Araştırma Makalesi
BibTex RIS Kaynak Göster

Borik Asit Uygulanan Farklı Hasat Dönemlerindeki Yeşil Çay Yapraklarının Biyokimyasal Değişikliklerinin İncelenmesi

Yıl 2019, Cilt: 31 Sayı: 2, 149 - 154, 30.06.2019
https://doi.org/10.7240/jeps.502451

Öz

C. sinensis yapraklarından
elde edilen çayın antioksidatif, pro-oksidatif ve antikarsinojenik gibi değişik
farmakolojik etkileri vardır. Bitkilerin büyüme ve gelişmesi için gereksinim
duyulan bor elementinin eksikliği reaktif oksijen türlerini meydana getirir.
Yüksek bor konsantrasyonunun antioksidan enzim aktivitesini arttırdığı ve
membran fonksiyonlarını reaktif oksijen türlerinin zararlarından koruduğu bilinmektedir.
Çalışmamızın amacı; borik asit uygulanan yeşil çayın farklı dönemlerde hasat
edilen yapraklarındaki biyokimyasal değişikliklerin incelenmesidir. Rize-Çayeli
ilçesinde Çaykur deneme bahçesi 20
parsele ayrıldı. Gruplar,
C. sinensis’e 0 (A grubu), 100 (B
grubu), 300 (C grubu) ve 500 (D grubu)
mg/m2 konsantrasyonlarda
borik asit uygulanarak oluşturuldu. Üç farklı hasat döneminde yeşil çay
yaprakları toplandı ve sıvı nitrojende fikse edildi.
Yeşil çay ekstrelerinden katalaz (KAT), süperoksit dismutaz (SOD) enzim
aktivitelerinin ve glutatyon (GSH), malondialdehit (MDA) seviyelerinin tayini
yapıldı.

SOD enzim aktivitesi ve GSH seviyesi özellikle
3. hasat döneminde yüksekti, ayrıca B ve D gruplarında A grubuna göre anlamlı
artış vardı (p < 0.05). MDA seviyesinde 1. hasat döneminde B, C ve D
gruplarında, A grubuna göre bir azalma görüldü (p < 0.01).
Bulgularımıza
göre,  yeşil çay yapraklarının yetiştiği
topraklarda meydana gelen bor eksikliği çayın koruyucu özelliğini düşürebilir.
Bor uygulanan bölgelerden elde edilen çay yaprakları ile antioksidan özelliğine
sahip daha kaliteli ürünler elde edilebilir.

