Araştırma Makalesi
BibTex RIS Kaynak Göster

A Material-Based Computational Framework for Masonry Shell Structures

Yıl 2025, Cilt: 6 Sayı: 1, 67 - 88, 31.03.2025
https://doi.org/10.53710/jcode.1512888

Öz

Shell structures have been an interesting subject from past to present due to their ability to span wide spans, produce free forms, use efficient materials and design potential. In addition to all these advantages, design and production processes also bring various difficulties. Masonry shell structures, which are the oldest examples of shell structures, have come to the fore again with the increasing use of digital design technologies. Forms produced by making physical models have been replaced by simulations, models and calculations performed in the digital environment. However, material information is often ignored when carrying out form finding studies. Based on this observation, the study aimed to examine the relationship between form, material and structural performance. Firstly, the shell structures were classified by scanning the literature. Then, masonry shell structures are discussed; The changes in form finding, material use and production methods from past to present were examined. Finally, a model proposal has been developed in which material information is integrated into the early design phase of masonry shell structures. First, format generation took place in the RV3 plugin, which handles the Thrust Network Analysis (TNA) method. The Thrust Network Analysis (TNA) method produces shapes regardless of the material. Then, thickness was given to the lower parts of the surface using the NGon plug-in and structure analysis was performed using the Milipede plug-in. Using the Karamba3D plug-in, material information was integrated into the model and the structure analysis was performed again. When the two analyzes were compared, structural strains were observed in different parts of the surface.

