Araştırma Makalesi
BibTex RIS Kaynak Göster

X-Ray Cihazına Benzeyen Kan-Beyin Bariyerlerinin Çalışma Prensiplerini Açıklamaya Doğru: Bir Nörofizik Hipotez

Yıl 2023, , 42 - 46, 31.01.2023
https://doi.org/10.16899/jcm.1203348

Öz

Amaç: Kan-beyin bariyeri, nörofiziksel temelde elektromanyetik bir mekanizmadır. Bu çalışmada kan-beyin bariyerini, ona birçok yönden benzeyen X-Ray cihazı ile karşılaştırdık.
Gereç ve Yöntem: On sıçanın derin temporal korteks bölümlerinden beyin örnekleri topladık. Daha sonra glial fibriler asidik protein (GFAP) tekniği ile boyadık. Akabinde kan-beyin bariyerlerinin mimari yapılarını görselleştirdik ve X-ray cihazlarıyla karşılaştırdık.
Bulgular: X-ray cihazında tüp kan-beyin bariyerini oluşturan arterioller ile elektrik akımını sağlayan ve akımın yönünü belirleyen anot-katot; damarları çevreleyen astrositlere, damarlar için soğutma sistemi örevi gören beyin omurilik sıvısına ve katottan damarda akan parçacıklara yayılan elektronlara karşılık gelir.
Sonuç: Kan-beyin bariyerinin sunduğu mimari yapısı sayesinde yolcu bagajındaki nesneleri görüntüleyen ve barkod numaralarına göre yönlendiren bir X-Ray ve optik okuyucu olarak işlev gördüğünü düşünüyoruz.

Kaynakça

  • 1. W.C. Rontgen. On a new kind of rays. Radiography. 1970;36(428):185-8.
  • 2. Attwood DT. Soft x-rays and extreme ultraviolet radiation: principles and applications. In: Attwood DT, editor. New York Cambridge Univ Press; 2000.
  • 3. Mahringer A, Puris E, Fricker G. Crossing the blood-brain barrier: A review on drug delivery strategies using colloidal carrier systems. Neurochem Int. 2021;147:105017.
  • 4. Daneman R, Prat A. The blood-brain barrier. Cold Spring Harb Perspect Biol. 2015;7(1):a020412.
  • 5. Cheslow L, Alvarez JI. Glial-endothelial crosstalk regulates blood-brain barrier function. Curr Opin Pharmacol. 2016;26:39-46.
  • 6. Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis. 2010;37(1):13-25.
  • 7. Butt AM, Jones HC, Abbott NJ. Electrical resistance across the blood-brain barrier in anaesthetized rats: a developmental study. J Physiol. 1990;429:47-62.
  • 8. MB DHaS. The blood brain-barrier. In: Physiology of the CSF and of the Blood-Brain Barrier. New York CRC. 1995:49-91.
  • 9. Shapey J, Toma A, Saeed SR. Physiology of cerebrospinal fluid circulation. Curr Opin Otolaryngol Head Neck Surg. 2019;27(5):326-33.
  • 10. Nakada T, Kwee IL. Fluid Dynamics Inside the Brain Barrier: Current Concept of Interstitial Flow, Glymphatic Flow, and Cerebrospinal Fluid Circulation in the Brain. Neuroscientist. 2019;25(2):155-66.
  • 11. Kazakos EI, Kountouras J, Polyzos SA, Deretzi G. Novel aspects of defensins' involvement in virus-induced autoimmunity in the central nervous system. Med Hypotheses. 2017;102:33-6.
  • 12. de Laurentis C, Cristaldi P, Arighi A, Cavandoli C, Trezza A, Sganzerla EP, et al. Role of aquaporins in hydrocephalus: what do we know and where do we stand? A systematic review. J Neurol. 2020.
  • 13. Ignatyev K, Munro PRT, Chana D, Speller RD, Olivo A. A New Generation of X-ray Baggage Scanners Based on a Different Physical Principle. Materials (Basel). 2011;4(10):1846-60.

