibition presents anti-metastatic potential, identifying TRPV4 as a therapeutic target in CRC.

Ethical Statement

In compliance with the Declaration of Helsinki,Dokuz Eylul University Non-Interventional Clinical Research Ethics Committee approved the study (Date: 31.07.2019, Decision No: 2019/19-08)

Supporting Institution

This study was funded by Dokuz Eylul University Scientific Research Projects Coordination (Project no: 2020.KB.SAG.043) and The Scientific and Technological Research Council of Türkiye (TUBITAK) The Scientific and Technological Research Projects Funding Program (1001) (Project no: 122R090)

Project Number

DEU- 2020.KB.SAG.043 and TUBITAK-122R090

Thanks

We extend our sincere gratitude to Asım Leblebici for his invaluable contributions to data normalization and survival analysis. We also thank The Scientific and Technological Research Council of Türkiye (TÜBİTAK) BIDEB 2211-A scholarship program and the Council of Higher Education 100/2000 scholarship program for their support to CK.

References

  • Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA Cancer J Clin 2024;74(1):12–49.
  • Huang Y, Hong W, Wei X. The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis. J Hematol Oncol 2022;15(1):129.
  • Shibue T, Weinberg RA. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat Rev Clin Oncol 2017;14(10):611–29.
  • Ren H, Bösch F, Pretzsch E, Jacob S, Westphalen CB, Walter Holch J, et al. Identification of an EMT-related gene signature predicting recurrence in stage II/III colorectal cancer: A retrospective study in 1780 patients. Ann Surg 2022;276(5):897–904.
  • van Staalduinen J, Baker D, Ten Dijke P, van Dam H. Epithelial-mesenchymal-transition-inducing transcription factors: new targets for tackling chemoresistance in cancer? Oncogene. 2018;37(48):6195–211.
  • Kim BG, Malek E, Choi SH, Ignatz-Hoover JJ, Driscoll JJ. Novel therapies emerging in oncology to target the TGF-β pathway. J Hematol Oncol 2021;14(1):55.
  • Fasano M, Pirozzi M, Miceli CC, Cocule M, Caraglia M, Boccellino M, et al. TGF-β modulated pathways in colorectal cancer: New potential therapeutic opportunities. Int J Mol Sci. 2024 ;25(13):7400.
  • Lee JM, Dedhar S, Kalluri R, Thompson EW. The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol 2006;172(7):973–81.
  • Roger S, Besson P, Le Guennec JY. Involvement of a novel fast inward sodium current in the invasion capacity of a breast cancer cell line. Biochim Biophys Acta 2003;1616(2):107–11.
  • Payne SL, Levin M, Oudin MJ. Bioelectric control of metastasis in solid tumors. Bioelectricity 2019;1(3):114–30.
  • Zhou M, Zheng M, Zhou X, Tian S, Yang X, Ning Y, et al. The roles of connexins and gap junctions in the progression of cancer. Cell Commun Signal 2023;21(1):8.
  • Chernet B, Levin M. Endogenous voltage potentials and the microenvironment: Bioelectric signals that reveal, induce and normalize cancer. J Clin Exp Oncol [Internet]. 2013;Suppl 1(01). Available from: http://dx.doi.org/10.4172/2324-9110.S1-002
  • Zhang M, Li T, Zhu J, Tuo B, Liu X. Physiological and pathophysiological role of ion channels and transporters in the colorectum and colorectal cancer. J Cell Mol Med. 2020;24(17):9486–94.
  • Zhang L, Gu H, Li X, Wang Y, Yao S, Chen X, et al. Pathophysiological role of ion channels and transporters in hepatocellular carcinoma. Cancer Gene Ther 2024;31(11):1611–8.
