Derleme
BibTex RIS Kaynak Göster

SARS, MERS ve COVID-19 Üzerine Karşılaştırmalı Bir Analiz

Yıl 2020, , 464 - 470, 30.09.2020
https://doi.org/10.16899/jcm.769787

Öz

Şiddetli Akut Solunum Sendromu 2 (SARS-CoV-2 / COVID-19), şimdiden olmasa da yüzyılın pandemisi olma yolunda ilerliyor. Bir koronavirüs olarak, özellikle bağışıklık sistemi zayıflamış olanlar için ciddi solunum yolu hastalığına neden olduğu bilinmektedir. Şiddetli Akut Solunum Sendromu (SARS-CoV) ve Orta Doğu Solunum Sendromu (MERS-CoV), birçok ülkede binlerce kişiyi enfekte eden geçmiş koronavirüslerin en dikkate değer olanlarıdır. Üç virüs de zoonotik bir kökene sahip, ağırlıklı olarak koronavirüsün doğal rezervuar konaklarından biri olan yarasalardan gelmektedir. Bu nedenle, bu makalenin amacı, üç koronavirüsün de niteliklerini ve özelliklerini karşılaştırmaktır. SARS-CoV, MERS-CoV ve COVID-19, benzer sınıflandırmalarından dolayı birçok viral benzerliği paylaşırken, genetik olarak yakından ilişkili değillerdir. COVID-19, genomunun yaklaşık% 79'unu SARS-COV ile ve sadece yaklaşık% 50'sini MERS-CoV ile paylaşır. SARS-CoV ve SARS-CoV-2 arasındaki en önemli genetik benzerliklerden biri, paylaşılan reseptör proteinleri ACE2'dir. Her üç virüs de aynı baskın insandan insana bulaşma modunu paylaşsa da, solunum damlacıkları, SARS-CoV-2 diğer ikisinden çok daha yüksek bir enfeksiyon oranına sahiptir. Aerosol ve asimptotik iletim, COVID-19'un patlayıcı bulaşıcılığı için önde gelen bir faktör olabilir. Şu anda, sosyal mesafe, etkili bir aşı geliştirilinceye kadar COVID-19 ile mücadele için tek etkili önleyici stratejidir. Bir nükleotid analog ilaç olan Remdesivir, hastalar için iyileşme süresini kısaltmada pozitiflik gösteriyor. Nekahet plazma tedavisi tedavisi de bazı kritik hastalarda ümit verici bir iyileşme göstermiştir.

