Araştırma Makalesi
BibTex RIS Kaynak Göster

A Form Finding Approach With Triply Periodic Minimal Surfaces

Yıl 2019, Cilt: 1 Sayı: 1, 35 - 54, 30.09.2019

Öz

Computational approaches and methods has bringed new era in relationsihp between geometry and architecture. Within the scope of this study, the reflections of developments in Computational Geometry on the design will be deduced and a design developed with Triply Periodic Minimal Surfaces will be presented. In contrast to traditional physical research methods, the innovations of Computational Design Methods in Minimal Surfaces and also in design will be examined with the applications of this innovations in architectural examples and application areas.

The main aim of the study is to create an Architectural design composition which consists of interpreted Triply Periodic Minimal Surfaces, which are geometric examples derived with Computational Thinking. For a conceptual framework, a polygonal area which has divided edges according to parameters (eg number of enters and exits) will be subdivided into quadrilaterals and then Triply Periodic Minimal Surfaces modules will be derived according to these quadrilaterals.

Kaynakça

  • Brakke, K. A. (1992). The Surface Evolver. Experimental Mathematics, 1(2), 141–165. http://doi.org/10.1080/10586458.1992.10504253
  • Burry, J. (2011). Logic and intuition inarchitectural modelling: Philosophy of mathematics for computational design (Doktora Tezi). RMIT, Melbourne.
  • Ceccato, C. (2010). The Master-Builder-Geometer. İçinde Advances in Architectural Geometry (ss. 9–14).
  • Coxeter, H. (1961). Introduction to geometry. New York: Wiley.
  • Emmer, M. (2013). Minimal Surfaces and Architecture: New Forms. Nexus Network Journal, 15(2), 227–239. http://doi.org/10.1007/s00004-013-0147-7
  • Hartshorne, R. (2000). Teaching geometry according to Euclid. Notices of the AMS, 47(4),460–465.
  • Kolarevic, B. (2003). Architecture in the Digital Age: Design and Manufacturing. Architecture in the Digital Age: Design and Manufacturing. http://doi.org/10.1007/s00004-004-0025-4
  • Krivoshapko, S., ve Ivanov, V. N. (2015). Encyclopedia of Analytical Surfaces. Springer International Publishing.
  • Leyton, M. (2006). Shape as Memory. A Geometric Theory of Architecture. Book.
  • Meeks III, W. H. (2005). Classical examples of minimal surfaces. [PowerPoint sunumu]. Erişim adresi http://people.math.umass.edu/~bill/papers/ Alındığı tarih: 08.05.2016.
  • Nagy, D. (2001). Architecture and Mathematics : From an Odd Couple to a New Partnership. Nexus Network Journal, II, 11–12.
  • Ostwald, M. J., ve Williams, K. (2015a). Mathematics in, of and for Architecture: A Framework of Types. İçinde Architecture and Mathematics from Antiquity to the Future. : Volume I: Antiquity to the 1500s (ss. 31–57).
  • Otto, F., ve Songel, J. M. (2010). Conversation with Frei Otto. New York, US: Princeton Architectural Press.
  • Özsöylev, H. N. (1998). Sabun Baloncuklarıyla Deneysel Matematik. Bilim ve Teknik, (06), 44–48.
  • Piker, D. (2009). Rheotomic Surfaces. [Web blog]. Erişim adresi https:// spacesymmetrystructure.wordpress.com/rheotomic-surfaces/ Alındığı tarih:08.05.2016.
  • Pottmann, H., Brell-Cokcan, S., ve Wallner, J. (2007). Discrete Surfaces for ArchitecturalDesign. Design, 213–234.