  • Wicks SJ, Lui S, Abdel-Wahab N, Mason RM, Chantry A. Inactivation of smad-transforming growth factor beta signaling by Ca(2+)-calmodulin-dependent protein kinase II. Mol Cell Biol 2000;20(21):8103–11.
  • McGowan TA, Madesh M, Zhu Y, Wang L, Russo M, Deelman L, et al. TGF-beta-induced Ca(2+) influx involves the type III IP(3) receptor and regulates actin cytoskeleton. Am J Physiol Renal Physiol 2002;282(5):F910–20.
  • Xie T, Chen S, Hao J, Wu P, Gu X, Wei H, et al. Roles of calcium signaling in cancer metastasis to bone. Explor Target Antitumor Ther 2022;3(4):445–62.
  • Xu J, Yang Y, Xie R, Liu J, Nie X, An J, et al. The NCX1/TRPC6 complex mediates TGFβ-driven migration and invasion of human hepatocellular carcinoma cells. Cancer Res 2018 ;78(10):2564–76.
  • Eskandari N, Senyuk V, Moore J, Kalik Z, Luan Q, Papautsky I, et al. Molecular activation of the Kv11.1 channel reprograms EMT in colon cancer by inhibiting TGFβ signaling via activation of calcineurin. Cancers (Basel) 2021;13(23):6025.
  • Karthikeyan A, Priyakumar UD. Artificial intelligence: machine learning for chemical sciences. J Chem Sci (Bangalore) 2022;134(1):2.
  • Peters DM, Vadász I, Wujak L, Wygrecka M, Olschewski A, Becker C, et al. TGF-β directs trafficking of the epithelial sodium channel ENaC which has implications for ion and fluid transport in acute lung injury. Proc Natl Acad Sci U S A 2014;111(3):E374–83.
  • Raghuwanshi S, Dahariya S, Sharma DS, Kovuru N, Sahu I, Gutti RK. RUNX1 and TGF-β signaling cross talk regulates Ca2+ ion channels expression and activity during megakaryocyte development. FEBS J 2020;287(24):5411–38.
  • Wang H, Li M, Lin PH, Yao Q, Chen C. Fluid shear stress regulates the expression of TGF-beta1 and its signaling molecules in mouse embryo mesenchymal progenitor cells. J Surg Res 2008;150(2):266–70.
  • Walshe TE, dela Paz NG, D’Amore PA. The role of shear-induced transforming growth factor-β signaling in the endothelium. Arterioscler Thromb Vasc Biol 2013;33(11):2608–17.
  • Zhang YE. Mechanistic insight into contextual TGF-β signaling. Curr Opin Cell Biol 2018;51:1–7.
  • Cockerill M, Rigozzi MK, Terentjev EM. Mechanosensitivity of the 2nd kind: TGF-β mechanism of cell sensing the substrate stiffness. PLoS One 2015;10(10):e0139959.
  • Ohno M, Cooke JP, Dzau VJ, Gibbons GH. Fluid shear stress induces endothelial transforming growth factor beta-1 transcription and production. Modulation by potassium channel blockade. J Clin Invest 1995;95(3):1363–9.
  • Jansen KA, Donato DM, Balcioglu HE, Schmidt T, Danen EHJ, Koenderink GH. A guide to mechanobiology: Where biology and physics meet. Biochim Biophys Acta 2015;1853(11 Pt B):3043–52.
  • Chaudhuri PK, Low BC, Lim CT. Mechanobiology of tumor growth. Chem Rev 2018;118(14):6499–515.
  • Nia HT, Munn LL, Jain RK. Physical traits of cancer. Science. 2020;370(6516):eaaz0868.
  • Calibasi Kocal G, Güven S, Foygel K, Goldman A, Chen P, Sengupta S, et al. Dynamic microenvironment induces phenotypic plasticity of esophageal cancer cells under flow. Sci Rep 2016;6:38221.
  • Nia HT, Liu H, Seano G, Datta M, Jones D, Rahbari N, et al. Solid stress and elastic energy as measures of tumour mechanopathology. Nat Biomed Eng 2016;1(1):0004.
