Derleme
BibTex RIS Kaynak Göster

NESNELERİN İNTERNETİ TABANLI SAĞLIK İZLEME SİSTEMLERİ ÜZERİNE BİR ÇALIŞMA

Yıl 2020, Cilt: 8 Sayı: 5, 80 - 89, 29.12.2020
https://doi.org/10.21923/jesd.831844

Öz

Sağlık sektöründe erken teşhis ya da ön çıkarım yapmak oldukça önemlidir. Bu durum tedavinin kalite ve etkinliği açısından önem taşımakla beraber kritik hastalıklar için de hayati müdahaleler anlamına gelmektedir. Ön çıkarım ve erken teşhisin gerçekleştirilmesi için gerekli en önemli adım verilerin sürekli takibidir. Kişilerin verileri üzerinde sürekli takip ve analiz yapmak anormal durumların anında tespit edilmesini sağlayabilir. Bunu gerçekleştirmek içinse IoT teknolojisi oldukça uygundur. IoT (Nesnelerin İnterneti) ile anlık olarak uzak noktalara yayılabilen anlamlı veriler öngörme kabiliyetini ciddi oranda artırmaktadır. IoT sistemlerinde amaca göre farklı şekilde bulunan sensörler ile oluşturulacak sistemlerin karakteristik özelliğine özgü seçimler yapılarak birçok parametre bilgisi elde edilebilmektedir. Yine bu parametreler IoT teknolojisi sayesinde uzak sistemlere aktarılabilmektedir. Böylece hastalar nerede olursa olsun verilerinin takibi yapılabilmektedir. Sistemde gerçekleştirilmek istenen amaca göre farklı sensörler eklenerek farklı bilgiler elde edilebilmektedir. Bu elde edilen veriler üzerinde çeşitli analiz ve işlemlerle öngörüler gerçekleştirilebilmektedir. Bu çalışmada, sağlık izleme sistemleri üzerine derleme yapılmıştır ve çeşitli önerilerde bulunulmuştur.

Destekleyen Kurum

Tübitak

Proje Numarası

3180329

Teşekkür

Bu çalışma 3180329 proje numarası ile TÜBİTAK TEYDEB tarafından desteklenmiştir.