  • Pottmann, H., Schiftner, A., ve Wallner, J. (2008). Geometry of Architectural Freeform Structures. Int. Math. Nachr., 209(209), 15–28. http://doi.org/10.1145/1364901.1364903
  • Preparata, F. P., ve Shamos, M. I. (1985). Computational Geometry. New York: Springer.
  • Salvadori, M. (2015). Can There Be Any Relationships Between Mathematics and Architecture? İçinde Architecture and Mathematics from Antiquity to the Future. : Volume I: Antiquity to the 1500s (ss. 25–29).
  • Schoen, A. H. (1970). Infinite periodic minimal surfaces without self-intersections.Nasa Technical Reports Server. Erişim adresi http://ntrs.nasa.gov/search.jsp?R=19700020472
  • Sierra, F., ve Rodriguez, C. M. (2014). Architectural Envelope Systems Based on T riply Periodic Minimal Surfaces. International Journal of Space Structures, 29(4), 161–170.
  • Takayama, K., Panozzo, D., ve Sorkine-Hornung, O. (2014a). Pattern-Based Quadrangulationfor N-Sided Patches. İçinde Eurographics Symposium on Geometry Processing. Cardiff, UK.
  • Tenu, V. (2011b). Minimal Surfaces As Architectural Prototypes. [Web blog]. Erişim adresi http://www.vladtenu.com/2011/minimal-surfaces-as-architectural-prototypes/ Alındığı tarih: 06.05.2016.
  • Velimirovic, L., Radivojevic, G., Stankovic, M., ve Kostic, D. (2008). Minimal surfaces for architectural constructions. Architecture and Civil Engineering, 6(1), 89–96. http://doi.org/10.2298/FUACE0801089V
  • Wallisser, T. (2009). Other geometries in architecture: bubbles, knots and minimal surfaces. İçinde Mathknow: Mathematics, Applied Sciences and Real Life (ss. 91–111).
  • Url-1<http://web.deu.edu.tr/mate-matik/m9_b2.html>, Alındığı tarih: 17.04.2016.
  • Url-2<http://www.matematikciyiz.biz/Arast%C4%B1rmalardan_Secmeler/oklit_disi_geometriler.htm>, Alındığı tarih: 25.04.2016.
  • Url-3<http://abyss.uoregon.edu/~js/cosmo/lectures/lec15.html>, Alındığı tarih: 26.01.2019.
  • Url-4<https://en.wikipedia.org/wiki/Computational_geometry>, Alındığı tarih: 08.05.2016.
  • Url-5<http://mathworld.wolfram.com/MeanCurvature.html>, Alındığı tarih: 21.04.2016.
  • Url-6<https://en.wikipedia.org/wiki/Principal_curvature>, Alındığı tarih: 21.04.2016.
  • Url-7<https://iam.tugraz.at/workshop14s/2014/03/25/soap-bubbles-and-minimal-surfaces/>, Alındığı tarih: 12.05.2016.
  • Url-8<http://www.pritzkerprize.com/laureates/2015>, Alındığı tarih: 12.05.2016.
  • Url-9<http://met.iisc.ernet.in/~lord/webfiles/tpms.html>, Alındığı tarih: 24.04.2016.
  • Url-10<http://facstaff.susqu.edu/brakke/evolver/examples/periodic/periodic.html>,Alındığı tarih: 21.04.2016.
  • Url-11<http://facstaff.susqu.edu/brakke/evolver/examples/examples.htm>, Alındığı tarih:01.05.2016.
  • Url-12 <https://www.youtube.com/watch?v=0p4QS6sGSZ8>, Alındığı tarih: 11.07.2016.
  • Url-13<http://www.evolo.us/architecture/biodigital-processes-in-architecture-new-library-in-florence/>, Alındığı tarih: 08.05.2016.
  • Url-14<http://i-m-a-d-e.org/?p=2698>, Alındığı tarih: 08.05.2016.
  • Url-15<http://www.designboom.com/architecture/tai-chung-metropolitan-opera-house-by-toyo-ito-under-construction/>, Alındığı tarih: 11.07.2016.
  • Url-16<http://projectsreview2011.aaschool.ac.uk/students/jihyun-heo>, Alındığı tarih:11.07.2016.
  • Url-17<http://igl.ethz.ch/projects/patch-quad/>, Alındığı tarih: 23.05.2016