Kaynakça

  • References 1. Who.int [homepage on the Internet]. World Health Organization [updated 30 June 2020; cited 11 July 2020]. Available from www.who.int
  • 2. Zhou, P., Yang, X., Wang, X. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579: 270–273.
  • 3. Na Zhu, Ph.D., Dingyu Zhang, M.D., Wenling Wang, Ph.D., Xingwang Li, M.D., et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med 2020; 382:727-733
  • 4. Ksiazek TG, Erdman D, Goldsmith CS, et al. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 2003;348:1953-1966.
  • 5. Jin YH, Cai L, Cheng ZS, et al. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Mil Med Res. 2020;7(1):4.
  • 6. Thomas G. Ksiazek, D.V.M., Ph.D., Dean Erdman, Dr.P.H., et al. A Novel Coronavirus Associated with Severe Acute Respiratory Syndrome. N Engl J Med 2003;348:1953-66.
  • 7. John Ziebuhr. Molecular biology of severe acute respiratory syndrome coronavirus. Curr Opin Microbiol 2004;7:412-419.
  • 8. Cascella M, Rajnik M, Cuomo A, et al. Features, Evaluation and Treatment Coronavirus (COVID-19) [Updated 2020 Jul 4]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020
  • 9. Jhu.edu [homepage on the internet]. John Hopkins University of Medicine[Updated 11 July, 2020; cited 11 July 2020] Available from: https://coronavirus.jhu.edu/map.html.
  • 10. Joseph S.M. Peiris, M.D., D.Phil., Kwok Y. Yuen, M.D., Albert D.M.E. Osterhaus, Ph.D., and Klaus Stöhr, Ph.D. The Severe Acute Respiratory Syndrome. N Engl J Med 2003;349:2431-41.
  • 11. Y. Guan, B. J. Zheng, Y. Q. He, X. L. Liu, Z. X. Zhuang, et al. Isolation and Characterization of Viruses Related to the SARS Coronavirus from Animals in Southern China. Science 2003; Vol. 302, Issue 5643,276-278
  • 12. D S C Hui, M C H Chan, A K Wu, P C Ng. Severe acute respiratory syndrome (SARS): epidemiology and clinical features. Med J 2004;80:373–381
  • 13. Cdc.gov[homepage on the internet] Centers for Disease Control and Prevention.[Updated 30 June 2020; cited 11 july 2020] Available at www.cdc.gov
  • 14. Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 2012;367(19):1814-1820.
  • 15. www.medicalnewstoday.com [homepage in the internet] Medical News Today. [Updated 10 April 2020; cited 11 July 2020] Available at www.medicalnewstoday.com/articles/how-do-sars-and-mers-compare-with-covid-19
  • 16. Luo C,Wang N,Yang X,Liu H,Zhang W,Li B,Hu B,Peng C,Geng Q,Zhu G,Li F,Shi Z. Discovery of novel bat coronaviruses in South China that use the same receptor as Middle East respiratory syndrome coronavirus. JVirol 2018; 92:e00116-18.
  • 17. Goldstein SA, Weiss SR. Origins and pathogenesis of Middle East respiratory syndrome-associated coronavirus: recent advances. F1000Res. 2017;6:1628.
  • 18. Victor Max Corman, Ndapewa Laudika Ithete, et al. Rooting the Phylogenetic Tree of Middle East Respiratory Syndrome Coronavirus by Characterization of a Conspecific Virus from an African Bat. J Virol 2014; 88 (19) 11297-11303.
  • 19. Memish ZA, Cotten M, Meyer B, Watson SJ, Alsahafi AJ, et al. Human infection with MERS coronavirus after exposure to infected camels, Saudi Arabia, 2013. Emerg Infect Dis. 2014 Jun;20(6):1012-5.
  • 20. Raj VS, Farag EA, Reusken CB, Lamers MM, et al. Isolation of MERS coronavirus from a dromedary camel, Qatar, 2014. Emerg Infect Dis. 2014 Aug;20(8):1339-42.
  • 21. Banerjee A, Kulcsar K, Misra V, Frieman M, Mossman K. Bats and Coronaviruses. Viruses 2019; 11(1):41.
  • 22. Zhou, P., Yang, X., Wang, X. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579, 270–273
  • 23. Li W, Shi Z, Yu M, et al. Bats are natural reservoirs of SARS-like coronaviruses. Science 2005;310(5748):676-679.
  • 24. Tutsirayi Murahwa, Harris Onywera, Fredrick Nindo et al. SARS-CoV-2 Origins and Evolution: Insights from Coronaviruses Recombination and Phylogenetic Analysis, 07 July 2020, PREPRINT (Version 2) available at Research Square [+https://doi.org/10.21203/rs.3.rs-30068/v2+]
  • 25. Lu, Roujian & Zhao, Xiang & Li, Juan & Niu, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020; 395: 565–74
  • 26. D.Paraskevis, E.G.Kostaki, G. Magiorkinisa, et al. Full-genome evolutionary analysis of the novel coronavirus (2019-nCoV) rejects the hypothesis of emergence as a result of a recent recombination event. ELS ERG B S 2020; 79: 104212
  • 27. Kangpeng Xiao, Junqiong Zhai, Yaoyu Feng, et al.Isolation and Characterization of 2019-nCoV-like Coronavirus from Malayan Pangolins. bioRxiv 2020; [PREPRINT]