Kaynakça

  • [1] Tahani, B., Sabzian, R. (2018). Effect of Camellia sinensis plant on decreasing the level of halitosis: A systematic review. Dental Research Journal, 15(6), 379-384.
  • [2] Kaur, L., Jayasekera, S., Moughan, P.J. (2014). Antioxidant quality of tea (Camellia sinensis) as affected by environmental factors. processing and impact on antioxidants in beverages. Preedy.V. (ed.), in Academic Press. 121-129.
  • [3] Cabrera, C., Gimenez, R., Lopez, C. (2003). Determination of tea components with antioxidant activity. Journal of Agricultural and Food Chemistry, 51, 4427-4435.
  • [4] Çelik, F. (2006). Çay (Camellia sinensis); içeriği, sağlık üzerindeki koruyucu etkisi ve önerilen tüketimi. Türkiye Klinikleri Journal Medical Science, 26, 642-648.
  • [5] Ellinger, S., Müller, N., Stehle, P., Ulrich-Merzenich, G. (2011). Consumption of green tea or green tea products: Is there an evidence antioxidant effects from controlled interventional studies? Phytomedicine, 18, 903-915.
  • [6] Singh, B.N., Shankar, S., Srivastava, R.K. (2011) Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochem Pharmacol, 82, 1807–1821.
  • [7] Kumar, M., Sharma, V.L., Sehgal, A., Jain, M. (2012). Protective effect of gren and white tea against benzo(a)pyrene induced oxidative stress and DNA damage in murine model. Nutrition and Cancer, 64(2), 300-306.
  • [8] Mantur, V.S., Somannavarib, M.S., Yendigeri, S., Das, K.K., Goudar, S.S. (2014). Ameliorating effect of black tea extract on cadmium chloride-induced alteration of serum lipid profile and liver histopathology in rats. Indian Journal Physiology Pharmacology, 58(2), 128-132.
  • [9] Yang, K., Li, Y.W., Gao, Z.Y., Xiao, W., Li, T.Q., Song, W., Zheng, J., Chen, H., Chen, G.H., Zou, H.Y. (2018). MiR-93 functions as a tumor promoter in prostate cancer by targeting disabled homolog 2 (DAB2) and an antitumor polysaccharide from green tea (Camellia sinensis) on their expression. International Journal of Biological Macromolecules, pii:S0141-8130(18)36478-X. doi: 10.1016/j.ijbiomac.2018.12.088.
  • [10] Gunes, A., Gezgin, S., Kalınbacak, K., Özcan, H., Çakmak, I. (2017). Bor elementinin bitkiler için önemi. Bor dergisi, 2(3), 168-174.
  • [11] Ahmad, W., Zia, M.H. (2012). Boron deficiency in soils and crops: a review. In: Crop Plant, Goyal A. (ed.), ISBN: 978-953-51-0527-5, InTech, Available from: http://www.intechopen.com/books/crop-plant/boron-deficiency-in-soils-and-crops-a-review.
  • [12] Cömert, A., Kale Çelik, S. (2017). Farklı toprak bünyelerinde sulama suyu bor düzeylerinin fasulye bitkisi verimi üzerine etkilerinin belirlenmesi. Harran Tarım ve Gıda Bilimleri Dergisi, 21(3), 323-331.
  • [13] Özkutlu, F., Ete, Ö., Akgün, M., Akdin, F., Tutuş, Y., Özcan, B. (2017). Çilekte bor gübrelemesinin bozuk şekilli meyve oluşumunun önlenmesi ve yaprak mineral içerikleri üzerine etkisi. Akademik Ziraat Dergisi, 6(2), 153-160.
  • [14] Black tea production guideline, Republic of South Africa, https://www.daff.gov.za (Aralık 2018).
  • [15] Bor bitkiler için neden önemli? Ulusal Bor Araştırma Enstitüsü, http://www.boren.gov.tr/content/docs/boren-bitkiler.pdf (Aralık 2018).
  • [16] Camacho-Cristobal, J.J., Rexach, J., Gonzalez-Fontes, A. (2008). Boron in plants: deficiency and toxicity. Journal of Integrative Plant Biology, 50(10), 1247-1255.
  • [17] Koshiba, T., Kobayashi, M., Matoh, T. (2009). Boron deficiency. Plant Signaling & Behavior, 4(6), 557-558.
  • [18] Aebi, H. (1984) Catalase in vitro. Methods Enzymol, 105, 121–126.
  • [19] Beauchamp, C., Fridovich, I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44(1), 276-287.
  • [20] Beutler, E. (1971). Red cell metabolism: a manual of biochemical methods. London: Academic Press.
  • [21] Ledwozyw, A., Michalak, J., Stepien, A., Kadziołka, A. (1986). The relationship between plasma triglycerides, cholesterol, total lipids and lipid peroxidation products during human atherosclerosis. Clinica Chimica Acta, 55(3), 275-283.
  • [22] Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193(1), 265-275.
  • [23] Ardıç, M., Sekmen, A.H., Türkan, İ., Tokur, S., Özdemir, F. (2009). The effects of boron antioxidant systems of two chickpea (Cicer arietinum L.) cultivars. Plant Soil, 314, 99-108.
  • [24] Cervilla, L.M., Blasco, B., Rios J.J., Romero, L., Ruiz, J.M. (2007). Oxidative stres and antioxidants in tomato (Solanum lycopersicum) plants subjected to boron toxicity. Annals of Botany, 100, 747-756.
  • [25] Reid, R.J., Hayes, J.E., Post, A., Stangoulis, J.C.R., Graham, R.D. (2004). A critical analysis of the causes of boron toxicity in plants. Plant Cell & Environment, 25, 1405-1414.
  • [26] Carloni, P., Tiano, L., Padella, L., Bacchetti, T., Customu, C., Kay, A., Damiani, D. (2013). Antioxidant activity of White, green and blck tea obtained from the same tea cultivar. Food Research International, 53(2), 900-908.
  • [27] Gaggìa, F., Baffoni, L., Galiano, M., Nielsen, D.S., Jakobsen, R.R., Castro-Mejía, J.L., Bosi, S., Truzzi, F., Musumeci, F., Dinelli, G., Di Gioia, D. (2018). Kombucha beverage from green, black and rooibos teas: A comparative study looking at microbiology, chemistry and antioxidant activity. Nutrients, 11(1), pii: E1. Doi: 10.3390/nu11010001.
  • [28] Alıcı, E.H., Arabacı, G. (2016). Determination of SOD, POD, PPO and CAT enzyme activities in Rumex obtusifolius L. Annual Research & Review in Biology, 11(3), 1-7.
  • [29] Güneş, A., Soylemezoglu, G., Inal, A., Bagci, E.G., Coban, S., Sahin, O. (2006). Antioxidant and stomatal responses of grapevine (Vitis vinifera L.) to boron toxicity. Scientia Horticulturae, 110, 279-284.
  • [30] Jimenez, A., Hernandez, J.A., Pastori, G., Del Rio, L.A. and Sevilla, F. (1998). Role of the ascorbate glutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves. Plant Physiology, 118, 1327-1335.
  • [31] Rausch, T., Wachter, A. (2005). Sulfur metabolism: A versatile platform for launching defence operations. Trends in Plant Science, 10, 503-509.
  • [32] Kong, W., Liu, F., Zhang, C., Zhang, J., Feng, H. (2016). Non-destructive determination of malondialdehyde (MDA) distribution in oilseed rape leaves by laboratory scale NIR hyperspectral imaging. Scientific Reports, 6, 35393.
  • [33] Polit, E.S. (2007). Lipid peroxidation in plant cells, its phisyological role and changes under heavy metal stress. Acta Societatis Botanicorum Poloniae, 76(1), 49-54.

