İnsan müdahalesi olmadan kendi kendine hareket edebilen araçlar sürücüsüz araç olarak adlandırılmaktadır. Sürücüsüz araçlar son yirmi yılda; askeri, lojistik ve endüstriyel üretimdeki potansiyel uygulamaları ile hem akademiden, hem de endüstriden büyük ilgi görmeye başlamıştır. Sürücüsüz araçların kullanılması günümüz trafiğinin çevresel etkilerini azaltmak ve trafik kazalarını önlemek gibi birçok konuda toplumsal fayda sağlamaktadır. Sürücüsüz araçlarda navigasyon için GPS, çarpışmaları önlemek için sensör ve nesneleri tespit etmek için kamera gibi çeşitli teknolojiler kullanılmaktadır. Bu teknolojilerin hepsi ya da birkaçı kullanılarak Derin Öğrenme tabanlı ve PID kontrol ile otonom sürüş yapılabilmektedir. Bu çalışmada Derin Öğrenme Tabanlı model eğitimi ve otonom sürüş testleri sürüş simülatöründe gerçekleştirilmiştir. Sürüş simülatöründen aracın direksiyon açısı, hız bilgisi ve ön camına monte edilen üç kameradan (sağ, sol ve orta) görüntü bilgisi alınmıştır. Aracın otonom hareketi Derin Öğrenme tabanlı model eğitimi gerçekleştirilerek ve PID kontrol ile sağlanmıştır. Bu çalışmada Derin Öğrenme ile eğitilen modelin sürüş performansı ile PID kontrol ile gerçekleştirilen sürüş performansı sürüş simülatöründe bir tam turda karşılaştırılmıştır. Aracın sürüş parkurundaki bir tam turda gerçek zamanlı olarak özerk hareketi kaydedilmiş ve başarım değerlendirmesi gerçekleştirilmiştir. Sürüş simülatöründe gerçekleştirilen testler sonucunda PID kontrol tabanlı sürüşte de başarılı sonuçlar elde edilmiş olmasına rağmen, Derin Öğrenme tabanlı modelin performansının daha iyi olduğu belirlenmiştir.
derin öğrenme sürücüsüz araç CNN PID evrişimsel sinir ağları
Vehicles that can move on their own without human intervention are called autonomous vehicles. Over the last two decades, autonomous vehicles have been receiving considerable interest from both academia and industry, with potential applications in military, logistics and industrial production. The development of autonomous vehicles provides social benefits in many aspects, such as reducing the number of deaths and reducing the environmental impact of today's traffic. Autonomous vehicles use various technologies such as GPS for navigation, sensors to avoid collisions, and cameras for object detection. Autonomous driving can be performed with Deep Learning and PID control. In this study, Deep Learning Based model training and autonomous driving tests were carried out in the driving simulator. Steering angle, speed information from the driving simulator and image information from three cameras (right, left and middle) mounted on the windshield were obtained. Autonomous movement of the vehicle was provided by performing Deep Learning based model training and PID control. In this study, the driving performance of the model trained with Deep Learning and the driving performance performed by PID control were compared in one full tour in the driving simulator. Autonomous movement of the vehicle was recorded in real time during one full lap on the driving track and performance evaluation was carried out. As a result of the tests carried out in the driving simulator, although successful results were obtained in PID control-based driving, it was determined that the performance of the Deep Learning based model was better.
deep learning CNN PID autonomous vehicle convolution Neural Networks
Birincil Dil | Türkçe |
---|---|
Konular | Bilgisayar Yazılımı |
Bölüm | Araştırma Makaleleri \ Research Articles |
Yazarlar | |
Yayımlanma Tarihi | 29 Aralık 2020 |
Gönderilme Tarihi | 26 Kasım 2020 |
Kabul Tarihi | 29 Aralık 2020 |
Yayımlandığı Sayı | Yıl 2020 Cilt: 8 Sayı: 5 |