Bu çalışmada bir insansız sualtı aracının altı serbestlik dereceli doğrusal olmayan matematiksel modeli elde edilmiştir. Aracın matematiksel model cevabından aracın konum ve yönelim bilgileri elde edilmiştir. Elde edilen konum ve yönelim bilgilerine gürültü eklenerek navigasyon sensör verileri üretilmiştir. Üretilen gürültülü sensör verilerinin kestirimi için kokusuz ve genişletilmiş Kalman filtre algoritmaları kullanılmıştır. Kokusuz Kalman filtresinde, sistem modeli için insansız sualtı aracının doğrusal olmayan modeli kullanılmıştır. Genişletilmiş Kalman filtresinde ise sualtı aracının doğrusal olmayan modeli belirli denge noktalarında doğrusallaştırılmıştır. Kokusuz ve genişletilmiş Kalman filtresi kestirim sonuçları karşılaştırılmıştır. Kokusuz Kalman filtre ve genişletilmiş Kalman filtre kestirimlerine makine öğrenmesi olan Destek Vektör Makinesi algoritması uygulanarak, gürültünün fazla olduğu durumlar için, kestirimler iyileştirilmiştir. Buna ek olarak, aracın verilen bir kare yolu takip ettiği hareketi için kokusuz Kalman filtre ve genişletilmiş Kalman filtre kestirimleri iyileştirilmiştir. Tüm çalışma MATLAB/Simulink ortamında yapılmıştır.
genişletilmiş Kalman filtresi kokusuz Kalman filtresi Destek vektör makinesi insansız sualtı aracı
TÜBİTAK
119E037
Bu çalışma 119E037 nolu TÜBİTAK 1001 projesi dâhilinde desteklenmiştir.
119E037
Birincil Dil | Türkçe |
---|---|
Konular | Mühendislik |
Bölüm | Araştırma Makaleleri |
Yazarlar | |
Proje Numarası | 119E037 |
Yayımlanma Tarihi | 30 Aralık 2021 |
Yayımlandığı Sayı | Yıl 2021 Cilt: 33 - ASYU 2020 Özel Sayısı |