  • Broders-Bondon F, Nguyen Ho-Bouldoires TH, Fernandez-Sanchez ME, Farge E. Mechanotransduction in tumor progression: The dark side of the force. J Cell Biol 2018;217(5):1571–87.
  • Chen Y, Ju L, Rushdi M, Ge C, Zhu C. Receptor-mediated cell mechanosensing. Mol Biol Cell 2017;28(23):3134–55.
  • Liu X, Zhang P, Xie C, Sham KWY, Ng SSM, Chen Y, et al. Activation of PTEN by inhibition of TRPV4 suppresses colon cancer development. Cell Death Dis. 2019;10(6):460.
  • Sun Y, Li M, Liu G, Zhang X, Zhi L, Zhao J, et al. The function of Piezo1 in colon cancer metastasis and its potential regulatory mechanism. J Cancer Res Clin Oncol 2020;146(5):1139–52.
  • Li QT, Feng YM, Ke ZH, Qiu MJ, He XX, Wang MM, et al. KCNN4 promotes invasion and metastasis through the MAPK/ERK pathway in hepatocellular carcinoma. J Investig Med 2020 ;68(1):68–74.
  • Rajapakse VN, Luna A, Yamade M, Loman L, Varma S, Sunshine M, et al. CellMinerCDB for integrative cross-database genomics and pharmacogenomics analyses of cancer cell lines. iScience 2018;10:247–64.
  • Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res 2019;47(W1):W556–60.
  • Győrffy B. Integrated analysis of public datasets for the discovery and validation of survival-associated genes in solid tumors. Innovation (Camb) 2024;5(3):100625.
  • Zhao Y, Huang H, Jiang Y, Wei H, Liu P, Wang W, et al. Unusual localization and translocation of TRPV4 protein in cultured ventricular myocytes of the neonatal rat. Eur J Histochem 2012;56(3):e32.
  • Espadas-Álvarez H, Martínez-Rendón J, Larre I, Matamoros-Volante A, Romero-García T, Rosenbaum T, et al. TRPV4 activity regulates nuclear Ca2+ and transcriptional functions of β-catenin in a renal epithelial cell model. J Cell Physiol 2021;236(5):3599–614.
  • Zhang P, Xu J, Zhang H, Liu XY. Identification of TRPV4 as a novel target in invasiveness of colorectal cancer. BMC Cancer 2021;21(1):1264.
  • Li X, Cheng Y, Wang Z, Zhou J, Jia Y, He X, et al. Calcium and TRPV4 promote metastasis by regulating cytoskeleton through the RhoA/ROCK1 pathway in endometrial cancer. Cell Death Dis 2020;11(11):1009.
  • Fang Y, Liu G, Xie C, Qian K, Lei X, Liu Q, et al. Pharmacological inhibition of TRPV4 channel suppresses malignant biological behavior of hepatocellular carcinoma via modulation of ERK signaling pathway. Biomed Pharmacother 2018;101:910–9.
  • Zhang P, Li K, Wang Z, Wu Y, Zhang H, Ma F, et al. Transient receptor potential vanilloid type 4 (TRPV4) promotes tumorigenesis via NFAT4 activation in nasopharyngeal carcinoma. Front Mol Biosci 2022;9:1064366.
  • Lee WH, Choong LY, Jin TH, Mon NN, Chong S, Liew CS, et al. TRPV4 plays a role in breast cancer cell migration via Ca2+-dependent activation of AKT and downregulation of E-cadherin cell cortex protein. Oncogenesis 2017;6(5):e338.
  • Azimi I, Robitaille M, Armitage K, So CL, Milevskiy MJG, Northwood K, et al. Activation of the ion channel TRPV4 induces epithelial to mesenchymal transition in breast cancer cells. Int J Mol Sci 2020;21(24):9417.
  • Jian MY, King JA, Al-Mehdi AB, Liedtke W, Townsley MI. High vascular pressure-induced lung injury requires P450 epoxygenase-dependent activation of TRPV4. Am J Respir Cell Mol Biol 2008;38(4):386–92.
  • Cao S, Anishkin A, Zinkevich NS, Nishijima Y, Korishettar A, Wang Z, et al. Transient receptor potential vanilloid 4 (TRPV4) activation by arachidonic acid requires protein kinase A-mediated phosphorylation. J Biol Chem 2018;293(14):5307–22.
