Araştırma Makalesi
BibTex RIS Kaynak Göster

Metotreksata Karşı Alfa-Lipoik Asitin Ratlardaki Testis Hasarına Etkisi

Yıl 2023, Cilt: 13 Sayı: 2, 335 - 341, 22.03.2023
https://doi.org/10.16899/jcm.1242903

Öz

Amaç: Bir kemoterapötik ajan olan metotreksatın, testisler üzerindeki toksik etkisi önemli bir yan etkidir. Metotreksat, oligospermiye neden olup spermatogenezi ve fertiliteyi bozar. Bu çalışmada, güçlü bir antioksidan olan α-lipoik asidin olası koruyucu etkilerini kullanarak metotreksat’ın yan etkisi olan testiküler toksisiteyi en aza indirmeyi amaçladık.
Gereç ve Yöntem: Araştırmada kullandığımız 28 adet erkek Sprague Dawley cinsi ratlar kontrol (0.09% SF) (n= 8), metotreksat (20 mg/kg) (n= 10) ve metotreksat (20 mg/kg) + α-lipoik asit (100 mg/kg) (n= 10) olmak üzere üç gruba ayrıldı. Ratların testis dokusunda Hematoksilen-Eozin ve Masson Trikrom boyama yöntemlerini kullanarak histokimyasal analizler yapıldı. İndüklenebilir nitrik oksit sentaz (iNOS) ve tümör nekrozis faktörü-alfa (TNF-) primer antikoru kullanılarak immünohistokimyasal analizler yapıldı.
Bulgular: Histokimyasal değerlendirmede, α-lipoik asitle tedavi edilen gruplarda metotreksat’ın neden olduğu testiküler toksisitede önemli bir azalma olduğu ortaya çıkarıldı. Öte yandan TNF-α ve iNOS immünboyama değerlendirme sonuçlarının da bu sonuçları desteklediği gözlendi.
Sonuç: Tedavide α-lipoik asidin kullanımı, α-lipoik asit aracılı antioksidan ve antiinflamatuvar mekanizmalar yoluyla metotreksat’ın neden olduğu testis hasarına karşı koruma sağladı. α-lipoik asit, kanser tedavisi sırasında yan etkilere karşı koruyucu olarak metotreksat ile birlikte kullanılabilir. Mevcut çalışmada, kanser tedavisi sırasında, α-lipoik asid ve metotreksat’ın kombine kullanımı yan etkilere karşı koruyucu bir ajan şeklinde kullanılabileceği gösterilmiştir.

