Araştırma Makalesi
BibTex RIS Kaynak Göster

FREE FALL TEST SYSTEM CONTROLLED BY COMPUTER WITH ARDUINO

Yıl 2019, Cilt: 7 Sayı: 4, 878 - 884, 19.12.2019
https://doi.org/10.21923/jesd.547876

Öz

This study aims to
devise a computer-aided measurement system for students taking a physics course
in secondary schools and universities to use in their laboratory applications.
Arduino Uno development board is used in the system structure of the system.
The free fall time of steel balls of different size released from the
adjustable height is measured and shown on the LCD display, also observed in
the software on the host computer. The designed device has electromagnet to
hold the steel ball, and LDR light sensor and laser diode to measure the time.
The transfer of the results to the host computer is carried out by the Wi-Fi
module. A free fall test, comprised of bodies with four different weight
released from six different heights, has been performed in order to test the
measurement accuracy of the test set. The time is measured in milliseconds for
each free fall test. 24 different results obtained from the tests are compared
with the results of the theoretical calculations. In accord with this result,
there is approximately 1 millisecond difference in accuracy. In addition, the
system is more advantageous in terms of multiple measurements, Wi-Fi, and price
when compared to other free fall test sets.

Kaynakça

  • 3B Scientific, Access: 13.08.2018, Link: https://www.3bscientific.com.tr/
  • Akkağıt, ş. F., & Tekin, a. (2012). Simülasyon Tabanlı Öğrenmenin Ortaöğretim Öğrencilerinin Temel Elektronik ve Ölçme Dersindeki başarılarına etkisi. Ege eğitim dergisi, 13(2).
  • Arogbonlo, A., Usma, C., Kouzani, A. Z., Gibson, I., (2015). “Design and fabrication of a capacitance based wearable pressure sensor using e-textiles”, Procedia Technology, 20, 270-275.
  • Barbon, G., Margolis, M., Palumbo, F., Raimondi, F., Weldin, N., (2016).“Taking Arduino to the Internet of Things: the ASIP programming model”, Computer Communications, 89, 128-140.
  • Boeing, A., & Bräunl, T. (2007). Evaluation of real-time physics simulation systems. In Proceedings of the 5th international conference on Computer graphics and interactive techniques in Australia and Southeast Asia (pp. 281-288). ACM.
  • Bush, G. A., Miles, F. A., (1996). “Short-latency compensatory eye movements associated with a brief period of free fall”, Experimental brain research, 108(2), 337-340.
  • Caner, F.,Bekiroğlu, F., (2012).“Implementation of microcomputer based laboratory in physics class: students’ perceptions”, INTED2012 Proceedings, 3163-3166.
  • Ferdoush, S., & Li, X. (2014). Wireless sensor network system design using Raspberry Pi and Arduino for environmental monitoring applications. Procedia Computer Science, 34, 103-110.
  • İbrahim, D., Onurhan, E., (2003). “Uzaktan Mühendislik Eğitiminde Laboratuvar Kullanımı”, I. Elektrik Elektronik Bilgisayar Mühendislikleri Eğitimi Sempozyumu, Ankara.
  • Jin, H. (1997). Behavior-mode simulation of power electronic circuits. IEEE Transactions on Power Electronics, 12(3), 443-452.
  • Kayra Mühendislik, Access: 13.08.2018, Link: http://www.kayramuhendislik.com.tr/
  • Lackner, J. R., & Graybiel, A. (1986). Head movements in non-terrestrial force environments elicit motion sickness: implications for the etiology of space motion sickness. Aviation, space, and environmental medicine, 57(5), 443-448.
  • Palmerino, C. R., (1999). “Infinite Degrees of Speed Marin Mersenne and the Debate Over Galileo's Law of Free Fall”, Early Science and Medicine, 4(4), 269-328.
  • Rentech, Access: 13.08.2018 Link : https://www.rentech.com.tr
  • Schwartz, M.,(2016). “Internet of Things with ESP8266”, Packt Publishing Ltd.
  • Şimşek, M. A., Taşdelen, K., “Arduino ile Tasarlanmış Sistemlerin İnternet Tabanlı Kontrolü ve İzlenmesi”, Süleyman Demirel Üniversitesi Uluslarası Teknolojik Bilimler Dergisi, 8(1), 20-33, 2017.
  • Singh, P., Saikia, S.,(2016). “Arduino-based smart irrigation using water flow sensor, soil moisture sensor, temperature sensor and ESP8266 WiFi modüle”, In Humanitarian Technology Conference (R10-HTC), 2016 IEEE Region 10 (pp. 1-4). IEEE.
  • Thornton, R.K., (1987). “Tools for scientific thinking-microcomputer-based laboratories for physics teaching”, Physics Education, 22(4), 230.
  • Tüysüz, C. (2010). The Effect of the Virtual Laboratory on Students' Achievement and Attitude in Chemistry. International Online Journal of Educational Sciences, 2(1).

