Araştırma Makalesi
BibTex RIS Kaynak Göster

İnsansız Sualtı Aracı Hareketinin Kalman Filtre İle Kestirimi ve Makine Öğrenmesi ile İyileştirilmesi

Yıl 2021, Cilt: 33 - ASYU 2020 Özel Sayısı, 67 - 77, 30.12.2021
https://doi.org/10.7240/jeps.897500

Öz

Bu çalışmada bir insansız sualtı aracının altı serbestlik dereceli doğrusal olmayan matematiksel modeli elde edilmiştir. Aracın matematiksel model cevabından aracın konum ve yönelim bilgileri elde edilmiştir. Elde edilen konum ve yönelim bilgilerine gürültü eklenerek navigasyon sensör verileri üretilmiştir. Üretilen gürültülü sensör verilerinin kestirimi için kokusuz ve genişletilmiş Kalman filtre algoritmaları kullanılmıştır. Kokusuz Kalman filtresinde, sistem modeli için insansız sualtı aracının doğrusal olmayan modeli kullanılmıştır. Genişletilmiş Kalman filtresinde ise sualtı aracının doğrusal olmayan modeli belirli denge noktalarında doğrusallaştırılmıştır. Kokusuz ve genişletilmiş Kalman filtresi kestirim sonuçları karşılaştırılmıştır. Kokusuz Kalman filtre ve genişletilmiş Kalman filtre kestirimlerine makine öğrenmesi olan Destek Vektör Makinesi algoritması uygulanarak, gürültünün fazla olduğu durumlar için, kestirimler iyileştirilmiştir. Buna ek olarak, aracın verilen bir kare yolu takip ettiği hareketi için kokusuz Kalman filtre ve genişletilmiş Kalman filtre kestirimleri iyileştirilmiştir. Tüm çalışma MATLAB/Simulink ortamında yapılmıştır.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

119E037

Teşekkür

Bu çalışma 119E037 nolu TÜBİTAK 1001 projesi dâhilinde desteklenmiştir.