  • 28. Andersen, K.G., Rambaut, A., Lipkin, W.I. et al. The proximal origin of SARS-CoV-2. Nat Med 2020; 26: 450–452.
  • 29. Gelderblom HR. Structure and Classification of Viruses. In: Baron S, editor. Medical Microbiology. 4th edition. Galveston (TX): University of Texas Medical Branch at Galveston; 1996. Chapter 41.
  • 30. Perlman, S., Netland, J. Coronaviruses post-SARS: update on replication and pathogenesis. Nat Rev Microbiol 2009; 7: 439–450. 31. Fang Li. Structure, Function, and Evolution of Coronavirus Spike Proteins. Ann Rev Virol 2016; 3:1, 237-261
  • 32. Fehr A.R., Perlman S. (2015) Coronaviruses: An Overview of Their Replication and Pathogenesis. In: Maier H., Bickerton E., Britton P. (eds) Coronaviruses. Methods in Molecular Biology, vol 1282. Humana Press, New York, NY
  • 33. Kim JM, Chung YS, Jo HJ, Lee NJ, et al. Identification of Coronavirus Isolated from a Patient in Korea with COVID-19. Osong Public Health Res Perspect. 2020 Feb;11(1):3-7.
  • 34. Chung YS, Kim JM, Man Kim H, Park KR, et al. Genetic Characterization of Middle East Respiratory Syndrome Coronavirus, South Korea, 2018. Emerg Infect Dis. 2019 May;25(5):958-962.
  • 35. Satija N, Lal SK. The molecular biology of SARS coronavirus. Ann N Y Acad Sci. 2007 Apr; 1102(1):26-38.
  • 36. N.Petrosillo,G .Viceconte, O. Ergonul, et al. COVID-19, SARS and MERS: are they closely related? Els Erg B S 2020; 26(6): 729-34
  • 37. Kandeil A, Shehata MM, El Shesheny R, Gomaa MR, Ali MA, Kayali G. Complete Genome Sequence of Middle East Respiratory Syndrome Coronavirus Isolated from a Dromedary Camel in Egypt. Genome Announc. 2016 Apr 28;4(2):e00309-16.
  • 38. Wu A, Peng Y, Huang B, et al. Genome Composition and Divergence of the Novel Coronavirus (2019-nCoV) Originating in China. Cell Host Microbe. 2020;27(3):325-328.
  • 39. Li F. Structure, Function, and Evolution of Coronavirus Spike Proteins. Annu Rev Virol. 2016; 3(1):237-261.
  • 40. Ge XY, Li JL, Yang XL, Chmura AA, et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature. 2013; 503(7477):535-8.
  • 41. Wang, N., Shi, X., Jiang, L. et al. Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4. Cell Res 2013;23: 986–993.
  • 42. Wan Y, Shang J, Graham R, et al. Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. J Virol. 2020; 94(7):e00127-20.
  • 43. Nidcd.nih.gov [homepage of the Internet]. National Institute of Deafness and Other Communication Disorders[Updated 13 Sep 2011, cited 11 July 2020]. Available from: https://www.nidcd.nih.gov/health/statistics/what-epidemiology
  • 44. Seto WH, Tsang D, Yung RW, et al. Effectiveness of precautions against droplets and contact in prevention of nosocomial transmission of severe acute respiratory syndrome (SARS). Lancet. 2003; 361(9368):1519-20.
  • 45. Vincent C. C. Cheng, Susanna K. P. Lau, Patrick C. Y. Woo, Kwok Yung Yuen. Severe Acute Respiratory Syndrome Coronavirus as an Agent of Emerging and Reemerging Infection. Clin Microbiol Rev 2007. 20 (4) 660-694
  • 46. Sonja J. Olsen, Ph.D., Hsiao-Ling Chang, M.P.H., et al. Transmission of the Severe Acute Respiratory Syndrome on Aircraft N Engl J Med 2003; 349:2416-2422.
  • 47. Zhong NS, Wong GW. Epidemiology of severe acute respiratory syndrome (SARS): adults and children. Paediatr Respir Rev. 2004; 5(4):270-4.
  • 48. Wong GW, Li AM, Ng PC, Fok TF. Severe acute respiratory syndrome in children. Pediatr Pulmonol. 2003;36(4):261-6.
  • 49. Cheng VC, Lau SK, Woo PC, Yuen KY. Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin Microbiol Rev. 2007 ;20(4):660-94.
  • 50. Gytis Dudas, Luiz Max Carvalho, Andrew Rambaut, Trevor Bedford. MERS-CoV spillover at the camel-human interface. eLife 2018;7:e31257
  • 51. Killerby ME, Biggs HM, Midgley CM, Gerber SI, Watson JT. Middle East Respiratory Syndrome Coronavirus Transmission. Emerg Infect Dis. 2020;26(2):191-198.
  • 52. Bin SY, Heo JY, Song MS, Lee J, et al. Environmental Contamination and Viral Shedding in MERS Patients During MERS-CoV Outbreak in South Korea. Clin Infect Dis. 2016;62(6):755-60.
  • 53. Kim SH, Chang SY, Sung M, et al. Extensive Viable Middle East Respiratory Syndrome (MERS) Coronavirus Contamination in Air and Surrounding Environment in MERS Isolation Wards. Clin Infect Dis. 2016;63(3):363-9.