ARDUINO İLE BİLGİSAYAR KONTROLLÜ SERBEST DÜŞME DENEY SİSTEMİ

Yıl 2019, Cilt: 7 Sayı: 4, 878 - 884, 19.12.2019
https://doi.org/10.21923/jesd.547876

Öz

Bu uygulama çalışmasında ortaöğretim kurumları ve üniversitelerde
fizik dersini alan öğrencilerin laboratuvar uygulamalarında kullanabilecekleri
bilgisayar destekli bir ölçüm sistemi tasarlanmıştır. Sistemin donanım
yapısında Arduino Uno geliştirme kartı kullanılmıştır. Ayarlanabilir
yükseklikten bırakılan farklı boyutlardaki çelik topun serbest düşme zamanı
ölçülüp, sonuç LCD ekranda gösterilmektedir. Aynı zamanda ölçülen değerler ana
bilgisayardaki yazılımda da görülmektedir. Tasarlanan cihazda; çelik topu
tutmak için elektro mıknatıs, süreyi ölçmek için LDR ışık sensörü ve lazer
diyot kullanılmıştır. Ayrıca ölçülen değerlerin ana bilgisayara aktarılma
işlemi wifi modülü ile gerçekleştirilmiştir. Deney setinin ölçüm hassasiyetinin
testi için 6 farklı yükseklikten ve 4 farklı ağırlıktaki cisim ile serbest
düşme deneyi yapılmıştır. Her düşme deneyi için milisaniye biriminde süre
ölçülmektedir. Deney sonucunda elde edilen 24 farklı süre, teorik
hesaplamalarından çıkan sonuçlar ile kıyaslanmıştır. Bu sonuca göre doğruluk
hassasiyetinde yaklaşık 1 milisaniyelik farklılık bulunmaktadır. Ayrıca sistem
diğer serbest düşme deney setleri ile kıyaslandığında çoklu ölçüm, wifi ve
fiyat konusunda avantajlı olduğu görülmektedir. 

Kaynakça

  • 3B Scientific, Access: 13.08.2018, Link: https://www.3bscientific.com.tr/
  • Akkağıt, ş. F., & Tekin, a. (2012). Simülasyon Tabanlı Öğrenmenin Ortaöğretim Öğrencilerinin Temel Elektronik ve Ölçme Dersindeki başarılarına etkisi. Ege eğitim dergisi, 13(2).
  • Arogbonlo, A., Usma, C., Kouzani, A. Z., Gibson, I., (2015). “Design and fabrication of a capacitance based wearable pressure sensor using e-textiles”, Procedia Technology, 20, 270-275.
  • Barbon, G., Margolis, M., Palumbo, F., Raimondi, F., Weldin, N., (2016).“Taking Arduino to the Internet of Things: the ASIP programming model”, Computer Communications, 89, 128-140.
  • Boeing, A., & Bräunl, T. (2007). Evaluation of real-time physics simulation systems. In Proceedings of the 5th international conference on Computer graphics and interactive techniques in Australia and Southeast Asia (pp. 281-288). ACM.
  • Bush, G. A., Miles, F. A., (1996). “Short-latency compensatory eye movements associated with a brief period of free fall”, Experimental brain research, 108(2), 337-340.
  • Caner, F.,Bekiroğlu, F., (2012).“Implementation of microcomputer based laboratory in physics class: students’ perceptions”, INTED2012 Proceedings, 3163-3166.
  • Ferdoush, S., & Li, X. (2014). Wireless sensor network system design using Raspberry Pi and Arduino for environmental monitoring applications. Procedia Computer Science, 34, 103-110.
  • İbrahim, D., Onurhan, E., (2003). “Uzaktan Mühendislik Eğitiminde Laboratuvar Kullanımı”, I. Elektrik Elektronik Bilgisayar Mühendislikleri Eğitimi Sempozyumu, Ankara.
  • Jin, H. (1997). Behavior-mode simulation of power electronic circuits. IEEE Transactions on Power Electronics, 12(3), 443-452.
  • Kayra Mühendislik, Access: 13.08.2018, Link: http://www.kayramuhendislik.com.tr/
  • Lackner, J. R., & Graybiel, A. (1986). Head movements in non-terrestrial force environments elicit motion sickness: implications for the etiology of space motion sickness. Aviation, space, and environmental medicine, 57(5), 443-448.
  • Palmerino, C. R., (1999). “Infinite Degrees of Speed Marin Mersenne and the Debate Over Galileo's Law of Free Fall”, Early Science and Medicine, 4(4), 269-328.
  • Rentech, Access: 13.08.2018 Link : https://www.rentech.com.tr
  • Schwartz, M.,(2016). “Internet of Things with ESP8266”, Packt Publishing Ltd.
  • Şimşek, M. A., Taşdelen, K., “Arduino ile Tasarlanmış Sistemlerin İnternet Tabanlı Kontrolü ve İzlenmesi”, Süleyman Demirel Üniversitesi Uluslarası Teknolojik Bilimler Dergisi, 8(1), 20-33, 2017.
  • Singh, P., Saikia, S.,(2016). “Arduino-based smart irrigation using water flow sensor, soil moisture sensor, temperature sensor and ESP8266 WiFi modüle”, In Humanitarian Technology Conference (R10-HTC), 2016 IEEE Region 10 (pp. 1-4). IEEE.
  • Thornton, R.K., (1987). “Tools for scientific thinking-microcomputer-based laboratories for physics teaching”, Physics Education, 22(4), 230.
  • Tüysüz, C. (2010). The Effect of the Virtual Laboratory on Students' Achievement and Attitude in Chemistry. International Online Journal of Educational Sciences, 2(1).
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bilgisayar Yazılımı
Bölüm Araştırma Makalesi \ Research Makaleler
Yazarlar

Ahmet Ali Süzen 0000-0002-5871-1652

Kıyas Kayaalp 0000-0002-6483-1124

Yayımlanma Tarihi 19 Aralık 2019
Gönderilme Tarihi 1 Nisan 2019
Kabul Tarihi 29 Haziran 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 7 Sayı: 4

Kaynak Göster

APA Süzen, A. A., & Kayaalp, K. (2019). FREE FALL TEST SYSTEM CONTROLLED BY COMPUTER WITH ARDUINO. Mühendislik Bilimleri Ve Tasarım Dergisi, 7(4), 878-884. https://doi.org/10.21923/jesd.547876

Cited By

SMART DOOR LOCK DESIGN WITH INTERNET OF THINGS
International Journal of 3D Printing Technologies and Digital Industry
https://doi.org/10.46519/ij3dptdi.1074468