Investigation of Biochemical Changes of Green Tea Leaves Treated with Boric Acid in Different Harvest Periods

Yıl 2019, Cilt: 31 Sayı: 2, 149 - 154, 30.06.2019
https://doi.org/10.7240/jeps.502451

Öz

Tea obtained from C. sinensis leaves has different
pharmacological effects such as antioxidative, pro-oxidative and
anticarcinogenic. The lack of boron elements required for the growth and
development of plants causes the production of reactive oxygen species. It has
been reported that high boron concentration also increases the antioxidant
enzyme activity and protects the membrane functions from the damage of reactive
oxygen species. The aim of this study was to investigate the biochemical
changes of green tea leaves treated with boric acid in different harvest
periods. Çaykur trial garden was divided into 20 parcels in Rize-Çayeli
district. Groups were formed by applying boric acid to C. sinensis at concentrations of 0 (group A), 100 (group B), 300
(group C) and 500 (group D) mg/m2. During three harvests, green tea
leaves were collected and fixed in liquid nitrogen. The catalase (CAT),
superoxide dismutase (SOD) enzyme activities and glutathione (GSH),
malondialdehyde (MDA) levels of green tea extracts were determined. SOD enzyme
activity and GSH level were high especially in the 3rd harvest period, and also
B and D groups were significantly higher than A group (p <0.05). There was a
decrease in the B, C and D groups at the MDA level in the 1st harvest period
compared to the A group (p <0.01). According to our findings, the lack of
boric acid in the soil where green tea leaves grow can reduce the protective
properties of tea. Better quality products with antioxidant properties can be
provided with tea leaves obtained from boric acid applied areas.