  • 54. Van Doremalen N , Bushmaker T , Munster V J . Stability of Middle East respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions. Euro Surveill 2013;18(38):pii=20590
  • 55. Christian Drosten, M.D., Benjamin Meyer, M.Sc., Marcel A. Müller, Ph.D., Victor M. Corman, M.D., et al.Transmission of MERS-Coronavirus in Household Contacts. N Engl J Med 2014; 371:828-835
  • 56. Liu S, Chan T-C, Chu Y-T, Wu JT-S, Geng X, Zhao N, et al. Comparative Epidemiology of Human Infections with Middle East Respiratory Syndrome and Severe Acute Respiratory Syndrome Coronaviruses among Healthcare Personnel. PLoS ONE 2016; 11(3): e0149988.
  • 57. Chen X, Chughtai AA, Dyda A, MacIntyre CR. Comparative epidemiology of Middle East respiratory syndrome coronavirus (MERS-CoV) in Saudi Arabia and South Korea. Emerg Microbes Infect. 2017;6(6):e51.
  • 58. Virlogeux V, Park M, Wu JT, Cowling BJ. Association between Severity of MERS-CoV Infection and Incubation Period. Emerg Infect Dis. 2016; 22(3):526-8.
  • 59. Guo YR, Cao QD, Hong ZS, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status. Mil Med Res. 2020;7(1):11.
  • 60. Qun Li, M.Med., Xuhua Guan, Ph.D., Peng Wu, Ph.D., Xiaoye Wang, M.P.H., et al.Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia. N Engl J Med 2020; 382:1199-1207.
  • 61. Zou L, Ruan F, Huang M, et al. SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. N Engl J Med. 2020;382(12):1177-1179.
  • 62. E. Susan Amirian. Potential fecal transmission of SARS-CoV-2: Current evidence and implications for public health. Int J Infect Dis 2020; 95:363-70
  • 63. Ge H, Wang X, Yuan X, Xiao G, Wang C, Deng T, Yuan Q, Xiao X. The epidemiology and clinical information about COVID-19. Eur J Clin Microbiol Infect Dis. 2020 Jun;39(6):1011-1019.
  • 64. Van Doremalen N, Bushmaker T, Morris DH, et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N Engl J Med. 2020;382(16):1564-1567.
  • 65. Renyi Zhang, Yixin Li, Annie L. Zhang, et al.Identifying airborne transmission as the dominant route for the spread of COVID-19. P Natl A Sci Usa 2020, 117 (26) 14857-14863.
  • 66. Gao M, Yang L, Chen X, Deng Y, Yang S, Xu H, Chen Z, Gao X. A study on infectivity of asymptomatic SARS-CoV-2 carriers. Respir Med. 2020;169:106026.
  • 67. Bai Y, Yao L, Wei T, et al. Presumed Asymptomatic Carrier Transmission of COVID-19. JAMA. 2020;323(14):1406–1407.
  • 68. Abduljalil JM, Abduljalil BM. Epidemiology, genome, and clinical features of the pandemic SARS-CoV-2: a recent view. New Microbes New Infect. 2020;35:100672.
  • 69. Federman RS. Understanding vaccines: a public imperative. Yale J Biol Med. 2014;87(4):417-22.
  • 70. \Julie Dyall, Christopher M. Coleman, Brit J. Hart, et al. Repurposing of Clinically Developed Drugs for Treatment of Middle East Respiratory Syndrome Coronavirus Infection. Antimicrob Agents Ch 2014; 58(8): 4885-4893.
  • 71. Yu, W C.,D S C Hui, et al. Antiviral Agents and Corticosteroids in the Treatment of Severe Acute Respiratory Syndrome (SARS). Thorax 2004; 59(8):643–645.
  • 72. Khalid M, Al Rabiah F, Khan B, Al Mobeireek A, Butt TS, Al Mutairy E. Ribavirin and interferon-α2b as primary and preventive treatment for Middle East respiratory syndrome coronavirus: a preliminary report of two cases. Antivir Ther. 2015;20(1):87-91.
  • 73. Bell DM; World Health Organization Working Group on International and Community Transmission of SARS. Public health interventions and SARS spread, 2003. Emerg Infect Dis. 2004;10(11):1900-6.
  • 74. Park SW, Jang HW, Choe YH, et al. Avoiding student infection during a Middle East respiratory syndrome (MERS) outbreak: a single medical school experience. Korean J Med Educ. 2016; 28(2):209-17.
  • 75. Derek K Chu, MD, Prof Elie A Akl, MD, Stephanie Duda, MSc, et al. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis. Lancet 2020; 395(10242): 1973-1987.
  • 76. Srivastava N., Saxena S.K. Prevention and Control Strategies for SARS-CoV-2 Infection. In: Saxena S. (eds) Coronavirus Disease 2019 (COVID-19). Medical Virology: From Pathogenesis to Disease Control. Springer, Singapore; 2020. P127–40.
  • 77. Randolph HE, Barreiro LB. Herd Immunity: Understanding COVID-19. Immunity. 2020;52(5):737-741.
  • 78. Nationalgeographic.com. [Homepage on the Internet] National Geographic Society [updated 20 Mar 2020, cited 11 July 2020]; Available from: https://www.nationalgeographic.com/science/2020/03/uk-backed-off-on-herd-immunity-to-beat-coronavirus-we-need-it/