  • Huang YY, Li J, Zhang HR, Bai SW, Yang HY, Shen B, et al. The effect of transient receptor potential vanilloid 4 on the intestinal epithelial barrier and human colonic cells was affected by tyrosine-phosphorylated claudin-7. Biomed Pharmacother 2020;122(109697):109697.
  • Mihara H, Uchida K, Watanabe Y, Nanjo S, Sakumura M, Motoo I, et al. Colonic TRPV4 overexpression is related to constipation severity. BMC Gastroenterol 2023;23(1):13.
  • Méndez-Gómez S, Espadas-Álvarez H, Ramírez-Rodríguez I, Domínguez-Malfavón L, García-Villegas R. The amino-terminal domain of TRPV4 channel is involved in its trafficking to the nucleus. Biochem Biophys Res Commun 2022;592:13–7.
  • Scheraga RG, Southern BD, Grove LM, Olman MA. The role of TRPV4 in regulating innate immune cell function in lung inflammation. Front Immunol 2020;11:1211.
  • Kanugula AK, Adapala RK, Jamaiyar A, Lenkey N, Guarino BD, Liedtke W, et al. Endothelial TRPV4 channels prevent tumor growth and metastasis via modulation of tumor angiogenesis and vascular integrity. Angiogenesis 2021;24(3):647–56.
  • Nishinaka A, Tanaka M, Ohara K, Sugaru E, Shishido Y, Sugiura A, et al. TRPV4 channels promote vascular permeability in retinal vascular disease. Exp Eye Res 2023;228(109405):109405.
  • Saifeddine M, El-Daly M, Mihara K, Bunnett NW, McIntyre P, Altier C, et al. GPCR-mediated EGF receptor transactivation regulates TRPV4 action in the vasculature. Br J Pharmacol 2015;172(10):2493–506.
  • Easson GWD, Savadipour A, Gonzalez C, Guilak F, Tang SY. TRPV4 differentially controls inflammatory cytokine networks during static and dynamic compression of the intervertebral disc. JOR Spine 2023;6(4):e1282.
  • Ahn MS, Eom YW, Oh JE, Cha SK, Park KS, Son JW, et al. Transient receptor potential channel TRPV4 mediates TGF-β1-induced differentiation of human ventricular fibroblasts. Cardiol J 2020 ;27(2):162–70.
  • Woods S, Humphreys PA, Bates N, Richardson SA, Kuba SY, Brooks IR, et al. Regulation of TGFβ signalling by TRPV4 in chondrocytes. Cells 2021;10(4):726.
  • Baratchi S, Knoerzer M, Khoshmanesh K, Mitchell A, McIntyre P. Shear stress regulates TRPV4 channel clustering and translocation from adherens junctions to the basal membrane. Sci Rep 2017;7(1):15942.
  • Thoppil RJ, Cappelli HC, Adapala RK, Kanugula AK, Paruchuri S, Thodeti CK. TRPV4 channels regulate tumor angiogenesis via modulation of Rho/Rho kinase pathway. Oncotarget 2016;7(18):25849–61.
  • Endesh N, Chuntharpursat-Bon E, Revill C, Yuldasheva NY, Futers TS, Parsonage G, et al. Independent endothelial functions of PIEZO1 and TRPV4 in hepatic portal vein and predominance of PIEZO1 in mechanical and osmotic stress. Liver Int. 2023 ;43(9):2026–38.
  • Seccareccia D. Cancer-related hypercalcemia. Can Fam Physician 2010;56(3):244–6, e90–2.
  • Thoppil RJ, Adapala RK, Cappelli HC, Kondeti V, Dudley AC, Gary Meszaros J, et al. TRPV4 channel activation selectively inhibits tumor endothelial cell proliferation. Sci Rep 2015;5(1):14257.
  • Antoniazzi CT de D, Ruviaro NA, Peres DS, Rodrigues P, Viero FT, Trevisan G. Targeting TRPV4 channels for cancer pain relief. Cancers (Basel) [Internet]. 2024;16(9). Available from: http://dx.doi.org/10.3390/cancers16091703