Kaynakça

  • 1] Groves, P. D. (2013). Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems., Artech House.
  • [2] LIU , K.-z., LI , J., GUO, W., ZHU , P.-q., ve WANG , X.-h.(2014) Navigation system of a class of underwater vehicle based on adaptive unscented Kalman fiter algorithm, Springer, 550-557.
  • [3] Duymaz, E., Oğuz, A. E., ve Temeltaş, H. (2017). Eş zamanlı konum belirleme ve haritalama probleminde yeni bir durum tahmin yöntemi olarak parçacık akış filtresi. DergiPark, 1255-1270.
  • [4] Jwo, D. J., Hu, C. W., ve Tseng, C. H. (2013). Nonlinear Filtering with IMM Algorithm for Ultra-Tight GPS/INS Integration. SAGE, 1-16.
  • [5] St-Pierre, M., Gingras, D. (2004). Comparison between the unscented Kalman filter and the extended Kalman filter for the position estimation module of an integrated navigation information system, Proc. of IEEE Intelligent Vehicles Symposium, 831-835.
  • [6] Makavita, C. D., Jayasinghe, G. S., Nguyen, D. H., ve Ranmuthugala, D. (2019). Experimental Study of Command Governor Adaptive Control for Unmanned Underwater Vehicles. IEEE, 332 – 345.
  • [7] Daum, F. (2005). Nonlinear filters: beyond the Kalman filter. IEEE, 57 – 69.
  • [8] Wan, E. A., Merwe, R. V. (2000). The unscented Kalman filter for nonlinear estimation. Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium, Lake Louise: IEEE, 153-158.
  • [9] Kandepu R., Foss, B., Imsland, L. (2008). Applying the unscented Kalman filter for nonlinear state estimation, J. Process Control, 753-768.
  • [10] Xiong, K., Zhang, H. Y. ve Chan, C. W. (2006). Performance evaluation of UKF-based nonlinear filtering. ELSEVIER, 261-270.
  • [11] Dini, D. H., Mandic, D. P. ve Julier, S. J. (2011). A Widely Linear Complex Unscented Kalman Filter. IEEE, 623 - 626.
  • [12] Menegaz, H. M. T., Ishihara, J. Y., Borges, G. A. ve Vargas, A. N. (2015). A Systematization of the unscented Kalman filter theory. IEEE Trans. Automat. Control, 60 (10), 2583-2598.
  • [13] Holmes, S. A., Klein, G. ve Murray, D. W. (2008) An O(N2) Square Root Unscented Kalman Filter for Visual Simultaneous Localization and Mapping[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 31 (7), 1251-1263.
  • [14] Huang, M., Li, W., Yan, W. (2010). Estimating parameters of synchronous generators using square-root unscented Kalman filter Electr. Power Syst. Res., 80 (9), 1137-1144
  • [15] Erol, B., Cantekin, R.F., Kartal, S.K., Hacıoğlu, R., Görmüş, K.S., Kutoğlu, Ş.H. ve Leblebicioğlu, M.K. (2020). Improvement of filter estimates based on data from unmanned underwater vehicle with machine learning. Innovations in Intelligent Systems and Applications Conference (ASYU). Istanbul, Turkey. 15-17 October. IEEE.
  • [16] Solomatine, D. P., Shrestha, D. L. (2009). A novel method to estimate model uncertainty using machine learning techniques. Water Resources Research, 45(12), 1–16.