A Comparative Analysis on SARS, MERS and COVID-19

Yıl 2020, , 464 - 470, 30.09.2020
https://doi.org/10.16899/jcm.769787

Öz

The Severe Acute Respiratory Syndrome 2 (SARS-CoV-2/ COVID-19) is on its way to become the pandemic of the century, if not already. As a coronavirus, it is known to cause severe respiratory illness, especially for those with compromised immune systems. The Severe Acute Respiratory Syndrome (SARS-CoV) and The Middle East Respiratory Syndrome (MERS-CoV) are the most notable of past coronaviruses infecting thousands in numerous countries. All three viruses are from a zoonotic origin predominantly from bats, one of the coronavirus’s natural reservoir hosts. Therefore, the purpose of this article is to compare and contrast the attributes and features of all three coronaviruses. While SARS-CoV, MERS-CoV, and COVID-19 share many viral similarities due to their similar classification, they are not as closely related genetically. COVID-19 shares about 79% of its genome with SARS-COV and only about 50% with MERS-CoV. One of the most notable genetic similarities between SARS-CoV and SARS-CoV-2 is their shared receptor protein, ACE2. Although all three viruses share the same dominant mode of human-to-human transmission, respiratory droplets, SARS-CoV-2 seems to have drastically higher infection rates than the other two. Aerosol and asymptotic transmission could be a leading factor for COVID-19’s explosive infectivity. Currently, social distancing seems to be the only effective preventive strategy to tackle COVID-19.