Mechanosensitive TRPV4 Trafficking Drives TGF-Β-Mediated Mesenchymal Transition in Colorectal Cancer

Year 2025, Volume: 9 Issue: 1, 218 - 229, 31.01.2025
https://doi.org/10.30621/jbachs.1606073

Abstract

Project Number

DEU- 2020.KB.SAG.043 and TUBITAK-122R090

References

  • Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA Cancer J Clin 2024;74(1):12–49.
  • Huang Y, Hong W, Wei X. The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis. J Hematol Oncol 2022;15(1):129.
  • Shibue T, Weinberg RA. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat Rev Clin Oncol 2017;14(10):611–29.
  • Ren H, Bösch F, Pretzsch E, Jacob S, Westphalen CB, Walter Holch J, et al. Identification of an EMT-related gene signature predicting recurrence in stage II/III colorectal cancer: A retrospective study in 1780 patients. Ann Surg 2022;276(5):897–904.
  • van Staalduinen J, Baker D, Ten Dijke P, van Dam H. Epithelial-mesenchymal-transition-inducing transcription factors: new targets for tackling chemoresistance in cancer? Oncogene. 2018;37(48):6195–211.
  • Kim BG, Malek E, Choi SH, Ignatz-Hoover JJ, Driscoll JJ. Novel therapies emerging in oncology to target the TGF-β pathway. J Hematol Oncol 2021;14(1):55.
  • Fasano M, Pirozzi M, Miceli CC, Cocule M, Caraglia M, Boccellino M, et al. TGF-β modulated pathways in colorectal cancer: New potential therapeutic opportunities. Int J Mol Sci. 2024 ;25(13):7400.
  • Lee JM, Dedhar S, Kalluri R, Thompson EW. The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol 2006;172(7):973–81.
  • Roger S, Besson P, Le Guennec JY. Involvement of a novel fast inward sodium current in the invasion capacity of a breast cancer cell line. Biochim Biophys Acta 2003;1616(2):107–11.
  • Payne SL, Levin M, Oudin MJ. Bioelectric control of metastasis in solid tumors. Bioelectricity 2019;1(3):114–30.
  • Zhou M, Zheng M, Zhou X, Tian S, Yang X, Ning Y, et al. The roles of connexins and gap junctions in the progression of cancer. Cell Commun Signal 2023;21(1):8.
  • Chernet B, Levin M. Endogenous voltage potentials and the microenvironment: Bioelectric signals that reveal, induce and normalize cancer. J Clin Exp Oncol [Internet]. 2013;Suppl 1(01). Available from: http://dx.doi.org/10.4172/2324-9110.S1-002
  • Zhang M, Li T, Zhu J, Tuo B, Liu X. Physiological and pathophysiological role of ion channels and transporters in the colorectum and colorectal cancer. J Cell Mol Med. 2020;24(17):9486–94.
  • Zhang L, Gu H, Li X, Wang Y, Yao S, Chen X, et al. Pathophysiological role of ion channels and transporters in hepatocellular carcinoma. Cancer Gene Ther 2024;31(11):1611–8.
  • Wicks SJ, Lui S, Abdel-Wahab N, Mason RM, Chantry A. Inactivation of smad-transforming growth factor beta signaling by Ca(2+)-calmodulin-dependent protein kinase II. Mol Cell Biol 2000;20(21):8103–11.
  • McGowan TA, Madesh M, Zhu Y, Wang L, Russo M, Deelman L, et al. TGF-beta-induced Ca(2+) influx involves the type III IP(3) receptor and regulates actin cytoskeleton. Am J Physiol Renal Physiol 2002;282(5):F910–20.
  • Xie T, Chen S, Hao J, Wu P, Gu X, Wei H, et al. Roles of calcium signaling in cancer metastasis to bone. Explor Target Antitumor Ther 2022;3(4):445–62.
  • Xu J, Yang Y, Xie R, Liu J, Nie X, An J, et al. The NCX1/TRPC6 complex mediates TGFβ-driven migration and invasion of human hepatocellular carcinoma cells. Cancer Res 2018 ;78(10):2564–76.
  • Eskandari N, Senyuk V, Moore J, Kalik Z, Luan Q, Papautsky I, et al. Molecular activation of the Kv11.1 channel reprograms EMT in colon cancer by inhibiting TGFβ signaling via activation of calcineurin. Cancers (Basel) 2021;13(23):6025.
  • Karthikeyan A, Priyakumar UD. Artificial intelligence: machine learning for chemical sciences. J Chem Sci (Bangalore) 2022;134(1):2.
  • Peters DM, Vadász I, Wujak L, Wygrecka M, Olschewski A, Becker C, et al. TGF-β directs trafficking of the epithelial sodium channel ENaC which has implications for ion and fluid transport in acute lung injury. Proc Natl Acad Sci U S A 2014;111(3):E374–83.
  • Raghuwanshi S, Dahariya S, Sharma DS, Kovuru N, Sahu I, Gutti RK. RUNX1 and TGF-β signaling cross talk regulates Ca2+ ion channels expression and activity during megakaryocyte development. FEBS J 2020;287(24):5411–38.