Kaynakça

  • Acharya, A.D., Patil, S.N., 2020. IoT based health care monitoring kit. Fourth international conference on computing methodolo-gies and communication (ICCMC), 363–368.
  • Ajami, S., Rajabzadeh, A., 2013. Radio Frequency Identification (RFID) technology and patient safety. J Res Med Sci, 18(9), 809-13.
  • Alexander, A., Arun, C.S., 2017. Mobile Ecg Monitoring Device Using Wearable Non-Contact Armband. IEEE Transactions on Biomedical Circuits and Systems, 10(6), 1-7.
  • Delrobaei, M., Memar, S., Pieterman, M., Stratton, T. W., McIsaac, K., Jog, M., 2018. Towards remote monitoring of Parkinson’s disease tremor using wearable motion capture systems. Journal of the Neurological Sciences, 384, 38-45.
  • Fu, Y., Liu, J., 2015. System design for wearable blood oxygen saturation and pulse measurement device. AHFE, 3, 1187-1194.
  • https://www.generationrobots.com/media/DetecteurDePoulsAmplifie/PulseSensorAmpedGettingStartedGuide.pdf, “Pulse Sensor Getting Started Guide”, [August. 04, 2019].
  • https://support.polar.com/en/support/Difference_Between_Heart_Rate_and_Pulse, “Difference between Heart Rate and Pulse”, [August. 05, 2019].
  • Jha, V., Prakas, N., Sagar, S., 2017. Wearable Anger-Monitoring System. ICTE, 95, 17.
  • Kılıç T., Bayır, E., 2017. An Investigation on Internet of Things Technology (IoT) In Smart Houses. International Journal of Engineering Research and Development, 9(3), 197.
  • Lebepe, F., Niezen, G., Hancke, G.P., Ramotsoela, T.D., 2016. Wearable Stress Moni-toring System Using Multiple Sensors. International Conference on Industrial Infor-matics (INDIN), 895-897.
  • Majoe, D., Bonhof, P., Kaegi-Trachsel, T., Gutknecht, J., Widmer, L., 2010. Stress and Sleep Quality Estimation from a Smart Wearable Sensor. Pervasive Computing and Applications (ICPCA), 14-18.
  • Kılıç, Ö., 2017. Giyilebilir Teknoloji Ürünleri Pazarı ve Kullanım Alanları, 9(4), 99–109.
  • Perez, J.M.D., Misa, W.B., Tan, P.A.C., Robles, J., 2016. A wireless Blood Sugar Monitoring System Using Ion-Sensitive Field Effect Transistor. TENCON Conference, 1742-1743.
  • Santhi, V., Ramya, K., Tarana, A.P.J., Vinitha, G., 2017. IOT Based Wearable Health Monitoring System for Pregnant Ladies Using CC3200. International Journal of Advanced Research Methodology in Engineering & Technology, 1(3), 56-59.
  • Sönmez, Ç., Aytekin, A., Tüminçin, F., 2018. Nesnelerin İnterneti Ve Giyilebilir Teknolojiler. Journal of Social Research and Behavioral Sciences, 84-93.
  • Sung, M., Marci, C., Pentland, A., 2005. Wearable feedback systems for rehabilitation. Journal of Neuro Engineering and Rehabilitation, 2(17), 1-12.
  • Wan, J.A.-a., 2018. Wearable IoT enabled real-time health monitoring system. J Wireless Com Network, 1(11), 298.
  • Yotha, D., Pidthalek, C., Yimman, S., Niramitmahapanya, S., 2016. Design and Construction of the Hypoglycemia Monitor Wireless System for Diabetic. BMEiCON, 10.1109/BMEiCON.2016.7859603, 1-4.

A RESEARCH ON IOT BASED HEALTH MONITORING SYSTEMS

Yıl 2020, Cilt: 8 Sayı: 5, 80 - 89, 29.12.2020
https://doi.org/10.21923/jesd.831844

Öz

In the healthcare industry, early diagnosis or predictions are very important. Although this is important for the quality and effectiveness of the treatment, it also means vital interventions for critical diseases. The most important step for prediction and early diagnosis is the continuous monitoring of the data. Continuous monitoring and analysis of personal data can enable abnormal situations to be detected immediately. To achieve this, IoT technology is very suitable. IoT technology enables data to be shared within the area and with remote servers. Thus, wherever patients are, their data can be followed. This fact significantly increases the system's ability to predict diseases. There are many sensors in IoT systems. These sensors are selected according to the characteristics and purpose of the systems. A lot of parameter information is obtained with these sensors. In this work, we reviewed health monitoring systems and made several recommendations.