Üç Yönlü Periyodik Minimal Yüzeyler ile Biçim Arama Yaklaşımı

Yıl 2019, Cilt: 1 Sayı: 1, 35 - 54, 30.09.2019

Öz

Mimarlığın geometri ile olan ilişkisi, hesaplamalı yaklaşımlar ve yöntemler bağlamında yeni bir boyut kazanmıştır. Bu makale kapsamında, hesaplamalı geometri alanındaki gelişmelerin tasarıma yansımaları irdelenecek ve Periyodik Minimal Yüzeyler ile geliştirilen bir tasarım ürünü sunulacaktır. Hesaplamalı tasarım yöntemlerinin, geleneksel olan fiziksel form arama yöntemlerine karşıt olarak, Minimal Yüzeyler ile tasarım alanına getirdiği yenilikler ve bu yeniliklerin Mimari tasarım süreçlerindeki uygulama
alanları ve örnekler incelenecektir.
Çalışmanın temel amacı, Hesaplamalı Düşünme yöntemleriyle gelişen geometrik teorilerin bir örneği olarak Üç Yönlü Periyodik Minimal Yüzeylerin (ÜYPMY) periyodik özellikleri kullanılarak ve Hesaplamalı Tasarım yaklaşımlarıyla hedeflenen amaca göre deforme edilip, geometrik özelliklerini kaybetmeden elde edilen birleşimlerden meydana gelen bir mimari tasarım kompozisyonu oluşturmaktır. Bu amaç doğrultusunda çok kenarlı bir alanın, tüm kenarları çevre verilerine bağlı olarak (örneğin giriş-çıkış sayısı) bölümlendirilip, oluşan alt-bölümlenmelere göre (dörtgen) matematiksel teorileri var olan ÜYPMY örnekleri deforme edilip yerleştirilerek bölümler arasındaki iç ve dış mekanların kesintisiz olarak devam ettiği bir mekansal kurgu oluşturulacaktır.