  • Wang H, Li M, Lin PH, Yao Q, Chen C. Fluid shear stress regulates the expression of TGF-beta1 and its signaling molecules in mouse embryo mesenchymal progenitor cells. J Surg Res 2008;150(2):266–70.
  • Walshe TE, dela Paz NG, D’Amore PA. The role of shear-induced transforming growth factor-β signaling in the endothelium. Arterioscler Thromb Vasc Biol 2013;33(11):2608–17.
  • Zhang YE. Mechanistic insight into contextual TGF-β signaling. Curr Opin Cell Biol 2018;51:1–7.
  • Cockerill M, Rigozzi MK, Terentjev EM. Mechanosensitivity of the 2nd kind: TGF-β mechanism of cell sensing the substrate stiffness. PLoS One 2015;10(10):e0139959.
  • Ohno M, Cooke JP, Dzau VJ, Gibbons GH. Fluid shear stress induces endothelial transforming growth factor beta-1 transcription and production. Modulation by potassium channel blockade. J Clin Invest 1995;95(3):1363–9.
  • Jansen KA, Donato DM, Balcioglu HE, Schmidt T, Danen EHJ, Koenderink GH. A guide to mechanobiology: Where biology and physics meet. Biochim Biophys Acta 2015;1853(11 Pt B):3043–52.
  • Chaudhuri PK, Low BC, Lim CT. Mechanobiology of tumor growth. Chem Rev 2018;118(14):6499–515.
  • Nia HT, Munn LL, Jain RK. Physical traits of cancer. Science. 2020;370(6516):eaaz0868.
  • Calibasi Kocal G, Güven S, Foygel K, Goldman A, Chen P, Sengupta S, et al. Dynamic microenvironment induces phenotypic plasticity of esophageal cancer cells under flow. Sci Rep 2016;6:38221.
  • Nia HT, Liu H, Seano G, Datta M, Jones D, Rahbari N, et al. Solid stress and elastic energy as measures of tumour mechanopathology. Nat Biomed Eng 2016;1(1):0004.
  • Broders-Bondon F, Nguyen Ho-Bouldoires TH, Fernandez-Sanchez ME, Farge E. Mechanotransduction in tumor progression: The dark side of the force. J Cell Biol 2018;217(5):1571–87.
  • Chen Y, Ju L, Rushdi M, Ge C, Zhu C. Receptor-mediated cell mechanosensing. Mol Biol Cell 2017;28(23):3134–55.
  • Liu X, Zhang P, Xie C, Sham KWY, Ng SSM, Chen Y, et al. Activation of PTEN by inhibition of TRPV4 suppresses colon cancer development. Cell Death Dis. 2019;10(6):460.
  • Sun Y, Li M, Liu G, Zhang X, Zhi L, Zhao J, et al. The function of Piezo1 in colon cancer metastasis and its potential regulatory mechanism. J Cancer Res Clin Oncol 2020;146(5):1139–52.
  • Li QT, Feng YM, Ke ZH, Qiu MJ, He XX, Wang MM, et al. KCNN4 promotes invasion and metastasis through the MAPK/ERK pathway in hepatocellular carcinoma. J Investig Med 2020 ;68(1):68–74.
  • Rajapakse VN, Luna A, Yamade M, Loman L, Varma S, Sunshine M, et al. CellMinerCDB for integrative cross-database genomics and pharmacogenomics analyses of cancer cell lines. iScience 2018;10:247–64.
  • Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res 2019;47(W1):W556–60.
  • Győrffy B. Integrated analysis of public datasets for the discovery and validation of survival-associated genes in solid tumors. Innovation (Camb) 2024;5(3):100625.
  • Zhao Y, Huang H, Jiang Y, Wei H, Liu P, Wang W, et al. Unusual localization and translocation of TRPV4 protein in cultured ventricular myocytes of the neonatal rat. Eur J Histochem 2012;56(3):e32.
  • Espadas-Álvarez H, Martínez-Rendón J, Larre I, Matamoros-Volante A, Romero-García T, Rosenbaum T, et al. TRPV4 activity regulates nuclear Ca2+ and transcriptional functions of β-catenin in a renal epithelial cell model. J Cell Physiol 2021;236(5):3599–614.
  • Zhang P, Xu J, Zhang H, Liu XY. Identification of TRPV4 as a novel target in invasiveness of colorectal cancer. BMC Cancer 2021;21(1):1264.
  • Li X, Cheng Y, Wang Z, Zhou J, Jia Y, He X, et al. Calcium and TRPV4 promote metastasis by regulating cytoskeleton through the RhoA/ROCK1 pathway in endometrial cancer. Cell Death Dis 2020;11(11):1009.
  • Fang Y, Liu G, Xie C, Qian K, Lei X, Liu Q, et al. Pharmacological inhibition of TRPV4 channel suppresses malignant biological behavior of hepatocellular carcinoma via modulation of ERK signaling pathway. Biomed Pharmacother 2018;101:910–9.
  • Zhang P, Li K, Wang Z, Wu Y, Zhang H, Ma F, et al. Transient receptor potential vanilloid type 4 (TRPV4) promotes tumorigenesis via NFAT4 activation in nasopharyngeal carcinoma. Front Mol Biosci 2022;9:1064366.