Kaynakça

  • [1] Tahani, B., Sabzian, R. (2018). Effect of Camellia sinensis plant on decreasing the level of halitosis: A systematic review. Dental Research Journal, 15(6), 379-384.
  • [2] Kaur, L., Jayasekera, S., Moughan, P.J. (2014). Antioxidant quality of tea (Camellia sinensis) as affected by environmental factors. processing and impact on antioxidants in beverages. Preedy.V. (ed.), in Academic Press. 121-129.
  • [3] Cabrera, C., Gimenez, R., Lopez, C. (2003). Determination of tea components with antioxidant activity. Journal of Agricultural and Food Chemistry, 51, 4427-4435.
  • [4] Çelik, F. (2006). Çay (Camellia sinensis); içeriği, sağlık üzerindeki koruyucu etkisi ve önerilen tüketimi. Türkiye Klinikleri Journal Medical Science, 26, 642-648.
  • [5] Ellinger, S., Müller, N., Stehle, P., Ulrich-Merzenich, G. (2011). Consumption of green tea or green tea products: Is there an evidence antioxidant effects from controlled interventional studies? Phytomedicine, 18, 903-915.
  • [6] Singh, B.N., Shankar, S., Srivastava, R.K. (2011) Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochem Pharmacol, 82, 1807–1821.
  • [7] Kumar, M., Sharma, V.L., Sehgal, A., Jain, M. (2012). Protective effect of gren and white tea against benzo(a)pyrene induced oxidative stress and DNA damage in murine model. Nutrition and Cancer, 64(2), 300-306.
  • [8] Mantur, V.S., Somannavarib, M.S., Yendigeri, S., Das, K.K., Goudar, S.S. (2014). Ameliorating effect of black tea extract on cadmium chloride-induced alteration of serum lipid profile and liver histopathology in rats. Indian Journal Physiology Pharmacology, 58(2), 128-132.
  • [9] Yang, K., Li, Y.W., Gao, Z.Y., Xiao, W., Li, T.Q., Song, W., Zheng, J., Chen, H., Chen, G.H., Zou, H.Y. (2018). MiR-93 functions as a tumor promoter in prostate cancer by targeting disabled homolog 2 (DAB2) and an antitumor polysaccharide from green tea (Camellia sinensis) on their expression. International Journal of Biological Macromolecules, pii:S0141-8130(18)36478-X. doi: 10.1016/j.ijbiomac.2018.12.088.
  • [10] Gunes, A., Gezgin, S., Kalınbacak, K., Özcan, H., Çakmak, I. (2017). Bor elementinin bitkiler için önemi. Bor dergisi, 2(3), 168-174.
  • [11] Ahmad, W., Zia, M.H. (2012). Boron deficiency in soils and crops: a review. In: Crop Plant, Goyal A. (ed.), ISBN: 978-953-51-0527-5, InTech, Available from: http://www.intechopen.com/books/crop-plant/boron-deficiency-in-soils-and-crops-a-review.
  • [12] Cömert, A., Kale Çelik, S. (2017). Farklı toprak bünyelerinde sulama suyu bor düzeylerinin fasulye bitkisi verimi üzerine etkilerinin belirlenmesi. Harran Tarım ve Gıda Bilimleri Dergisi, 21(3), 323-331.
  • [13] Özkutlu, F., Ete, Ö., Akgün, M., Akdin, F., Tutuş, Y., Özcan, B. (2017). Çilekte bor gübrelemesinin bozuk şekilli meyve oluşumunun önlenmesi ve yaprak mineral içerikleri üzerine etkisi. Akademik Ziraat Dergisi, 6(2), 153-160.
  • [14] Black tea production guideline, Republic of South Africa, https://www.daff.gov.za (Aralık 2018).
  • [15] Bor bitkiler için neden önemli? Ulusal Bor Araştırma Enstitüsü, http://www.boren.gov.tr/content/docs/boren-bitkiler.pdf (Aralık 2018).