Kaynakça

  • References 1. Who.int [homepage on the Internet]. World Health Organization [updated 30 June 2020; cited 11 July 2020]. Available from www.who.int
  • 2. Zhou, P., Yang, X., Wang, X. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579: 270–273.
  • 3. Na Zhu, Ph.D., Dingyu Zhang, M.D., Wenling Wang, Ph.D., Xingwang Li, M.D., et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med 2020; 382:727-733
  • 4. Ksiazek TG, Erdman D, Goldsmith CS, et al. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 2003;348:1953-1966.
  • 5. Jin YH, Cai L, Cheng ZS, et al. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Mil Med Res. 2020;7(1):4.
  • 6. Thomas G. Ksiazek, D.V.M., Ph.D., Dean Erdman, Dr.P.H., et al. A Novel Coronavirus Associated with Severe Acute Respiratory Syndrome. N Engl J Med 2003;348:1953-66.
  • 7. John Ziebuhr. Molecular biology of severe acute respiratory syndrome coronavirus. Curr Opin Microbiol 2004;7:412-419.
  • 8. Cascella M, Rajnik M, Cuomo A, et al. Features, Evaluation and Treatment Coronavirus (COVID-19) [Updated 2020 Jul 4]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020
  • 9. Jhu.edu [homepage on the internet]. John Hopkins University of Medicine[Updated 11 July, 2020; cited 11 July 2020] Available from: https://coronavirus.jhu.edu/map.html.
  • 10. Joseph S.M. Peiris, M.D., D.Phil., Kwok Y. Yuen, M.D., Albert D.M.E. Osterhaus, Ph.D., and Klaus Stöhr, Ph.D. The Severe Acute Respiratory Syndrome. N Engl J Med 2003;349:2431-41.
  • 11. Y. Guan, B. J. Zheng, Y. Q. He, X. L. Liu, Z. X. Zhuang, et al. Isolation and Characterization of Viruses Related to the SARS Coronavirus from Animals in Southern China. Science 2003; Vol. 302, Issue 5643,276-278
  • 12. D S C Hui, M C H Chan, A K Wu, P C Ng. Severe acute respiratory syndrome (SARS): epidemiology and clinical features. Med J 2004;80:373–381
  • 13. Cdc.gov[homepage on the internet] Centers for Disease Control and Prevention.[Updated 30 June 2020; cited 11 july 2020] Available at www.cdc.gov
  • 14. Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 2012;367(19):1814-1820.
  • 15. www.medicalnewstoday.com [homepage in the internet] Medical News Today. [Updated 10 April 2020; cited 11 July 2020] Available at www.medicalnewstoday.com/articles/how-do-sars-and-mers-compare-with-covid-19
  • 16. Luo C,Wang N,Yang X,Liu H,Zhang W,Li B,Hu B,Peng C,Geng Q,Zhu G,Li F,Shi Z. Discovery of novel bat coronaviruses in South China that use the same receptor as Middle East respiratory syndrome coronavirus. JVirol 2018; 92:e00116-18.
  • 17. Goldstein SA, Weiss SR. Origins and pathogenesis of Middle East respiratory syndrome-associated coronavirus: recent advances. F1000Res. 2017;6:1628.
  • 18. Victor Max Corman, Ndapewa Laudika Ithete, et al. Rooting the Phylogenetic Tree of Middle East Respiratory Syndrome Coronavirus by Characterization of a Conspecific Virus from an African Bat. J Virol 2014; 88 (19) 11297-11303.
  • 19. Memish ZA, Cotten M, Meyer B, Watson SJ, Alsahafi AJ, et al. Human infection with MERS coronavirus after exposure to infected camels, Saudi Arabia, 2013. Emerg Infect Dis. 2014 Jun;20(6):1012-5.
  • 20. Raj VS, Farag EA, Reusken CB, Lamers MM, et al. Isolation of MERS coronavirus from a dromedary camel, Qatar, 2014. Emerg Infect Dis. 2014 Aug;20(8):1339-42.
  • 21. Banerjee A, Kulcsar K, Misra V, Frieman M, Mossman K. Bats and Coronaviruses. Viruses 2019; 11(1):41.
  • 22. Zhou, P., Yang, X., Wang, X. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579, 270–273
  • 23. Li W, Shi Z, Yu M, et al. Bats are natural reservoirs of SARS-like coronaviruses. Science 2005;310(5748):676-679.
  • 24. Tutsirayi Murahwa, Harris Onywera, Fredrick Nindo et al. SARS-CoV-2 Origins and Evolution: Insights from Coronaviruses Recombination and Phylogenetic Analysis, 07 July 2020, PREPRINT (Version 2) available at Research Square [+https://doi.org/10.21203/rs.3.rs-30068/v2+]
  • 25. Lu, Roujian & Zhao, Xiang & Li, Juan & Niu, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020; 395: 565–74
  • 26. D.Paraskevis, E.G.Kostaki, G. Magiorkinisa, et al. Full-genome evolutionary analysis of the novel coronavirus (2019-nCoV) rejects the hypothesis of emergence as a result of a recent recombination event. ELS ERG B S 2020; 79: 104212
  • 27. Kangpeng Xiao, Junqiong Zhai, Yaoyu Feng, et al.Isolation and Characterization of 2019-nCoV-like Coronavirus from Malayan Pangolins. bioRxiv 2020; [PREPRINT]
  • 28. Andersen, K.G., Rambaut, A., Lipkin, W.I. et al. The proximal origin of SARS-CoV-2. Nat Med 2020; 26: 450–452.