Kaynakça

  • 1. Alarcoan GS, Tracy IC, Blackburn WD et al. Methotrexate in rheumatoid arthritis. Toxic effects as the major factor in limiting long-term treatment. Arthritis Rheum 1989;32(6):671-6.
  • 2. Boekelheide K. Mechanisms of Toxic Damage to Spermatogenesis. J Natl Cancer Inst Monogr 2005;(34):6-8.
  • 3. Safaei F, Mehrzadi S, Khadem Haghighian H et al. Protective effects of gallic acid against methotrexate-induced toxicity in rats. Acta Chir Belg 2018;118(3):152-60.
  • 4. Miyazono Y, Gao F, Horie T. Oxidative stress contributes to methotrexate-induced small intestinal toxicity in rats. Scand J Gastroenterol 2004;39(11):1119-27.
  • 5. Sener G, Eksioglu-Demiralp E, Cetiner M et al. Beta-glucan ameliorates methotrexate-induced oxidative organ injury via its antioxidant and immunomodulatory effects. Eur J Pharmacol 2006;542(1-3):170-8.
  • 6. Vardi N, Parlakpinar H, Cetin A, Erdogan A, Cetin Ozturk I. Protective effect of beta-carotene on methotrexate-induced oxidative liver damage. Toxicol Pathol 2010;38(4):592-7.
  • 7. Daggulli M, Dede O, Utangac MM, et al. Protective effects of carvacrol against methotrexate-induced testicular toxicity in rats. Int J Clin Exp Med 2014;7(12):5511-6.
  • 8. Jahovic N, Cevik H, Sehirli AO et al. Melatonin prevents methotrexate-induced hepatorenal oxidative injury in rats. J Pineal Res 2003;34(4):282-7.
  • 9. Asci H, Ozmen O, Ellidag HY et al. The impact of gallic acid on the methotrexate-induced kidney damage in rats. J Food Drug Anal 2017;25(4):890-7.
  • 10. Selimoglu Sen H, Sen V, Bozkurt M et al. Carvacrol and pomegranate extract in treating methotrexate-induced lung oxidative injury in rats. Med Sci Monit 2014;20:1983-90.
  • 11. Widemann BC, Balis FM, Kempf-Bielack B et al. High-dose methotrexate-induced nephrotoxicity in patients with osteosarcoma. Cancer 2004;100(10):2222-32.
  • 12. Aktan F. iNOS-mediated nitric oxide production and its regulation. Life Sci 2004;75(6):639-53.
  • 13. de Castro MRT, Ferreira APO, Busanello GL et al. Previous physical exercise alters the hepatic profile of oxidative-inflammatory status and limits the secondary brain damage induced by severe traumatic brain injury in rats. J Physiol 2017;595(17):6023-44.
  • 14. Bilska A, Wlodek L. Lipoic acid - the drug of the future? Pharmacol Rep 2005;57(5):570-7.
  • 15. Anthony RM, MacLeay JM, Gross KL. Alpha-Lipoic Acid as a Nutritive Supplement for Humans and Animals: An Overview of Its Use in Dog Food. Animals 2021;11(5):1454.
  • 16. Tibullo D, Li Volti G, Giallongo C et al. Biochemical and clinical relevance of alpha lipoic acid: antioxidant and anti-inflammatory activity, molecular pathways and therapeutic potential. Inflamm Res 2017;66(11):947-59.
  • 17. Asvadi I, Hajipour B, Asvadi A et al. Protective effect of pentoxyfilline in renal toxicity after methotrexate administration. Eur Rev Med Pharmacol Sci 2011;15(9):1003-9.
  • 18. Ozbal S, Ergur BU, Erbil G et al. The effects of alpha-lipoic acid against testicular ischemia-reperfusion injury in Rats. Scientific World Journal 2012;2012:489248.
  • 19. Al Maruf A, O'Brien PJ, Naserzadeh P et al. Methotrexate induced mitochondrial injury and cytochrome c release in rat liver hepatocytes. Drug Chem Toxicol 2018;41(1):51-61.
  • 20. Armagan I, Bayram D, Candan IA et al. Effects of pentoxifylline and alpha lipoic acid on methotrexate-induced damage in liver and kidney of rats. Environ Toxicol Pharmacol 2015;39(3):1122-31.
  • 21. Conway R, Low C, Coughlan RJ et al. Methotrexate use and risk of lung disease in psoriasis, psoriatic arthritis, and inflammatory bowel disease: systematic literature review and meta-analysis of randomised controlled trials. BMJ 2015;350:h1269.
  • 22. Yamamoto A, Itoh T, Nasu R et al. Sodium alginate inhibits methotrexate-induced gastrointestinal mucositis in rats. Biol Pharm Bull 2013;36(10):1528-34.
  • 23. Semet M, Paci M, Saïas-Magnan J et al. The impact of drugs on male fertility: a review. Andrology 2017;5(4):640-63.
  • 24. Yulug E, Turedi S, Alver A et al. Effects of resveratrol on methotrexate-induced testicular damage in rats. ScientificWorldJournal 2013;2013:489659.
  • 25. Ali N, Rashid S, Nafees S et al. Protective effect of Chlorogenic acid against methotrexate induced oxidative stress, inflammation and apoptosis in rat liver: An experimental approach. Chem Biol Interact 2017;272:80-91.
  • 26. Morgan AM, Ibrahim MA, Noshy PA. Reproductive toxicity provoked by titanium dioxide nanoparticles and the ameliorative role of Tiron in adult male rats. Biochem Biophys Res Commun 2017;486(2):595-600.