Toward to Explain of Working Principles of Blood-Brain Barriers Like X-Ray Devices: A Neurophysical Hypothesis

Yıl 2023, , 42 - 46, 31.01.2023
https://doi.org/10.16899/jcm.1203348

Öz

Objective: The blood-brain barrier is an electromagnetic mechanism on a neurophysical basis. In this study, we compared the X-Ray device, which is similar to the blood-brain barrier in many ways.
Material and Methods: We collected brain samples from deep temporal cortex sections of ten rats, stained them via the glial fibrillary acidic protein (GFAP) technique, visualized the architectural structures of the blood-brain barriers, and compared them with X-ray devices.
Results: With the arterioles forming the tube blood-brain barrier in the X-ray device, the anode-cathode that provides the electric current and determines the direction of the current flow corresponds to the astrocytes surrounding the anode-cathode vessel, the cooling system to the cerebrospinal fluid circulating the vessel, and the electrons emitted from the cathode to the particles flowing in the vessel.
Conclusion: With the architecture presented by the blood-brain barrier, we envision it functioning as an X-Ray and optical reader that display objects in passenger baggage and direct them according to barcode numbers.

Kaynakça

  • 1. W.C. Rontgen. On a new kind of rays. Radiography. 1970;36(428):185-8.
  • 2. Attwood DT. Soft x-rays and extreme ultraviolet radiation: principles and applications. In: Attwood DT, editor. New York Cambridge Univ Press; 2000.
  • 3. Mahringer A, Puris E, Fricker G. Crossing the blood-brain barrier: A review on drug delivery strategies using colloidal carrier systems. Neurochem Int. 2021;147:105017.
  • 4. Daneman R, Prat A. The blood-brain barrier. Cold Spring Harb Perspect Biol. 2015;7(1):a020412.
  • 5. Cheslow L, Alvarez JI. Glial-endothelial crosstalk regulates blood-brain barrier function. Curr Opin Pharmacol. 2016;26:39-46.
  • 6. Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis. 2010;37(1):13-25.
  • 7. Butt AM, Jones HC, Abbott NJ. Electrical resistance across the blood-brain barrier in anaesthetized rats: a developmental study. J Physiol. 1990;429:47-62.
  • 8. MB DHaS. The blood brain-barrier. In: Physiology of the CSF and of the Blood-Brain Barrier. New York CRC. 1995:49-91.
  • 9. Shapey J, Toma A, Saeed SR. Physiology of cerebrospinal fluid circulation. Curr Opin Otolaryngol Head Neck Surg. 2019;27(5):326-33.
  • 10. Nakada T, Kwee IL. Fluid Dynamics Inside the Brain Barrier: Current Concept of Interstitial Flow, Glymphatic Flow, and Cerebrospinal Fluid Circulation in the Brain. Neuroscientist. 2019;25(2):155-66.
  • 11. Kazakos EI, Kountouras J, Polyzos SA, Deretzi G. Novel aspects of defensins' involvement in virus-induced autoimmunity in the central nervous system. Med Hypotheses. 2017;102:33-6.
  • 12. de Laurentis C, Cristaldi P, Arighi A, Cavandoli C, Trezza A, Sganzerla EP, et al. Role of aquaporins in hydrocephalus: what do we know and where do we stand? A systematic review. J Neurol. 2020.
  • 13. Ignatyev K, Munro PRT, Chana D, Speller RD, Olivo A. A New Generation of X-ray Baggage Scanners Based on a Different Physical Principle. Materials (Basel). 2011;4(10):1846-60.
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sağlık Kurumları Yönetimi
Bölüm Orjinal Araştırma
Yazarlar

Mehmet Aydin 0000-0002-0383-9739

Mustafa Can Güler 0000-0001-8588-1035

Canan Atalay Bu kişi benim 0000-0002-4859-4616

Osman Nuri Keleş 0000-0001-7740-8248

Yayımlanma Tarihi 31 Ocak 2023
Kabul Tarihi 26 Aralık 2022
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

AMA Aydin M, Güler MC, Atalay C, Keleş ON. Toward to Explain of Working Principles of Blood-Brain Barriers Like X-Ray Devices: A Neurophysical Hypothesis. J Contemp Med. Ocak 2023;13(1):42-46. doi:10.16899/jcm.1203348