Kaynakça

  • Addis, B. (2014). Physical Modelling and Form Finding. In Shell structures for architecture (pp. 33-43). Routledge.
  • Adriaenssens, S., Block, P., Veenendaal, D., & Williams, C. (Eds.). (2014). Shell structures for architecture: form finding and optimization. Routledge.
  • Agırbaş, A. (2019). A Physics-Based Design Method of Gridshell Systems: Optimization of Form and Construction Cost. [Master’s Thesis, Yasar University].
  • Block, P. Lachauer, L. Rippmann, M. (2014). Thrust Network Analysis (ss. 71-86). Routledge.
  • Block, P., & Ochsendorf, J. (2007). Thrust network analysis: a new methodology for three-dimensional equilibrium. Journal Of The International Association For Shell And Spatial Structures, 48(3), 167-173.
  • Block Research Group. (2024, June 15). compas-RV. Retrieved 16 March 2025, from GitHub. https://github.com/BlockResearchGroup/compas-RV?tab=readme-ov-file
  • Cassinello, P., Schlaich, M., & Torroja, J. A. (2010). Félix Candela. en memoria (1910-1997). Del Cascarón de Hormigón a las estructuras Ligeras del S. XXI. Informes de La Construcción, 62(519), 5–26. https://doi.org/10.3989/ic.10.040
  • DeJong, M. J. (2009). Seismic assessment strategies for masonry structures (Doctoral dissertation). Massachusetts Institute of Technology. https://web.mit.edu/masonry/papers/DeJong_PhD_2009.pdf
  • Ejaz, K. T. (2023). A study on shell structures through a comparative case study analysis (Master thesis). Bilkent University https://repository.bilkent.edu.tr/server/api/core/bitstreams/3762a917-f5c2-4935-a94c-dc56f23e9485/content
  • Er, İ. E. (2022). Kabuk Yapılar İçin Evrimsel Algoritma Tabanlı Parametrik Tasarım Önerisi. (Master thesis). Yildiz Technical University. https://tez.yok.gov.tr/UlusalTezMerkezi/TezGoster?key=kScA8XnrRb0WogX-qPGFkhMr88B-l3J2XzpxWTUW-3mhZ3Ve3Osmdsl-YTFwvJki
  • Golay, P. (n.d.). Ngon. food4Rhino. Retrieved March 16, 2025, from https://www.food4rhino.com/en/app/ngon
  • Gramazio, F., & Kohler, M. (2008). Digital materiality in architecture. Lars Müller Publishers.
  • Heyman, J. (1995). The stone skeleton: Structural engineering of masonry architecture. Cambridge University Press.
  • Hines, E. M., & Billington, D. P. (2004). Anton Tedesko and the introduction of thin shell concrete roofs in the United States. Journal of Structural Engineering,130(11),1639–1650. https://doi.org/10.1061/(asce)0733-9445(2004)130:11(1639)
  • Karamba3D. (2024, July 1). Karamba3D. - https://karamba3d.com/
  • MatWeb. (2024, September 26). MatWeb material property data. MatWeb. https://www.matweb.com/
  • Mitchell, M. (2014, April 14). AD Classics: Los Manantiales / Felix Candela. Retrieved from 16 March 2025, from https://www.archdaily.com/496202/ad-classics-los-manantiales-felix-candela
  • Ochsendorf, J., & Block, P. (2014). Exploring shell forms. In S.Adriaenssens, P.Block, D. Veenendaal, C. Williams (eds.), Shell structures for architecture Form Finding and Optimization (pp. 7-14). Routledge (1st edition). https://doi.org/10.4324/9781315849270
  • Ochsendorf, J. (2014). Guastavino Masonry Shells. STRUCTURE, 26.
  • Panozzo, D., Block, P., & Sorkine-Hornung, O. (2013). Designing unreinforced masonry models. ACM Transactions on Graphics (TOG), 32(4), 1-12. https://doi.org/10.1145/2461912.2461958
  • Preisinger, C. (n.d.). Karamba3D. Retrieved March 16, 2025, from https://karamba3d.com/
  • Rippmann, M., & Block, P. (2013, September). Funicular shell design exploration. In Proceedings of the 33rd Annual Conference of the ACADIA (Vol. 27, pp. 337-346). Riverside Architectural Press.
  • Rippmann, M., Lachauer, L., & Block, P. (2012). Interactive vault design. International Journal of Space Structures, 27(4), 219-230. https://doi.org/10.1260/0266-3511.27.4.219
  • Shuangyu, H. (2023). Twisted brick shell concept library / HCCH Studio. ArchDaily. Retrieved March 16, 2025, from https://www.archdaily.com/1012561/twisted-brick-shell-concept-library-hcch-studio
  • Saltik, E. (2018). Experiments for Design and Optimization of Thin Shell Structures. (Master Thesis). Istanbul Technical University.
  • Tessmann, O. (2008). Collaborative design procedures for architects and engineers (Doctoral dissertation). University of Kassel. https://kobra.uni-kassel.de/bitstreams/e2e8d9e7-217b-45f6-8c47-82803a1ccd88/download
  • Tomlow, J. (2011). Gaudí's reluctant attitude towards the inverted catenary. Proceedings of the Institution of Civil Engineers-Engineering History and Heritage, 164(4), 219-233. https://doi.org/10.1680/ehah.2011.164.4.219.
  • Türkçü, Ç. (2017). Çağdaş taşıyıcı sistemler. Birsen Yayınevi.
  • Vatandoost, M., Ekhlassi, A., Golabchi, M., Rahbar, M., & von Buelow, P. (2024). Fabrication methods of shell structures. Automation in Construction, 165, 105570. https://doi.org/10.1016/j.autcon.2024.105570
  • Yazici, S., & Tanacan, L. (2020). Material-based computational design (MCD) in sustainable architecture. Journal of Building Engineering, 32, 101543. https://doi.org/10.1016/j.jobe.2020.101543
  • Yazici, S., & Tanacan, L. (2018). A study towards interdisciplinary research: a Material-based Integrated Computational Design Model (MICD-m) in architecture. Architectural Science Review, 61(1-2), 68-82. https://doi.org/10.1080/00038628.2017.1416575

Yığma Kabuk Strüktürler İçin Malzeme Tabanlı Hesaplamalı Bir Çerçeve

Yıl 2025, Cilt: 6 Sayı: 1, 67 - 88, 31.03.2025
https://doi.org/10.53710/jcode.1512888