  • [16] Camacho-Cristobal, J.J., Rexach, J., Gonzalez-Fontes, A. (2008). Boron in plants: deficiency and toxicity. Journal of Integrative Plant Biology, 50(10), 1247-1255.
  • [17] Koshiba, T., Kobayashi, M., Matoh, T. (2009). Boron deficiency. Plant Signaling & Behavior, 4(6), 557-558.
  • [18] Aebi, H. (1984) Catalase in vitro. Methods Enzymol, 105, 121–126.
  • [19] Beauchamp, C., Fridovich, I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44(1), 276-287.
  • [20] Beutler, E. (1971). Red cell metabolism: a manual of biochemical methods. London: Academic Press.
  • [21] Ledwozyw, A., Michalak, J., Stepien, A., Kadziołka, A. (1986). The relationship between plasma triglycerides, cholesterol, total lipids and lipid peroxidation products during human atherosclerosis. Clinica Chimica Acta, 55(3), 275-283.
  • [22] Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193(1), 265-275.
  • [23] Ardıç, M., Sekmen, A.H., Türkan, İ., Tokur, S., Özdemir, F. (2009). The effects of boron antioxidant systems of two chickpea (Cicer arietinum L.) cultivars. Plant Soil, 314, 99-108.
  • [24] Cervilla, L.M., Blasco, B., Rios J.J., Romero, L., Ruiz, J.M. (2007). Oxidative stres and antioxidants in tomato (Solanum lycopersicum) plants subjected to boron toxicity. Annals of Botany, 100, 747-756.
  • [25] Reid, R.J., Hayes, J.E., Post, A., Stangoulis, J.C.R., Graham, R.D. (2004). A critical analysis of the causes of boron toxicity in plants. Plant Cell & Environment, 25, 1405-1414.
  • [26] Carloni, P., Tiano, L., Padella, L., Bacchetti, T., Customu, C., Kay, A., Damiani, D. (2013). Antioxidant activity of White, green and blck tea obtained from the same tea cultivar. Food Research International, 53(2), 900-908.
  • [27] Gaggìa, F., Baffoni, L., Galiano, M., Nielsen, D.S., Jakobsen, R.R., Castro-Mejía, J.L., Bosi, S., Truzzi, F., Musumeci, F., Dinelli, G., Di Gioia, D. (2018). Kombucha beverage from green, black and rooibos teas: A comparative study looking at microbiology, chemistry and antioxidant activity. Nutrients, 11(1), pii: E1. Doi: 10.3390/nu11010001.
  • [28] Alıcı, E.H., Arabacı, G. (2016). Determination of SOD, POD, PPO and CAT enzyme activities in Rumex obtusifolius L. Annual Research & Review in Biology, 11(3), 1-7.
  • [29] Güneş, A., Soylemezoglu, G., Inal, A., Bagci, E.G., Coban, S., Sahin, O. (2006). Antioxidant and stomatal responses of grapevine (Vitis vinifera L.) to boron toxicity. Scientia Horticulturae, 110, 279-284.
  • [30] Jimenez, A., Hernandez, J.A., Pastori, G., Del Rio, L.A. and Sevilla, F. (1998). Role of the ascorbate glutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves. Plant Physiology, 118, 1327-1335.
  • [31] Rausch, T., Wachter, A. (2005). Sulfur metabolism: A versatile platform for launching defence operations. Trends in Plant Science, 10, 503-509.
  • [32] Kong, W., Liu, F., Zhang, C., Zhang, J., Feng, H. (2016). Non-destructive determination of malondialdehyde (MDA) distribution in oilseed rape leaves by laboratory scale NIR hyperspectral imaging. Scientific Reports, 6, 35393.
  • [33] Polit, E.S. (2007). Lipid peroxidation in plant cells, its phisyological role and changes under heavy metal stress. Acta Societatis Botanicorum Poloniae, 76(1), 49-54.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