  • 27. Shah NA, Khan MR. Increase of glutathione, testosterone and antioxidant effects of Jurenia dolomiaea on CCl4 induced testicular toxicity in rat. BMC Complement Altern Med 2017;17(1):206.
  • 28. Singh A, Arvinda S, Singh S et al. IN0523 (Urs-12-ene-3alpha,24beta-diol) a plant based derivative of boswellic acid protect Cisplatin induced urogenital toxicity. Toxicol Appl Pharmacol 2017;318:8-15.
  • 29. Dabrowska M, Uram L, Zielinski Z et al. Oxidative stress and inhibition of nitric oxide generation underlie methotrexate-induced senescence in human colon cancer cells. Mech Ageing Dev 2018;170:22-9.
  • 30. El-Sheikh AA, Morsy MA, Abdalla AM et al. Mechanisms of thymoquinone hepatorenal protection in methotrexate-induced toxicity in rats. Mediators Inflamm 2015;2015:859383.
  • 31. Najafi N, Mehri S, Ghasemzadeh Rahbardar M et al. Effects of alpha lipoic acid on metabolic syndrome: A comprehensive review. Phyther Res 2022;36(6):2300-23.
  • 32. Lebda M, Gad S, Gaafar H. Effects of lipoic Acid on acrylamide induced testicular damage. Mater Sociomed 2014;26(3):208-12.
  • 33. Leitao RF, Brito GA, Oria RB et al. Role of inducible nitric oxide synthase pathway on methotrexate-induced intestinal mucositis in rodents. BMC Gastroenterol 2011;11:90.
  • 34. Yang M, Kim JS, Kim J et al. Acute treatment with methotrexate induces hippocampal dysfunction in a mouse model of breast cancer. Brain Res Bull 2012;89(1-2):50-6.
  • 35. Gupta P, Makkar TK, Goel L, Pahuja M. Role of inflammation and oxidative stress in chemotherapy-induced neurotoxicity. Immunol Res 2022;70(6):725-41.
  • 36. Ibrahim MA, El-Sheikh AA, Khalaf HM et al. Protective effect of peroxisome proliferator activator receptor (PPAR)-alpha and -gamma ligands against methotrexate-induced nephrotoxicity. Immunopharmacol Immunotoxicol 2014;36(2):130-7.
  • 37. Mukherjee S, Ghosh S, Choudhury S et al. Pomegranate reverses methotrexate-induced oxidative stress and apoptosis in hepatocytes by modulating Nrf2-NF-kappaB pathways. J Nutr Biochem 2013;24(12):2040-50.
  • 38. Hafez HM, Ibrahim MA, Ibrahim SA et al. Potential protective effect of etanercept and aminoguanidine in methotrexate-induced hepatotoxicity and nephrotoxicity in rats. Eur J Pharmacol 2015;768:1-12.
  • 39. Barletta MA, Marino G, Spagnolo B et al. Coenzyme Q10 + alpha lipoic acid for chronic COVID syndrome. Clin Exp Med 2022;DOI: 10.1007/s10238-022-00871-8.
  • 40. Heidari R, Ahmadi A, Mohammadi H et al. Mitochondrial dysfunction and oxidative stress are involved in the mechanism of methotrexate-induced renal injury and electrolytes imbalance. Biomed Pharmacother 2018;107:834-40.
  • 41. Moura FA, de Andrade KQ, dos Santos JC et al. Lipoic Acid: its antioxidant and anti-inflammatory role and clinical applications. Curr Top Med Chem 2015;15(5):458-83.
  • 42. Barut EN, Engin S, Saygın İ et al. Alpha‐lipoic acid: A promising adjuvant for nonsteroidal anti‐inflammatory drugs therapy with improved efficacy and gastroprotection. Drug Dev Res 2021;82(6):844-51.
  • 43. Taye A, El-Sheikh AA. Lectin-like oxidized low-density lipoprotein receptor 1 pathways. Eur J Clin Invest 2013;43(7):740-5.
  • 44. Zhang T, Zhang D, Zhang Z et al. Alpha-lipoic acid activates AMPK to protect against oxidative stress and apoptosis in rats with diabetic peripheral neuropathy. Hormones 2022;DOI: 0.1007/s42000-022-00413-7.
  • 45. Kolli V, Natarajan K, Isaac B et al. Mitochondrial dysfunction and respiratory chain defects in a rodent model of methotrexate-induced enteritis. Hum Exp Toxicol 2014;33(10):1051-65.
  • 46. dos Santos SM, Romeiro CFR, Rodrigues CA et al. Mitochondrial Dysfunction and Alpha-Lipoic Acid: Beneficial or Harmful in Alzheimer’s Disease? Oxid Med Cell Longev 2019;2019:1-14.
  • 47. Amin A, Abraham C, Hamza AA et al. A standardized extract of Ginkgo biloba neutralizes cisplatin-mediated reproductive toxicity in rats. J Biomed Biotechnol 2012;2012:362049.
  • 48. El-Sheikh AA, Morsy MA, Al-Taher AY. Multi-drug resistance protein (Mrp) 3 may be involved in resveratrol protection against methotrexate-induced testicular damage. Life Sci 2014;119(1-2):40-6.
  • 49. Akhigbe R, Ajayi A. Testicular toxicity following chronic codeine administration is via oxidative DNA damage and up-regulation of NO/TNF-α and caspase 3 activities. Yenugu S, editor. PLoS One 2020;15(3): e0224052
  • 50. Huk-Kolega H, Ciejka E, Skibska B et al. Influence of lipoic acid on the level of TNF-alpha in spleen homogenates. Pol Merkur Lekarski 2014;36(216):379-81.