Öz

Kabuk strüktürler geniş açıklık geçebilme, serbest biçim üretebilme, verimli malzeme kullanımı ve tasarım potansiyeli sebebiyle geçmişten günümüze ilgi çekici bir konu olmuştur. Bütün bu avantajlarının yanında tasarım ve üretim süreçleri çeşitli zorlukları da beraberinde getirmektedir. Kabuk strüktürlerin en eski örneklerini oluşturan yığma kabuk strüktürler, sayısal tasarım teknolojilerinin kullanımının artmasıyla beraber yeniden gündeme gelmiştir. Fiziksel modeller yapılarak üretilen biçimler yerini dijital ortamda gerçekleştirilen simülasyonlara, modellere ve hesaplamalara bırakmıştır. Fakat biçim bulma çalışmaları gerçekleştirilirken genellikle malzeme bilgisi göz ardı edilmektedir. Bu gözlemden yola çıkılarak yapılan çalışmada biçim, malzeme ve strüktürel başarım arasındaki ilişkinin incelenmesi amaçlanmıştır. İlk olarak literatür taraması yapılarak kabuk strüktürlerin sınıflandırılması yapılmıştır. Ardından yığma kabuk strüktürler ele alınıp; geçmişten günümüze biçim bulma, malzeme kullanımı ve üretim yöntemlerinin değişimi incelenmiştir. Son olarak yığma kabuk strüktürlerin erken tasarım evresine malzeme bilgisinin entegre edildiği bir model önerisi geliştirilmiştir. İlk olarak İtme Ağı Analizi (TNA) yöntemini ele alan RV3 eklentisinde biçim üretimi gerçekleşmiştir. İtme Ağı Analizi (TNA) yöntemi malzemeden bağımsız olarak biçim üretimi gerçekleştirmektedir. Ardından NGon eklentisi kullanılarak yüzeyin alt parçalarına kalınlık verilmiştir ve Milipede eklentisi kullanılarak strüktür analizi yapılmıştır. Karamba3D eklentisi kullanılarak modele malzeme bilgisi entegre edilmiştir ve tekrardan strüktür analizi yapılmıştır. Yapılan iki analiz karşılaştırıldığında, yüzeyin farklı bölgelerinde strüktürel zorlanmalar gözlemlenmiştir.

Etik Beyan

Tarafımca hazırlanan 'Yığma Kabuk Strüktürler İçin Malzeme Tabanlı Hesaplamalı Tasarım Modeli' başlıklı çalışmada; araştırma verilerine ve sonuçlarına ilişkin çarpıtma veya sahtecilik yapmadığımı, aldığım bilgileri ana metin ve referanslarda eksiksiz gösterdiğimi, bilimsel araştırma ve etik ilkelerine uygun davrandığımı beyan ederim. Beyanımın aksinin ispatı halinde her türlü yasal sonucu kabul ederim.