Kaynakça

  • Brakke, K. A. (1992). The Surface Evolver. Experimental Mathematics, 1(2), 141–165. http://doi.org/10.1080/10586458.1992.10504253
  • Burry, J. (2011). Logic and intuition inarchitectural modelling: Philosophy of mathematics for computational design (Doktora Tezi). RMIT, Melbourne.
  • Ceccato, C. (2010). The Master-Builder-Geometer. İçinde Advances in Architectural Geometry (ss. 9–14).
  • Coxeter, H. (1961). Introduction to geometry. New York: Wiley.
  • Emmer, M. (2013). Minimal Surfaces and Architecture: New Forms. Nexus Network Journal, 15(2), 227–239. http://doi.org/10.1007/s00004-013-0147-7
  • Hartshorne, R. (2000). Teaching geometry according to Euclid. Notices of the AMS, 47(4),460–465.
  • Kolarevic, B. (2003). Architecture in the Digital Age: Design and Manufacturing. Architecture in the Digital Age: Design and Manufacturing. http://doi.org/10.1007/s00004-004-0025-4
  • Krivoshapko, S., ve Ivanov, V. N. (2015). Encyclopedia of Analytical Surfaces. Springer International Publishing.
  • Leyton, M. (2006). Shape as Memory. A Geometric Theory of Architecture. Book.
  • Meeks III, W. H. (2005). Classical examples of minimal surfaces. [PowerPoint sunumu]. Erişim adresi http://people.math.umass.edu/~bill/papers/ Alındığı tarih: 08.05.2016.
  • Nagy, D. (2001). Architecture and Mathematics : From an Odd Couple to a New Partnership. Nexus Network Journal, II, 11–12.
  • Ostwald, M. J., ve Williams, K. (2015a). Mathematics in, of and for Architecture: A Framework of Types. İçinde Architecture and Mathematics from Antiquity to the Future. : Volume I: Antiquity to the 1500s (ss. 31–57).
  • Otto, F., ve Songel, J. M. (2010). Conversation with Frei Otto. New York, US: Princeton Architectural Press.
  • Özsöylev, H. N. (1998). Sabun Baloncuklarıyla Deneysel Matematik. Bilim ve Teknik, (06), 44–48.
  • Piker, D. (2009). Rheotomic Surfaces. [Web blog]. Erişim adresi https:// spacesymmetrystructure.wordpress.com/rheotomic-surfaces/ Alındığı tarih:08.05.2016.
  • Pottmann, H., Brell-Cokcan, S., ve Wallner, J. (2007). Discrete Surfaces for ArchitecturalDesign. Design, 213–234.
  • Pottmann, H., Schiftner, A., ve Wallner, J. (2008). Geometry of Architectural Freeform Structures. Int. Math. Nachr., 209(209), 15–28. http://doi.org/10.1145/1364901.1364903
  • Preparata, F. P., ve Shamos, M. I. (1985). Computational Geometry. New York: Springer.
  • Salvadori, M. (2015). Can There Be Any Relationships Between Mathematics and Architecture? İçinde Architecture and Mathematics from Antiquity to the Future. : Volume I: Antiquity to the 1500s (ss. 25–29).
  • Schoen, A. H. (1970). Infinite periodic minimal surfaces without self-intersections.Nasa Technical Reports Server. Erişim adresi http://ntrs.nasa.gov/search.jsp?R=19700020472
  • Sierra, F., ve Rodriguez, C. M. (2014). Architectural Envelope Systems Based on T riply Periodic Minimal Surfaces. International Journal of Space Structures, 29(4), 161–170.
  • Takayama, K., Panozzo, D., ve Sorkine-Hornung, O. (2014a). Pattern-Based Quadrangulationfor N-Sided Patches. İçinde Eurographics Symposium on Geometry Processing. Cardiff, UK.
  • Tenu, V. (2011b). Minimal Surfaces As Architectural Prototypes. [Web blog]. Erişim adresi http://www.vladtenu.com/2011/minimal-surfaces-as-architectural-prototypes/ Alındığı tarih: 06.05.2016.
  • Velimirovic, L., Radivojevic, G., Stankovic, M., ve Kostic, D. (2008). Minimal surfaces for architectural constructions. Architecture and Civil Engineering, 6(1), 89–96. http://doi.org/10.2298/FUACE0801089V
  • Wallisser, T. (2009). Other geometries in architecture: bubbles, knots and minimal surfaces. İçinde Mathknow: Mathematics, Applied Sciences and Real Life (ss. 91–111).
  • Url-1<http://web.deu.edu.tr/mate-matik/m9_b2.html>, Alındığı tarih: 17.04.2016.
  • Url-2<http://www.matematikciyiz.biz/Arast%C4%B1rmalardan_Secmeler/oklit_disi_geometriler.htm>, Alındığı tarih: 25.04.2016.
  • Url-3<http://abyss.uoregon.edu/~js/cosmo/lectures/lec15.html>, Alındığı tarih: 26.01.2019.
  • Url-4<https://en.wikipedia.org/wiki/Computational_geometry>, Alındığı tarih: 08.05.2016.
  • Url-5<http://mathworld.wolfram.com/MeanCurvature.html>, Alındığı tarih: 21.04.2016.
  • Url-6<https://en.wikipedia.org/wiki/Principal_curvature>, Alındığı tarih: 21.04.2016.
  • Url-7<https://iam.tugraz.at/workshop14s/2014/03/25/soap-bubbles-and-minimal-surfaces/>, Alındığı tarih: 12.05.2016.
  • Url-8<http://www.pritzkerprize.com/laureates/2015>, Alındığı tarih: 12.05.2016.
  • Url-9<http://met.iisc.ernet.in/~lord/webfiles/tpms.html>, Alındığı tarih: 24.04.2016.
  • Url-10<http://facstaff.susqu.edu/brakke/evolver/examples/periodic/periodic.html>,Alındığı tarih: 21.04.2016.
  • Url-11<http://facstaff.susqu.edu/brakke/evolver/examples/examples.htm>, Alındığı tarih:01.05.2016.
  • Url-12 <https://www.youtube.com/watch?v=0p4QS6sGSZ8>, Alındığı tarih: 11.07.2016.
  • Url-13<http://www.evolo.us/architecture/biodigital-processes-in-architecture-new-library-in-florence/>, Alındığı tarih: 08.05.2016.
  • Url-14<http://i-m-a-d-e.org/?p=2698>, Alındığı tarih: 08.05.2016.
  • Url-15<http://www.designboom.com/architecture/tai-chung-metropolitan-opera-house-by-toyo-ito-under-construction/>, Alındığı tarih: 11.07.2016.
  • Url-16<http://projectsreview2011.aaschool.ac.uk/students/jihyun-heo>, Alındığı tarih:11.07.2016.
  • Url-17<http://igl.ethz.ch/projects/patch-quad/>, Alındığı tarih: 23.05.2016
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yazılım Testi, Doğrulama ve Validasyon, Mimarlık
Bölüm Araştırma Makaleleri
Yazarlar

Yusuf Güner Bu kişi benim

Gülen Çağdaş

Yayımlanma Tarihi 30 Eylül 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 1 Sayı: 1

Kaynak Göster

APA Güner, Y., & Çağdaş, G. (2019). Üç Yönlü Periyodik Minimal Yüzeyler ile Biçim Arama Yaklaşımı. Journal of Computational Design, 1(1), 35-54.

88x31.png

JCoDe makaleleri "Creative Commons Attribution-NonCommercial 4.0 International License" altında yayınlanmaktadır.