The Effect of Alpha-Lipoic Acid against Methotrexate on Testicular Damage in Rats

Yıl 2023, Cilt: 13 Sayı: 2, 335 - 341, 22.03.2023
https://doi.org/10.16899/jcm.1242903

Öz

Aim: The toxic effects of methotrexate, a chemotherapeutic, on the testicles is an important side effect. Methotrexate impairs spermatogenesis and fertility and causes oligospermia. In this study, we aimed to minimize the testicular toxicity, those being the side effects of methotrexate, by using the probable protective effects of α-lipoic acid, a potent antioxidant.
Materials and Methods: Twenty-eight male Sprague Dawley rats that we employed in this research were separated into three groups as control (0.09% PS) (n=8), methotrexate (20 mg/kg) (n= 10), and methotrexate (20 mg/kg) + α-lipoic acid (100 mg/kg) (n= 10). We performed a histochemical analysis on the testicular tissue of rats using hematoxylin-eosin and Masson’s trichrome. We performed an immunohistochemical analysis using inducible nitric oxide synthase (iNOS) and tumor necrosis factor-alpha (TNF-α) primer ab.
Results: The histochemical evaluation revealed a significant decrease in the methotrexate-induced testicular toxicity in the α-lipoic acid-treated groups. On the other hand, TNF-α and iNOS immunostaining results were also observed to support these results.
Conclusion: The treatment use of α-lipoic acid succeeded in protecting against methotrexate-induced testicular damage through an α-lipoic acid-mediated antioxidant and anti-inflammatory mechanisms. α-lipoic acid can be used in combination with methotrexate as a protector against side effects during anticancer therapy. In the present study, it was shown that α-lipoic acid can be used in combination with methotrexate as a protector against side effects during anticancer treatment.