  • 29. Gelderblom HR. Structure and Classification of Viruses. In: Baron S, editor. Medical Microbiology. 4th edition. Galveston (TX): University of Texas Medical Branch at Galveston; 1996. Chapter 41.
  • 30. Perlman, S., Netland, J. Coronaviruses post-SARS: update on replication and pathogenesis. Nat Rev Microbiol 2009; 7: 439–450. 31. Fang Li. Structure, Function, and Evolution of Coronavirus Spike Proteins. Ann Rev Virol 2016; 3:1, 237-261
  • 32. Fehr A.R., Perlman S. (2015) Coronaviruses: An Overview of Their Replication and Pathogenesis. In: Maier H., Bickerton E., Britton P. (eds) Coronaviruses. Methods in Molecular Biology, vol 1282. Humana Press, New York, NY
  • 33. Kim JM, Chung YS, Jo HJ, Lee NJ, et al. Identification of Coronavirus Isolated from a Patient in Korea with COVID-19. Osong Public Health Res Perspect. 2020 Feb;11(1):3-7.
  • 34. Chung YS, Kim JM, Man Kim H, Park KR, et al. Genetic Characterization of Middle East Respiratory Syndrome Coronavirus, South Korea, 2018. Emerg Infect Dis. 2019 May;25(5):958-962.
  • 35. Satija N, Lal SK. The molecular biology of SARS coronavirus. Ann N Y Acad Sci. 2007 Apr; 1102(1):26-38.
  • 36. N.Petrosillo,G .Viceconte, O. Ergonul, et al. COVID-19, SARS and MERS: are they closely related? Els Erg B S 2020; 26(6): 729-34
  • 37. Kandeil A, Shehata MM, El Shesheny R, Gomaa MR, Ali MA, Kayali G. Complete Genome Sequence of Middle East Respiratory Syndrome Coronavirus Isolated from a Dromedary Camel in Egypt. Genome Announc. 2016 Apr 28;4(2):e00309-16.
  • 38. Wu A, Peng Y, Huang B, et al. Genome Composition and Divergence of the Novel Coronavirus (2019-nCoV) Originating in China. Cell Host Microbe. 2020;27(3):325-328.
  • 39. Li F. Structure, Function, and Evolution of Coronavirus Spike Proteins. Annu Rev Virol. 2016; 3(1):237-261.
  • 40. Ge XY, Li JL, Yang XL, Chmura AA, et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature. 2013; 503(7477):535-8.
  • 41. Wang, N., Shi, X., Jiang, L. et al. Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4. Cell Res 2013;23: 986–993.
  • 42. Wan Y, Shang J, Graham R, et al. Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. J Virol. 2020; 94(7):e00127-20.
  • 43. Nidcd.nih.gov [homepage of the Internet]. National Institute of Deafness and Other Communication Disorders[Updated 13 Sep 2011, cited 11 July 2020]. Available from: https://www.nidcd.nih.gov/health/statistics/what-epidemiology
  • 44. Seto WH, Tsang D, Yung RW, et al. Effectiveness of precautions against droplets and contact in prevention of nosocomial transmission of severe acute respiratory syndrome (SARS). Lancet. 2003; 361(9368):1519-20.
  • 45. Vincent C. C. Cheng, Susanna K. P. Lau, Patrick C. Y. Woo, Kwok Yung Yuen. Severe Acute Respiratory Syndrome Coronavirus as an Agent of Emerging and Reemerging Infection. Clin Microbiol Rev 2007. 20 (4) 660-694
  • 46. Sonja J. Olsen, Ph.D., Hsiao-Ling Chang, M.P.H., et al. Transmission of the Severe Acute Respiratory Syndrome on Aircraft N Engl J Med 2003; 349:2416-2422.
  • 47. Zhong NS, Wong GW. Epidemiology of severe acute respiratory syndrome (SARS): adults and children. Paediatr Respir Rev. 2004; 5(4):270-4.
  • 48. Wong GW, Li AM, Ng PC, Fok TF. Severe acute respiratory syndrome in children. Pediatr Pulmonol. 2003;36(4):261-6.
  • 49. Cheng VC, Lau SK, Woo PC, Yuen KY. Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin Microbiol Rev. 2007 ;20(4):660-94.
  • 50. Gytis Dudas, Luiz Max Carvalho, Andrew Rambaut, Trevor Bedford. MERS-CoV spillover at the camel-human interface. eLife 2018;7:e31257
  • 51. Killerby ME, Biggs HM, Midgley CM, Gerber SI, Watson JT. Middle East Respiratory Syndrome Coronavirus Transmission. Emerg Infect Dis. 2020;26(2):191-198.
  • 52. Bin SY, Heo JY, Song MS, Lee J, et al. Environmental Contamination and Viral Shedding in MERS Patients During MERS-CoV Outbreak in South Korea. Clin Infect Dis. 2016;62(6):755-60.
  • 53. Kim SH, Chang SY, Sung M, et al. Extensive Viable Middle East Respiratory Syndrome (MERS) Coronavirus Contamination in Air and Surrounding Environment in MERS Isolation Wards. Clin Infect Dis. 2016;63(3):363-9.
  • 54. Van Doremalen N , Bushmaker T , Munster V J . Stability of Middle East respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions. Euro Surveill 2013;18(38):pii=20590
  • 55. Christian Drosten, M.D., Benjamin Meyer, M.Sc., Marcel A. Müller, Ph.D., Victor M. Corman, M.D., et al.Transmission of MERS-Coronavirus in Household Contacts. N Engl J Med 2014; 371:828-835