  • Lee WH, Choong LY, Jin TH, Mon NN, Chong S, Liew CS, et al. TRPV4 plays a role in breast cancer cell migration via Ca2+-dependent activation of AKT and downregulation of E-cadherin cell cortex protein. Oncogenesis 2017;6(5):e338.
  • Azimi I, Robitaille M, Armitage K, So CL, Milevskiy MJG, Northwood K, et al. Activation of the ion channel TRPV4 induces epithelial to mesenchymal transition in breast cancer cells. Int J Mol Sci 2020;21(24):9417.
  • Jian MY, King JA, Al-Mehdi AB, Liedtke W, Townsley MI. High vascular pressure-induced lung injury requires P450 epoxygenase-dependent activation of TRPV4. Am J Respir Cell Mol Biol 2008;38(4):386–92.
  • Cao S, Anishkin A, Zinkevich NS, Nishijima Y, Korishettar A, Wang Z, et al. Transient receptor potential vanilloid 4 (TRPV4) activation by arachidonic acid requires protein kinase A-mediated phosphorylation. J Biol Chem 2018;293(14):5307–22.
  • Huang YY, Li J, Zhang HR, Bai SW, Yang HY, Shen B, et al. The effect of transient receptor potential vanilloid 4 on the intestinal epithelial barrier and human colonic cells was affected by tyrosine-phosphorylated claudin-7. Biomed Pharmacother 2020;122(109697):109697.
  • Mihara H, Uchida K, Watanabe Y, Nanjo S, Sakumura M, Motoo I, et al. Colonic TRPV4 overexpression is related to constipation severity. BMC Gastroenterol 2023;23(1):13.
  • Méndez-Gómez S, Espadas-Álvarez H, Ramírez-Rodríguez I, Domínguez-Malfavón L, García-Villegas R. The amino-terminal domain of TRPV4 channel is involved in its trafficking to the nucleus. Biochem Biophys Res Commun 2022;592:13–7.
  • Scheraga RG, Southern BD, Grove LM, Olman MA. The role of TRPV4 in regulating innate immune cell function in lung inflammation. Front Immunol 2020;11:1211.
  • Kanugula AK, Adapala RK, Jamaiyar A, Lenkey N, Guarino BD, Liedtke W, et al. Endothelial TRPV4 channels prevent tumor growth and metastasis via modulation of tumor angiogenesis and vascular integrity. Angiogenesis 2021;24(3):647–56.
  • Nishinaka A, Tanaka M, Ohara K, Sugaru E, Shishido Y, Sugiura A, et al. TRPV4 channels promote vascular permeability in retinal vascular disease. Exp Eye Res 2023;228(109405):109405.
  • Saifeddine M, El-Daly M, Mihara K, Bunnett NW, McIntyre P, Altier C, et al. GPCR-mediated EGF receptor transactivation regulates TRPV4 action in the vasculature. Br J Pharmacol 2015;172(10):2493–506.
  • Easson GWD, Savadipour A, Gonzalez C, Guilak F, Tang SY. TRPV4 differentially controls inflammatory cytokine networks during static and dynamic compression of the intervertebral disc. JOR Spine 2023;6(4):e1282.
  • Ahn MS, Eom YW, Oh JE, Cha SK, Park KS, Son JW, et al. Transient receptor potential channel TRPV4 mediates TGF-β1-induced differentiation of human ventricular fibroblasts. Cardiol J 2020 ;27(2):162–70.
  • Woods S, Humphreys PA, Bates N, Richardson SA, Kuba SY, Brooks IR, et al. Regulation of TGFβ signalling by TRPV4 in chondrocytes. Cells 2021;10(4):726.
  • Baratchi S, Knoerzer M, Khoshmanesh K, Mitchell A, McIntyre P. Shear stress regulates TRPV4 channel clustering and translocation from adherens junctions to the basal membrane. Sci Rep 2017;7(1):15942.
  • Thoppil RJ, Cappelli HC, Adapala RK, Kanugula AK, Paruchuri S, Thodeti CK. TRPV4 channels regulate tumor angiogenesis via modulation of Rho/Rho kinase pathway. Oncotarget 2016;7(18):25849–61.
  • Endesh N, Chuntharpursat-Bon E, Revill C, Yuldasheva NY, Futers TS, Parsonage G, et al. Independent endothelial functions of PIEZO1 and TRPV4 in hepatic portal vein and predominance of PIEZO1 in mechanical and osmotic stress. Liver Int. 2023 ;43(9):2026–38.
  • Seccareccia D. Cancer-related hypercalcemia. Can Fam Physician 2010;56(3):244–6, e90–2.
  • Thoppil RJ, Adapala RK, Cappelli HC, Kondeti V, Dudley AC, Gary Meszaros J, et al. TRPV4 channel activation selectively inhibits tumor endothelial cell proliferation. Sci Rep 2015;5(1):14257.
  • Antoniazzi CT de D, Ruviaro NA, Peres DS, Rodrigues P, Viero FT, Trevisan G. Targeting TRPV4 channels for cancer pain relief. Cancers (Basel) [Internet]. 2024;16(9). Available from: http://dx.doi.org/10.3390/cancers16091703
There are 66 citations in total.