  • [17] Cortes, C., Vapnik, V. (1995). Support-vector networks Machine Learning, 273-297
  • [18] Zhang, Z., Ding, S., Sun, Y., (2021), MBSVR: Multiple birth support vector regression. Information Sciences, 552, 65-79.
  • [19] Zhao, Q., Qin, X., Zhao, H., ve Feng, W. (2018). A novel prediction method based on the support vector regression for the remaining useful life of lithium-ion batteries. Microelectronics Reliability, 85, 99-108.
  • [20] Li, X., Shu, X., Shen, J., Xiao, R., Yan, W., ve Chen, Z. (2017). An On-Board Remaining Useful Life Estimation Algorithm for Lithium-Ion Batteries of Electric Vehicles. Energies, 10(5), 691.
  • [21] Oktanisa, I., Mahmudy, W. F., ve Maski, G. (2020). Inflation Rate Prediction in Indonesia using Optimized Support Vector Regression Model. Journal of Information Technology and Computer Science, 5(1), 104-114.
  • [22] Manasa, J., Gupta, R., ve Narahari, N. S. (2020). Machine Learning based Predicting House Prices using Regression Techniques. 2020 2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA), 624-630.
  • [23] Smola, A. J., Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and Computing, 14(3), 199-222.
  • [24] Dong, Y., Zhang, Z., Hong, W.C. (2018). A hybrid seasonal mechanism with a chaotic cuckoo search algorithm with a support vector regression model for electric load forecasting. MDPI. 1-21.
  • [25] Li, M.W., Geng, J., Hong, W.C., Zhang, L.D. (2019). Periodogram estimation based on LSSVR-CCPSO compensation for forecasting ship motion. Nonlinear Dynamics, 97 (4), 2579-2594.
  • [26] Cheng, K., Lu, Z. (2021). Active learning Bayesian support vector regression model for global approximation. Information Sciences, 544, 549-563.
  • [27] Zhang, Z., Ding, S., Sun, Y. (2020). A support vector regression model hybridized with chaotic krill herd algorithm and empirical mode decomposition for regression task. Neurocomputing, 410, 185-201.
  • [28] Fossen, T. I. (1999) Guidance and Control of Ocean Vehicles. 1. baskı, Wiley.
  • [29] Kartal, S.K, Leblebicioğlu, M.K., ve Ege, E. (2016). Bir İnsansız Sualtı Gözlem Aracı (SAGA) Yer Tespitinin Deneysel Testi ve Sistem Tanılaması. Otomatik Kontrol Ulusal Toplantisi (TOK), 1-13.
  • [30] Crassidis, J. L., Junkins, J. L. (2011). Optimal Estimation of Dynamic Systems (Chapman & Hall/CRC Applied Mathematics & Nonlinear Science). Chapman and Hall/CRC.
  • [31] Merwe, R. V., Wan, E. A. (2001). The square-root unscented Kalman filter for state and parameter-estimation. 2001 IEEE International Conference on coustics, Speech, and Signal Processing, Salt Lake City: IEEE, 3461-3464.
  • [32] HAYKIN, S. (2001). Kalman Filtering and Neural Networks, 1. Baskı. Wiley-Interscience, New York, USA.
  • [33] Vapnik, V. (2000). The Nature of Statistical Learning Theory. 2. baskı. Springer-Verlag.
Yıl 2021, Cilt: 33 - ASYU 2020 Özel Sayısı, 67 - 77, 30.12.2021
https://doi.org/10.7240/jeps.897500