  • 56. Liu S, Chan T-C, Chu Y-T, Wu JT-S, Geng X, Zhao N, et al. Comparative Epidemiology of Human Infections with Middle East Respiratory Syndrome and Severe Acute Respiratory Syndrome Coronaviruses among Healthcare Personnel. PLoS ONE 2016; 11(3): e0149988.
  • 57. Chen X, Chughtai AA, Dyda A, MacIntyre CR. Comparative epidemiology of Middle East respiratory syndrome coronavirus (MERS-CoV) in Saudi Arabia and South Korea. Emerg Microbes Infect. 2017;6(6):e51.
  • 58. Virlogeux V, Park M, Wu JT, Cowling BJ. Association between Severity of MERS-CoV Infection and Incubation Period. Emerg Infect Dis. 2016; 22(3):526-8.
  • 59. Guo YR, Cao QD, Hong ZS, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status. Mil Med Res. 2020;7(1):11.
  • 60. Qun Li, M.Med., Xuhua Guan, Ph.D., Peng Wu, Ph.D., Xiaoye Wang, M.P.H., et al.Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia. N Engl J Med 2020; 382:1199-1207.
  • 61. Zou L, Ruan F, Huang M, et al. SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. N Engl J Med. 2020;382(12):1177-1179.
  • 62. E. Susan Amirian. Potential fecal transmission of SARS-CoV-2: Current evidence and implications for public health. Int J Infect Dis 2020; 95:363-70
  • 63. Ge H, Wang X, Yuan X, Xiao G, Wang C, Deng T, Yuan Q, Xiao X. The epidemiology and clinical information about COVID-19. Eur J Clin Microbiol Infect Dis. 2020 Jun;39(6):1011-1019.
  • 64. Van Doremalen N, Bushmaker T, Morris DH, et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N Engl J Med. 2020;382(16):1564-1567.
  • 65. Renyi Zhang, Yixin Li, Annie L. Zhang, et al.Identifying airborne transmission as the dominant route for the spread of COVID-19. P Natl A Sci Usa 2020, 117 (26) 14857-14863.
  • 66. Gao M, Yang L, Chen X, Deng Y, Yang S, Xu H, Chen Z, Gao X. A study on infectivity of asymptomatic SARS-CoV-2 carriers. Respir Med. 2020;169:106026.
  • 67. Bai Y, Yao L, Wei T, et al. Presumed Asymptomatic Carrier Transmission of COVID-19. JAMA. 2020;323(14):1406–1407.
  • 68. Abduljalil JM, Abduljalil BM. Epidemiology, genome, and clinical features of the pandemic SARS-CoV-2: a recent view. New Microbes New Infect. 2020;35:100672.
  • 69. Federman RS. Understanding vaccines: a public imperative. Yale J Biol Med. 2014;87(4):417-22.
  • 70. \Julie Dyall, Christopher M. Coleman, Brit J. Hart, et al. Repurposing of Clinically Developed Drugs for Treatment of Middle East Respiratory Syndrome Coronavirus Infection. Antimicrob Agents Ch 2014; 58(8): 4885-4893.
  • 71. Yu, W C.,D S C Hui, et al. Antiviral Agents and Corticosteroids in the Treatment of Severe Acute Respiratory Syndrome (SARS). Thorax 2004; 59(8):643–645.
  • 72. Khalid M, Al Rabiah F, Khan B, Al Mobeireek A, Butt TS, Al Mutairy E. Ribavirin and interferon-α2b as primary and preventive treatment for Middle East respiratory syndrome coronavirus: a preliminary report of two cases. Antivir Ther. 2015;20(1):87-91.
  • 73. Bell DM; World Health Organization Working Group on International and Community Transmission of SARS. Public health interventions and SARS spread, 2003. Emerg Infect Dis. 2004;10(11):1900-6.
  • 74. Park SW, Jang HW, Choe YH, et al. Avoiding student infection during a Middle East respiratory syndrome (MERS) outbreak: a single medical school experience. Korean J Med Educ. 2016; 28(2):209-17.
  • 75. Derek K Chu, MD, Prof Elie A Akl, MD, Stephanie Duda, MSc, et al. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis. Lancet 2020; 395(10242): 1973-1987.
  • 76. Srivastava N., Saxena S.K. Prevention and Control Strategies for SARS-CoV-2 Infection. In: Saxena S. (eds) Coronavirus Disease 2019 (COVID-19). Medical Virology: From Pathogenesis to Disease Control. Springer, Singapore; 2020. P127–40.
  • 77. Randolph HE, Barreiro LB. Herd Immunity: Understanding COVID-19. Immunity. 2020;52(5):737-741.
  • 78. Nationalgeographic.com. [Homepage on the Internet] National Geographic Society [updated 20 Mar 2020, cited 11 July 2020]; Available from: https://www.nationalgeographic.com/science/2020/03/uk-backed-off-on-herd-immunity-to-beat-coronavirus-we-need-it/
Toplam 77 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sağlık Kurumları Yönetimi
Bölüm Derleme
Yazarlar

Atiksh Chandra Bu kişi benim 0000-0003-4509-5616

Sathees Chandra 0000-0002-0702-8925

Yayımlanma Tarihi 30 Eylül 2020
Kabul Tarihi 13 Eylül 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

AMA Chandra A, Chandra S. A Comparative Analysis on SARS, MERS and COVID-19. J Contemp Med. Eylül 2020;10(3):464-470. doi:10.16899/jcm.769787