İşıl Sezekler Bu kişi benim

Zeynep Mine Coşkun 0000-0003-4791-6537

Melike Ersöz Bu kişi benim 0000-0002-5289-5809

Yayımlanma Tarihi 30 Haziran 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 31 Sayı: 2

Kaynak Göster

APA Sezekler, İ., Coşkun, Z. M., & Ersöz, M. (2019). Borik Asit Uygulanan Farklı Hasat Dönemlerindeki Yeşil Çay Yapraklarının Biyokimyasal Değişikliklerinin İncelenmesi. International Journal of Advances in Engineering and Pure Sciences, 31(2), 149-154. https://doi.org/10.7240/jeps.502451
AMA Sezekler İ, Coşkun ZM, Ersöz M. Borik Asit Uygulanan Farklı Hasat Dönemlerindeki Yeşil Çay Yapraklarının Biyokimyasal Değişikliklerinin İncelenmesi. JEPS. Haziran 2019;31(2):149-154. doi:10.7240/jeps.502451
Chicago Sezekler, İşıl, Zeynep Mine Coşkun, ve Melike Ersöz. “Borik Asit Uygulanan Farklı Hasat Dönemlerindeki Yeşil Çay Yapraklarının Biyokimyasal Değişikliklerinin İncelenmesi”. International Journal of Advances in Engineering and Pure Sciences 31, sy. 2 (Haziran 2019): 149-54. https://doi.org/10.7240/jeps.502451.
EndNote Sezekler İ, Coşkun ZM, Ersöz M (01 Haziran 2019) Borik Asit Uygulanan Farklı Hasat Dönemlerindeki Yeşil Çay Yapraklarının Biyokimyasal Değişikliklerinin İncelenmesi. International Journal of Advances in Engineering and Pure Sciences 31 2 149–154.
IEEE İ. Sezekler, Z. M. Coşkun, ve M. Ersöz, “Borik Asit Uygulanan Farklı Hasat Dönemlerindeki Yeşil Çay Yapraklarının Biyokimyasal Değişikliklerinin İncelenmesi”, JEPS, c. 31, sy. 2, ss. 149–154, 2019, doi: 10.7240/jeps.502451.
ISNAD Sezekler, İşıl vd. “Borik Asit Uygulanan Farklı Hasat Dönemlerindeki Yeşil Çay Yapraklarının Biyokimyasal Değişikliklerinin İncelenmesi”. International Journal of Advances in Engineering and Pure Sciences 31/2 (Haziran 2019), 149-154. https://doi.org/10.7240/jeps.502451.
JAMA Sezekler İ, Coşkun ZM, Ersöz M. Borik Asit Uygulanan Farklı Hasat Dönemlerindeki Yeşil Çay Yapraklarının Biyokimyasal Değişikliklerinin İncelenmesi. JEPS. 2019;31:149–154.
MLA Sezekler, İşıl vd. “Borik Asit Uygulanan Farklı Hasat Dönemlerindeki Yeşil Çay Yapraklarının Biyokimyasal Değişikliklerinin İncelenmesi”. International Journal of Advances in Engineering and Pure Sciences, c. 31, sy. 2, 2019, ss. 149-54, doi:10.7240/jeps.502451.
Vancouver Sezekler İ, Coşkun ZM, Ersöz M. Borik Asit Uygulanan Farklı Hasat Dönemlerindeki Yeşil Çay Yapraklarının Biyokimyasal Değişikliklerinin İncelenmesi. JEPS. 2019;31(2):149-54.