Öz

Proje Numarası

119E037

Kaynakça

  • 1] Groves, P. D. (2013). Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems., Artech House.
  • [2] LIU , K.-z., LI , J., GUO, W., ZHU , P.-q., ve WANG , X.-h.(2014) Navigation system of a class of underwater vehicle based on adaptive unscented Kalman fiter algorithm, Springer, 550-557.
  • [3] Duymaz, E., Oğuz, A. E., ve Temeltaş, H. (2017). Eş zamanlı konum belirleme ve haritalama probleminde yeni bir durum tahmin yöntemi olarak parçacık akış filtresi. DergiPark, 1255-1270.
  • [4] Jwo, D. J., Hu, C. W., ve Tseng, C. H. (2013). Nonlinear Filtering with IMM Algorithm for Ultra-Tight GPS/INS Integration. SAGE, 1-16.
  • [5] St-Pierre, M., Gingras, D. (2004). Comparison between the unscented Kalman filter and the extended Kalman filter for the position estimation module of an integrated navigation information system, Proc. of IEEE Intelligent Vehicles Symposium, 831-835.
  • [6] Makavita, C. D., Jayasinghe, G. S., Nguyen, D. H., ve Ranmuthugala, D. (2019). Experimental Study of Command Governor Adaptive Control for Unmanned Underwater Vehicles. IEEE, 332 – 345.
  • [7] Daum, F. (2005). Nonlinear filters: beyond the Kalman filter. IEEE, 57 – 69.
  • [8] Wan, E. A., Merwe, R. V. (2000). The unscented Kalman filter for nonlinear estimation. Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium, Lake Louise: IEEE, 153-158.
  • [9] Kandepu R., Foss, B., Imsland, L. (2008). Applying the unscented Kalman filter for nonlinear state estimation, J. Process Control, 753-768.
  • [10] Xiong, K., Zhang, H. Y. ve Chan, C. W. (2006). Performance evaluation of UKF-based nonlinear filtering. ELSEVIER, 261-270.
  • [11] Dini, D. H., Mandic, D. P. ve Julier, S. J. (2011). A Widely Linear Complex Unscented Kalman Filter. IEEE, 623 - 626.
  • [12] Menegaz, H. M. T., Ishihara, J. Y., Borges, G. A. ve Vargas, A. N. (2015). A Systematization of the unscented Kalman filter theory. IEEE Trans. Automat. Control, 60 (10), 2583-2598.
  • [13] Holmes, S. A., Klein, G. ve Murray, D. W. (2008) An O(N2) Square Root Unscented Kalman Filter for Visual Simultaneous Localization and Mapping[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 31 (7), 1251-1263.
  • [14] Huang, M., Li, W., Yan, W. (2010). Estimating parameters of synchronous generators using square-root unscented Kalman filter Electr. Power Syst. Res., 80 (9), 1137-1144
  • [15] Erol, B., Cantekin, R.F., Kartal, S.K., Hacıoğlu, R., Görmüş, K.S., Kutoğlu, Ş.H. ve Leblebicioğlu, M.K. (2020). Improvement of filter estimates based on data from unmanned underwater vehicle with machine learning. Innovations in Intelligent Systems and Applications Conference (ASYU). Istanbul, Turkey. 15-17 October. IEEE.
  • [16] Solomatine, D. P., Shrestha, D. L. (2009). A novel method to estimate model uncertainty using machine learning techniques. Water Resources Research, 45(12), 1–16.
  • [17] Cortes, C., Vapnik, V. (1995). Support-vector networks Machine Learning, 273-297
  • [18] Zhang, Z., Ding, S., Sun, Y., (2021), MBSVR: Multiple birth support vector regression. Information Sciences, 552, 65-79.
  • [19] Zhao, Q., Qin, X., Zhao, H., ve Feng, W. (2018). A novel prediction method based on the support vector regression for the remaining useful life of lithium-ion batteries. Microelectronics Reliability, 85, 99-108.
  • [20] Li, X., Shu, X., Shen, J., Xiao, R., Yan, W., ve Chen, Z. (2017). An On-Board Remaining Useful Life Estimation Algorithm for Lithium-Ion Batteries of Electric Vehicles. Energies, 10(5), 691.
  • [21] Oktanisa, I., Mahmudy, W. F., ve Maski, G. (2020). Inflation Rate Prediction in Indonesia using Optimized Support Vector Regression Model. Journal of Information Technology and Computer Science, 5(1), 104-114.
  • [22] Manasa, J., Gupta, R., ve Narahari, N. S. (2020). Machine Learning based Predicting House Prices using Regression Techniques. 2020 2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA), 624-630.
  • [23] Smola, A. J., Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and Computing, 14(3), 199-222.
  • [24] Dong, Y., Zhang, Z., Hong, W.C. (2018). A hybrid seasonal mechanism with a chaotic cuckoo search algorithm with a support vector regression model for electric load forecasting. MDPI. 1-21.
  • [25] Li, M.W., Geng, J., Hong, W.C., Zhang, L.D. (2019). Periodogram estimation based on LSSVR-CCPSO compensation for forecasting ship motion. Nonlinear Dynamics, 97 (4), 2579-2594.
  • [26] Cheng, K., Lu, Z. (2021). Active learning Bayesian support vector regression model for global approximation. Information Sciences, 544, 549-563.
  • [27] Zhang, Z., Ding, S., Sun, Y. (2020). A support vector regression model hybridized with chaotic krill herd algorithm and empirical mode decomposition for regression task. Neurocomputing, 410, 185-201.
  • [28] Fossen, T. I. (1999) Guidance and Control of Ocean Vehicles. 1. baskı, Wiley.
  • [29] Kartal, S.K, Leblebicioğlu, M.K., ve Ege, E. (2016). Bir İnsansız Sualtı Gözlem Aracı (SAGA) Yer Tespitinin Deneysel Testi ve Sistem Tanılaması. Otomatik Kontrol Ulusal Toplantisi (TOK), 1-13.
  • [30] Crassidis, J. L., Junkins, J. L. (2011). Optimal Estimation of Dynamic Systems (Chapman & Hall/CRC Applied Mathematics & Nonlinear Science). Chapman and Hall/CRC.
  • [31] Merwe, R. V., Wan, E. A. (2001). The square-root unscented Kalman filter for state and parameter-estimation. 2001 IEEE International Conference on coustics, Speech, and Signal Processing, Salt Lake City: IEEE, 3461-3464.
  • [32] HAYKIN, S. (2001). Kalman Filtering and Neural Networks, 1. Baskı. Wiley-Interscience, New York, USA.
  • [33] Vapnik, V. (2000). The Nature of Statistical Learning Theory. 2. baskı. Springer-Verlag.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Berna Erol Bu kişi benim 0000-0001-7381-9840