Kaynakça

  • Addis, B. (2014). Physical Modelling and Form Finding. In Shell structures for architecture (pp. 33-43). Routledge.
  • Adriaenssens, S., Block, P., Veenendaal, D., & Williams, C. (Eds.). (2014). Shell structures for architecture: form finding and optimization. Routledge.
  • Agırbaş, A. (2019). A Physics-Based Design Method of Gridshell Systems: Optimization of Form and Construction Cost. [Master’s Thesis, Yasar University].
  • Block, P. Lachauer, L. Rippmann, M. (2014). Thrust Network Analysis (ss. 71-86). Routledge.
  • Block, P., & Ochsendorf, J. (2007). Thrust network analysis: a new methodology for three-dimensional equilibrium. Journal Of The International Association For Shell And Spatial Structures, 48(3), 167-173.
  • Block Research Group. (2024, June 15). compas-RV. Retrieved 16 March 2025, from GitHub. https://github.com/BlockResearchGroup/compas-RV?tab=readme-ov-file
  • Cassinello, P., Schlaich, M., & Torroja, J. A. (2010). Félix Candela. en memoria (1910-1997). Del Cascarón de Hormigón a las estructuras Ligeras del S. XXI. Informes de La Construcción, 62(519), 5–26. https://doi.org/10.3989/ic.10.040
  • DeJong, M. J. (2009). Seismic assessment strategies for masonry structures (Doctoral dissertation). Massachusetts Institute of Technology. https://web.mit.edu/masonry/papers/DeJong_PhD_2009.pdf
  • Ejaz, K. T. (2023). A study on shell structures through a comparative case study analysis (Master thesis). Bilkent University https://repository.bilkent.edu.tr/server/api/core/bitstreams/3762a917-f5c2-4935-a94c-dc56f23e9485/content
  • Er, İ. E. (2022). Kabuk Yapılar İçin Evrimsel Algoritma Tabanlı Parametrik Tasarım Önerisi. (Master thesis). Yildiz Technical University. https://tez.yok.gov.tr/UlusalTezMerkezi/TezGoster?key=kScA8XnrRb0WogX-qPGFkhMr88B-l3J2XzpxWTUW-3mhZ3Ve3Osmdsl-YTFwvJki
  • Golay, P. (n.d.). Ngon. food4Rhino. Retrieved March 16, 2025, from https://www.food4rhino.com/en/app/ngon
  • Gramazio, F., & Kohler, M. (2008). Digital materiality in architecture. Lars Müller Publishers.
  • Heyman, J. (1995). The stone skeleton: Structural engineering of masonry architecture. Cambridge University Press.
  • Hines, E. M., & Billington, D. P. (2004). Anton Tedesko and the introduction of thin shell concrete roofs in the United States. Journal of Structural Engineering,130(11),1639–1650. https://doi.org/10.1061/(asce)0733-9445(2004)130:11(1639)
  • Karamba3D. (2024, July 1). Karamba3D. - https://karamba3d.com/
  • MatWeb. (2024, September 26). MatWeb material property data. MatWeb. https://www.matweb.com/
  • Mitchell, M. (2014, April 14). AD Classics: Los Manantiales / Felix Candela. Retrieved from 16 March 2025, from https://www.archdaily.com/496202/ad-classics-los-manantiales-felix-candela
  • Ochsendorf, J., & Block, P. (2014). Exploring shell forms. In S.Adriaenssens, P.Block, D. Veenendaal, C. Williams (eds.), Shell structures for architecture Form Finding and Optimization (pp. 7-14). Routledge (1st edition). https://doi.org/10.4324/9781315849270
  • Ochsendorf, J. (2014). Guastavino Masonry Shells. STRUCTURE, 26.
  • Panozzo, D., Block, P., & Sorkine-Hornung, O. (2013). Designing unreinforced masonry models. ACM Transactions on Graphics (TOG), 32(4), 1-12. https://doi.org/10.1145/2461912.2461958
  • Preisinger, C. (n.d.). Karamba3D. Retrieved March 16, 2025, from https://karamba3d.com/
  • Rippmann, M., & Block, P. (2013, September). Funicular shell design exploration. In Proceedings of the 33rd Annual Conference of the ACADIA (Vol. 27, pp. 337-346). Riverside Architectural Press.
  • Rippmann, M., Lachauer, L., & Block, P. (2012). Interactive vault design. International Journal of Space Structures, 27(4), 219-230. https://doi.org/10.1260/0266-3511.27.4.219
  • Shuangyu, H. (2023). Twisted brick shell concept library / HCCH Studio. ArchDaily. Retrieved March 16, 2025, from https://www.archdaily.com/1012561/twisted-brick-shell-concept-library-hcch-studio
  • Saltik, E. (2018). Experiments for Design and Optimization of Thin Shell Structures. (Master Thesis). Istanbul Technical University.
  • Tessmann, O. (2008). Collaborative design procedures for architects and engineers (Doctoral dissertation). University of Kassel. https://kobra.uni-kassel.de/bitstreams/e2e8d9e7-217b-45f6-8c47-82803a1ccd88/download
  • Tomlow, J. (2011). Gaudí's reluctant attitude towards the inverted catenary. Proceedings of the Institution of Civil Engineers-Engineering History and Heritage, 164(4), 219-233. https://doi.org/10.1680/ehah.2011.164.4.219.
  • Türkçü, Ç. (2017). Çağdaş taşıyıcı sistemler. Birsen Yayınevi.
  • Vatandoost, M., Ekhlassi, A., Golabchi, M., Rahbar, M., & von Buelow, P. (2024). Fabrication methods of shell structures. Automation in Construction, 165, 105570. https://doi.org/10.1016/j.autcon.2024.105570
  • Yazici, S., & Tanacan, L. (2020). Material-based computational design (MCD) in sustainable architecture. Journal of Building Engineering, 32, 101543. https://doi.org/10.1016/j.jobe.2020.101543
  • Yazici, S., & Tanacan, L. (2018). A study towards interdisciplinary research: a Material-based Integrated Computational Design Model (MICD-m) in architecture. Architectural Science Review, 61(1-2), 68-82. https://doi.org/10.1080/00038628.2017.1416575
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mimarlık ve Tasarımda Bilgi Teknolojileri
Bölüm Araştırma Makaleleri
Yazarlar

Zeynep Sena Sancak

Bulent Onur Turan 0000-0003-0531-874X

Erken Görünüm Tarihi 28 Mart 2025
Yayımlanma Tarihi 31 Mart 2025
Gönderilme Tarihi 8 Temmuz 2024
Kabul Tarihi 22 Kasım 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 6 Sayı: 1

Kaynak Göster

APA Sancak, Z. S., & Turan, B. O. (2025). Yığma Kabuk Strüktürler İçin Malzeme Tabanlı Hesaplamalı Bir Çerçeve. Journal of Computational Design, 6(1), 67-88. https://doi.org/10.53710/jcode.1512888

88x31.png

JCoDe makaleleri "Creative Commons Attribution-NonCommercial 4.0 International License" altında yayınlanmaktadır.