Kaynakça

  • 1. Alarcoan GS, Tracy IC, Blackburn WD et al. Methotrexate in rheumatoid arthritis. Toxic effects as the major factor in limiting long-term treatment. Arthritis Rheum 1989;32(6):671-6.
  • 2. Boekelheide K. Mechanisms of Toxic Damage to Spermatogenesis. J Natl Cancer Inst Monogr 2005;(34):6-8.
  • 3. Safaei F, Mehrzadi S, Khadem Haghighian H et al. Protective effects of gallic acid against methotrexate-induced toxicity in rats. Acta Chir Belg 2018;118(3):152-60.
  • 4. Miyazono Y, Gao F, Horie T. Oxidative stress contributes to methotrexate-induced small intestinal toxicity in rats. Scand J Gastroenterol 2004;39(11):1119-27.
  • 5. Sener G, Eksioglu-Demiralp E, Cetiner M et al. Beta-glucan ameliorates methotrexate-induced oxidative organ injury via its antioxidant and immunomodulatory effects. Eur J Pharmacol 2006;542(1-3):170-8.
  • 6. Vardi N, Parlakpinar H, Cetin A, Erdogan A, Cetin Ozturk I. Protective effect of beta-carotene on methotrexate-induced oxidative liver damage. Toxicol Pathol 2010;38(4):592-7.
  • 7. Daggulli M, Dede O, Utangac MM, et al. Protective effects of carvacrol against methotrexate-induced testicular toxicity in rats. Int J Clin Exp Med 2014;7(12):5511-6.
  • 8. Jahovic N, Cevik H, Sehirli AO et al. Melatonin prevents methotrexate-induced hepatorenal oxidative injury in rats. J Pineal Res 2003;34(4):282-7.
  • 9. Asci H, Ozmen O, Ellidag HY et al. The impact of gallic acid on the methotrexate-induced kidney damage in rats. J Food Drug Anal 2017;25(4):890-7.
  • 10. Selimoglu Sen H, Sen V, Bozkurt M et al. Carvacrol and pomegranate extract in treating methotrexate-induced lung oxidative injury in rats. Med Sci Monit 2014;20:1983-90.
  • 11. Widemann BC, Balis FM, Kempf-Bielack B et al. High-dose methotrexate-induced nephrotoxicity in patients with osteosarcoma. Cancer 2004;100(10):2222-32.
  • 12. Aktan F. iNOS-mediated nitric oxide production and its regulation. Life Sci 2004;75(6):639-53.
  • 13. de Castro MRT, Ferreira APO, Busanello GL et al. Previous physical exercise alters the hepatic profile of oxidative-inflammatory status and limits the secondary brain damage induced by severe traumatic brain injury in rats. J Physiol 2017;595(17):6023-44.
  • 14. Bilska A, Wlodek L. Lipoic acid - the drug of the future? Pharmacol Rep 2005;57(5):570-7.
  • 15. Anthony RM, MacLeay JM, Gross KL. Alpha-Lipoic Acid as a Nutritive Supplement for Humans and Animals: An Overview of Its Use in Dog Food. Animals 2021;11(5):1454.
  • 16. Tibullo D, Li Volti G, Giallongo C et al. Biochemical and clinical relevance of alpha lipoic acid: antioxidant and anti-inflammatory activity, molecular pathways and therapeutic potential. Inflamm Res 2017;66(11):947-59.
  • 17. Asvadi I, Hajipour B, Asvadi A et al. Protective effect of pentoxyfilline in renal toxicity after methotrexate administration. Eur Rev Med Pharmacol Sci 2011;15(9):1003-9.
  • 18. Ozbal S, Ergur BU, Erbil G et al. The effects of alpha-lipoic acid against testicular ischemia-reperfusion injury in Rats. Scientific World Journal 2012;2012:489248.
  • 19. Al Maruf A, O'Brien PJ, Naserzadeh P et al. Methotrexate induced mitochondrial injury and cytochrome c release in rat liver hepatocytes. Drug Chem Toxicol 2018;41(1):51-61.