Recep Cantekin 0000-0002-2130-894X

Seda Kartal 0000-0003-4756-5490

Rıfat Hacıoğlu 0000-0002-2480-0729

Kurtulus Serdar Görmüş 0000-0002-7910-2071

Şenol Hakan Kutoğlu 0000-0001-6587-3417

Kemal Leblebicioğlu 0000-0002-9735-458X

Proje Numarası 119E037
Yayımlanma Tarihi 30 Aralık 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 33 - ASYU 2020 Özel Sayısı

Kaynak Göster

APA Erol, B., Cantekin, R., Kartal, S., Hacıoğlu, R., vd. (2021). İnsansız Sualtı Aracı Hareketinin Kalman Filtre İle Kestirimi ve Makine Öğrenmesi ile İyileştirilmesi. International Journal of Advances in Engineering and Pure Sciences, 33, 67-77. https://doi.org/10.7240/jeps.897500
AMA Erol B, Cantekin R, Kartal S, Hacıoğlu R, Görmüş KS, Kutoğlu ŞH, Leblebicioğlu K. İnsansız Sualtı Aracı Hareketinin Kalman Filtre İle Kestirimi ve Makine Öğrenmesi ile İyileştirilmesi. JEPS. Aralık 2021;33:67-77. doi:10.7240/jeps.897500
Chicago Erol, Berna, Recep Cantekin, Seda Kartal, Rıfat Hacıoğlu, Kurtulus Serdar Görmüş, Şenol Hakan Kutoğlu, ve Kemal Leblebicioğlu. “İnsansız Sualtı Aracı Hareketinin Kalman Filtre İle Kestirimi Ve Makine Öğrenmesi Ile İyileştirilmesi”. International Journal of Advances in Engineering and Pure Sciences 33, Aralık (Aralık 2021): 67-77. https://doi.org/10.7240/jeps.897500.
EndNote Erol B, Cantekin R, Kartal S, Hacıoğlu R, Görmüş KS, Kutoğlu ŞH, Leblebicioğlu K (01 Aralık 2021) İnsansız Sualtı Aracı Hareketinin Kalman Filtre İle Kestirimi ve Makine Öğrenmesi ile İyileştirilmesi. International Journal of Advances in Engineering and Pure Sciences 33 67–77.
IEEE B. Erol, R. Cantekin, S. Kartal, R. Hacıoğlu, K. S. Görmüş, Ş. H. Kutoğlu, ve K. Leblebicioğlu, “İnsansız Sualtı Aracı Hareketinin Kalman Filtre İle Kestirimi ve Makine Öğrenmesi ile İyileştirilmesi”, JEPS, c. 33, ss. 67–77, 2021, doi: 10.7240/jeps.897500.
ISNAD Erol, Berna vd. “İnsansız Sualtı Aracı Hareketinin Kalman Filtre İle Kestirimi Ve Makine Öğrenmesi Ile İyileştirilmesi”. International Journal of Advances in Engineering and Pure Sciences 33 (Aralık 2021), 67-77. https://doi.org/10.7240/jeps.897500.
JAMA Erol B, Cantekin R, Kartal S, Hacıoğlu R, Görmüş KS, Kutoğlu ŞH, Leblebicioğlu K. İnsansız Sualtı Aracı Hareketinin Kalman Filtre İle Kestirimi ve Makine Öğrenmesi ile İyileştirilmesi. JEPS. 2021;33:67–77.
MLA Erol, Berna vd. “İnsansız Sualtı Aracı Hareketinin Kalman Filtre İle Kestirimi Ve Makine Öğrenmesi Ile İyileştirilmesi”. International Journal of Advances in Engineering and Pure Sciences, c. 33, 2021, ss. 67-77, doi:10.7240/jeps.897500.
Vancouver Erol B, Cantekin R, Kartal S, Hacıoğlu R, Görmüş KS, Kutoğlu ŞH, Leblebicioğlu K. İnsansız Sualtı Aracı Hareketinin Kalman Filtre İle Kestirimi ve Makine Öğrenmesi ile İyileştirilmesi. JEPS. 2021;33:67-7.