Details

Primary Language English
Subjects Cell Metabolism
Journal Section Research Article
Authors

Caner Karaca 0000-0002-9016-3908

Yasemin Başbınar 0000-0001-9439-2217

Project Number DEU- 2020.KB.SAG.043 and TUBITAK-122R090
Publication Date January 31, 2025
Submission Date December 23, 2024
Acceptance Date January 12, 2025
Published in Issue Year 2025 Volume: 9 Issue: 1

Cite

APA Karaca, C., & Başbınar, Y. (2025). Mechanosensitive TRPV4 Trafficking Drives TGF-Β-Mediated Mesenchymal Transition in Colorectal Cancer. Journal of Basic and Clinical Health Sciences, 9(1), 218-229. https://doi.org/10.30621/jbachs.1606073
AMA Karaca C, Başbınar Y. Mechanosensitive TRPV4 Trafficking Drives TGF-Β-Mediated Mesenchymal Transition in Colorectal Cancer. JBACHS. January 2025;9(1):218-229. doi:10.30621/jbachs.1606073
Chicago Karaca, Caner, and Yasemin Başbınar. “Mechanosensitive TRPV4 Trafficking Drives TGF-Β-Mediated Mesenchymal Transition in Colorectal Cancer”. Journal of Basic and Clinical Health Sciences 9, no. 1 (January 2025): 218-29. https://doi.org/10.30621/jbachs.1606073.
EndNote Karaca C, Başbınar Y (January 1, 2025) Mechanosensitive TRPV4 Trafficking Drives TGF-Β-Mediated Mesenchymal Transition in Colorectal Cancer. Journal of Basic and Clinical Health Sciences 9 1 218–229.
IEEE C. Karaca and Y. Başbınar, “Mechanosensitive TRPV4 Trafficking Drives TGF-Β-Mediated Mesenchymal Transition in Colorectal Cancer”, JBACHS, vol. 9, no. 1, pp. 218–229, 2025, doi: 10.30621/jbachs.1606073.
ISNAD Karaca, Caner - Başbınar, Yasemin. “Mechanosensitive TRPV4 Trafficking Drives TGF-Β-Mediated Mesenchymal Transition in Colorectal Cancer”. Journal of Basic and Clinical Health Sciences 9/1 (January 2025), 218-229. https://doi.org/10.30621/jbachs.1606073.
JAMA Karaca C, Başbınar Y. Mechanosensitive TRPV4 Trafficking Drives TGF-Β-Mediated Mesenchymal Transition in Colorectal Cancer. JBACHS. 2025;9:218–229.
MLA Karaca, Caner and Yasemin Başbınar. “Mechanosensitive TRPV4 Trafficking Drives TGF-Β-Mediated Mesenchymal Transition in Colorectal Cancer”. Journal of Basic and Clinical Health Sciences, vol. 9, no. 1, 2025, pp. 218-29, doi:10.30621/jbachs.1606073.
Vancouver Karaca C, Başbınar Y. Mechanosensitive TRPV4 Trafficking Drives TGF-Β-Mediated Mesenchymal Transition in Colorectal Cancer. JBACHS. 2025;9(1):218-29.