Proje Numarası

3180329

Kaynakça

  • Acharya, A.D., Patil, S.N., 2020. IoT based health care monitoring kit. Fourth international conference on computing methodolo-gies and communication (ICCMC), 363–368.
  • Ajami, S., Rajabzadeh, A., 2013. Radio Frequency Identification (RFID) technology and patient safety. J Res Med Sci, 18(9), 809-13.
  • Alexander, A., Arun, C.S., 2017. Mobile Ecg Monitoring Device Using Wearable Non-Contact Armband. IEEE Transactions on Biomedical Circuits and Systems, 10(6), 1-7.
  • Delrobaei, M., Memar, S., Pieterman, M., Stratton, T. W., McIsaac, K., Jog, M., 2018. Towards remote monitoring of Parkinson’s disease tremor using wearable motion capture systems. Journal of the Neurological Sciences, 384, 38-45.
  • Fu, Y., Liu, J., 2015. System design for wearable blood oxygen saturation and pulse measurement device. AHFE, 3, 1187-1194.
  • https://www.generationrobots.com/media/DetecteurDePoulsAmplifie/PulseSensorAmpedGettingStartedGuide.pdf, “Pulse Sensor Getting Started Guide”, [August. 04, 2019].
  • https://support.polar.com/en/support/Difference_Between_Heart_Rate_and_Pulse, “Difference between Heart Rate and Pulse”, [August. 05, 2019].
  • Jha, V., Prakas, N., Sagar, S., 2017. Wearable Anger-Monitoring System. ICTE, 95, 17.
  • Kılıç T., Bayır, E., 2017. An Investigation on Internet of Things Technology (IoT) In Smart Houses. International Journal of Engineering Research and Development, 9(3), 197.
  • Lebepe, F., Niezen, G., Hancke, G.P., Ramotsoela, T.D., 2016. Wearable Stress Moni-toring System Using Multiple Sensors. International Conference on Industrial Infor-matics (INDIN), 895-897.
  • Majoe, D., Bonhof, P., Kaegi-Trachsel, T., Gutknecht, J., Widmer, L., 2010. Stress and Sleep Quality Estimation from a Smart Wearable Sensor. Pervasive Computing and Applications (ICPCA), 14-18.
  • Kılıç, Ö., 2017. Giyilebilir Teknoloji Ürünleri Pazarı ve Kullanım Alanları, 9(4), 99–109.
  • Perez, J.M.D., Misa, W.B., Tan, P.A.C., Robles, J., 2016. A wireless Blood Sugar Monitoring System Using Ion-Sensitive Field Effect Transistor. TENCON Conference, 1742-1743.
  • Santhi, V., Ramya, K., Tarana, A.P.J., Vinitha, G., 2017. IOT Based Wearable Health Monitoring System for Pregnant Ladies Using CC3200. International Journal of Advanced Research Methodology in Engineering & Technology, 1(3), 56-59.
  • Sönmez, Ç., Aytekin, A., Tüminçin, F., 2018. Nesnelerin İnterneti Ve Giyilebilir Teknolojiler. Journal of Social Research and Behavioral Sciences, 84-93.
  • Sung, M., Marci, C., Pentland, A., 2005. Wearable feedback systems for rehabilitation. Journal of Neuro Engineering and Rehabilitation, 2(17), 1-12.
  • Wan, J.A.-a., 2018. Wearable IoT enabled real-time health monitoring system. J Wireless Com Network, 1(11), 298.
  • Yotha, D., Pidthalek, C., Yimman, S., Niramitmahapanya, S., 2016. Design and Construction of the Hypoglycemia Monitor Wireless System for Diabetic. BMEiCON, 10.1109/BMEiCON.2016.7859603, 1-4.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Bilgisayar Yazılımı
Bölüm Araştırma Makaleleri \ Research Articles
Yazarlar

Sedat Akleylek 0000-0001-7005-6489

Erdal Kılıç 0000-0003-1585-0991

Burcu Söylemez 0000-0001-7499-6689

Ergun Aruk Bu kişi benim 0000-0002-5412-7731

Ceyda Aksaç Bu kişi benim 0000-0003-0022-789X

Proje Numarası 3180329
Yayımlanma Tarihi 29 Aralık 2020
Gönderilme Tarihi 26 Kasım 2020
Kabul Tarihi 28 Aralık 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 8 Sayı: 5

Kaynak Göster

APA Akleylek, S., Kılıç, E., Söylemez, B., Aruk, E., vd. (2020). NESNELERİN İNTERNETİ TABANLI SAĞLIK İZLEME SİSTEMLERİ ÜZERİNE BİR ÇALIŞMA. Mühendislik Bilimleri Ve Tasarım Dergisi, 8(5), 80-89. https://doi.org/10.21923/jesd.831844

Cited By