  • 20. Armagan I, Bayram D, Candan IA et al. Effects of pentoxifylline and alpha lipoic acid on methotrexate-induced damage in liver and kidney of rats. Environ Toxicol Pharmacol 2015;39(3):1122-31.
  • 21. Conway R, Low C, Coughlan RJ et al. Methotrexate use and risk of lung disease in psoriasis, psoriatic arthritis, and inflammatory bowel disease: systematic literature review and meta-analysis of randomised controlled trials. BMJ 2015;350:h1269.
  • 22. Yamamoto A, Itoh T, Nasu R et al. Sodium alginate inhibits methotrexate-induced gastrointestinal mucositis in rats. Biol Pharm Bull 2013;36(10):1528-34.
  • 23. Semet M, Paci M, Saïas-Magnan J et al. The impact of drugs on male fertility: a review. Andrology 2017;5(4):640-63.
  • 24. Yulug E, Turedi S, Alver A et al. Effects of resveratrol on methotrexate-induced testicular damage in rats. ScientificWorldJournal 2013;2013:489659.
  • 25. Ali N, Rashid S, Nafees S et al. Protective effect of Chlorogenic acid against methotrexate induced oxidative stress, inflammation and apoptosis in rat liver: An experimental approach. Chem Biol Interact 2017;272:80-91.
  • 26. Morgan AM, Ibrahim MA, Noshy PA. Reproductive toxicity provoked by titanium dioxide nanoparticles and the ameliorative role of Tiron in adult male rats. Biochem Biophys Res Commun 2017;486(2):595-600.
  • 27. Shah NA, Khan MR. Increase of glutathione, testosterone and antioxidant effects of Jurenia dolomiaea on CCl4 induced testicular toxicity in rat. BMC Complement Altern Med 2017;17(1):206.
  • 28. Singh A, Arvinda S, Singh S et al. IN0523 (Urs-12-ene-3alpha,24beta-diol) a plant based derivative of boswellic acid protect Cisplatin induced urogenital toxicity. Toxicol Appl Pharmacol 2017;318:8-15.
  • 29. Dabrowska M, Uram L, Zielinski Z et al. Oxidative stress and inhibition of nitric oxide generation underlie methotrexate-induced senescence in human colon cancer cells. Mech Ageing Dev 2018;170:22-9.
  • 30. El-Sheikh AA, Morsy MA, Abdalla AM et al. Mechanisms of thymoquinone hepatorenal protection in methotrexate-induced toxicity in rats. Mediators Inflamm 2015;2015:859383.
  • 31. Najafi N, Mehri S, Ghasemzadeh Rahbardar M et al. Effects of alpha lipoic acid on metabolic syndrome: A comprehensive review. Phyther Res 2022;36(6):2300-23.
  • 32. Lebda M, Gad S, Gaafar H. Effects of lipoic Acid on acrylamide induced testicular damage. Mater Sociomed 2014;26(3):208-12.
  • 33. Leitao RF, Brito GA, Oria RB et al. Role of inducible nitric oxide synthase pathway on methotrexate-induced intestinal mucositis in rodents. BMC Gastroenterol 2011;11:90.
  • 34. Yang M, Kim JS, Kim J et al. Acute treatment with methotrexate induces hippocampal dysfunction in a mouse model of breast cancer. Brain Res Bull 2012;89(1-2):50-6.
  • 35. Gupta P, Makkar TK, Goel L, Pahuja M. Role of inflammation and oxidative stress in chemotherapy-induced neurotoxicity. Immunol Res 2022;70(6):725-41.
  • 36. Ibrahim MA, El-Sheikh AA, Khalaf HM et al. Protective effect of peroxisome proliferator activator receptor (PPAR)-alpha and -gamma ligands against methotrexate-induced nephrotoxicity. Immunopharmacol Immunotoxicol 2014;36(2):130-7.
  • 37. Mukherjee S, Ghosh S, Choudhury S et al. Pomegranate reverses methotrexate-induced oxidative stress and apoptosis in hepatocytes by modulating Nrf2-NF-kappaB pathways. J Nutr Biochem 2013;24(12):2040-50.
  • 38. Hafez HM, Ibrahim MA, Ibrahim SA et al. Potential protective effect of etanercept and aminoguanidine in methotrexate-induced hepatotoxicity and nephrotoxicity in rats. Eur J Pharmacol 2015;768:1-12.
  • 39. Barletta MA, Marino G, Spagnolo B et al. Coenzyme Q10 + alpha lipoic acid for chronic COVID syndrome. Clin Exp Med 2022;DOI: 10.1007/s10238-022-00871-8.
  • 40. Heidari R, Ahmadi A, Mohammadi H et al. Mitochondrial dysfunction and oxidative stress are involved in the mechanism of methotrexate-induced renal injury and electrolytes imbalance. Biomed Pharmacother 2018;107:834-40.
  • 41. Moura FA, de Andrade KQ, dos Santos JC et al. Lipoic Acid: its antioxidant and anti-inflammatory role and clinical applications. Curr Top Med Chem 2015;15(5):458-83.
  • 42. Barut EN, Engin S, Saygın İ et al. Alpha‐lipoic acid: A promising adjuvant for nonsteroidal anti‐inflammatory drugs therapy with improved efficacy and gastroprotection. Drug Dev Res 2021;82(6):844-51.
  • 43. Taye A, El-Sheikh AA. Lectin-like oxidized low-density lipoprotein receptor 1 pathways. Eur J Clin Invest 2013;43(7):740-5.
  • 44. Zhang T, Zhang D, Zhang Z et al. Alpha-lipoic acid activates AMPK to protect against oxidative stress and apoptosis in rats with diabetic peripheral neuropathy. Hormones 2022;DOI: 0.1007/s42000-022-00413-7.
  • 45. Kolli V, Natarajan K, Isaac B et al. Mitochondrial dysfunction and respiratory chain defects in a rodent model of methotrexate-induced enteritis. Hum Exp Toxicol 2014;33(10):1051-65.
  • 46. dos Santos SM, Romeiro CFR, Rodrigues CA et al. Mitochondrial Dysfunction and Alpha-Lipoic Acid: Beneficial or Harmful in Alzheimer’s Disease? Oxid Med Cell Longev 2019;2019:1-14.
  • 47. Amin A, Abraham C, Hamza AA et al. A standardized extract of Ginkgo biloba neutralizes cisplatin-mediated reproductive toxicity in rats. J Biomed Biotechnol 2012;2012:362049.
  • 48. El-Sheikh AA, Morsy MA, Al-Taher AY. Multi-drug resistance protein (Mrp) 3 may be involved in resveratrol protection against methotrexate-induced testicular damage. Life Sci 2014;119(1-2):40-6.
  • 49. Akhigbe R, Ajayi A. Testicular toxicity following chronic codeine administration is via oxidative DNA damage and up-regulation of NO/TNF-α and caspase 3 activities. Yenugu S, editor. PLoS One 2020;15(3): e0224052
  • 50. Huk-Kolega H, Ciejka E, Skibska B et al. Influence of lipoic acid on the level of TNF-alpha in spleen homogenates. Pol Merkur Lekarski 2014;36(216):379-81.
Toplam 50 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sağlık Kurumları Yönetimi
Bölüm Orjinal Araştırma
Yazarlar

İlkay Armağan 0000-0002-8080-9429

Dilek Bayram 0000-0003-3568-2673

İbrahim Aydın Candan 0000-0002-3937-8786

Hamit Hakan Armağan 0000-0002-5749-3753

Meltem Özgöçmen 0000-0003-3190-4486

Ahmetcan Varel 0000-0003-2930-7324

Erken Görünüm Tarihi 23 Ocak 2023
Yayımlanma Tarihi 22 Mart 2023
Kabul Tarihi 10 Şubat 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 13 Sayı: 2

Kaynak Göster

AMA Armağan İ, Bayram D, Candan İA, Armağan HH, Özgöçmen M, Varel A. The Effect of Alpha-Lipoic Acid against Methotrexate on Testicular Damage in Rats. J Contemp Med. Mart 2023;13(2):335-341. doi:10.16899/jcm.1242903