GSM VE ISM BANDI RF ENERJİ HASATLAMA SİSTEMLERİ İÇİN TEK KATLI DOĞRULTUCU DEVRE TASARIMI
Yıl 2021,
Cilt: 9 Sayı: 2, 359 - 365, 20.06.2021
Aysu Belen
,
Mehmet Ali Belen
Öz
Kablosuz haberleşme sistemlerinin yaygınlaşmasıyla ortamlarda pek çok frekansta sinyaller bulunmaktadır. Ortamda bulunan mevcut sinyallerin enerji kaynağı olarak dönüştürülmesini hedefleyen sistemler enerji hasatlama sistemleridir. Bu sistemlerin temel kullanım amacı düşük güç tüketimine sahip haberleşme aygıtlarının pil ömürlerini uzatmaktır. Bu çalışma kapsamında 1.8GHz ile 2.5GHz Frekanslarını kapsayan geniş bandlı tek katlı RF doğrultucu devre tasarımı sunulmuştur. Kapsadığı geniş frekans bandından dolayı bu band içerisinde yer alan GSM ve ISM band uygulamalarında kullanılması uygundur. RF doğrultucu devrenin uyumlandırma katında mikroşerit interdijital kapasitör ve mikroşerit saplama yapıları kullanılmıştır. Tasarlanan devreye 0dBm giriş gücünde 1.8GHz de 100ohm yük direncinde 38mV iken 100Kohm yük direncinde 141mV ve 2.4GHz de 100ohm yük direncinde 125.6mV iken 100Kohm yük direncinde 199mV çıkış gerilimi elde edilmiştir. Doğrultucunun çıkış direnç değeri 100ohm ile 100Kohm arasında değiştirilerek, yük değeri değişiminin doğrultucu performansına etkisi incelenmiştir.
Kaynakça
- Belen, M.A. 2018. RF Enerji Hasatlama Sistemleri için Çift Bandli Greinacher Doğrultucu Devre Tasarimi. Mühendislik Bilimleri ve Tasarım Dergisi 6, 2, 348–353.
- Cheng, Y.-C., Chawathe, Y., LaMarca, A., Krumm, J., 2005. Accuracy Characterization for Metropolitan-Scale Wi-Fi Localization. Proc. Third Int. Conf. on Mobile Systems, 233–245.
- Curty, J.-P., Joehl, N., Krummenacher, F., Dehollain, C., Declercq, M., 2000. A model for m-power rectifier analysis and design. IEEE Trans. Circuits Syst. I, 52 (12), 2771–2779.
- Gilbert, J.M., Balouchi, F., 2008. Comparison of energy harvesting systems for wireless sensor networks. Int. J. Autom. Comput., 5 (4), 334–347.
- Gozel, M. A., Kahriman, M., Kasar, O. (2019). Design of an Efficiency-Enhanced Greinacher Rectifier Operating in the GSM 1800 Band by using Rat-Race Coupler For RF Energy Harvesting Applications. International Journal of RF and Microwave Computer-Aided Engineering, 29 (1), 1-8.
- Hagerty, J.A., Helmbrecht, F.B., McCalpin, W.H., Zane, R., Popovic, Z.B., 2004. Recycling ambient microwave energy with broadband rectenna arrays. IEEE Trans. Microw. Theory Tech., 52(3), 1014–1024.
- Kasar, O., Kahriman, M., Gozel, M. A. (2019). Application of Ultra Wideband RF Energy Harvesting by Using Multisection Wilkinson Power Combiner. International Journal of RF and Microwave Computer‐Aided Engineering, 29 (1), 1-8.
- Kasar, O , Kahriman, M , Gözel, M . (2019). Wilkinson Güç Birleştirici Kullanarak İki Girişli RF Enerji Hasatlama Devresi ve DC Yük Analizi. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10 (1), 68-72.
- Le, T., Mayaram, K., Fiez, T., 2008. Efficient Far-Field Radio Frequency Energy Harvesting For Passively Powered Sensor Networks. IEEE J. Solid-State Circuits, 43 (5), 1287–1302.
- Liang, X., Zhao, T., Jiang, W., Yu, X., Hu, Y., Zhu, P., Zheng, H., Sun, R., Wong, C.-P. (2019). Highly Transparent Triboelectric Nanogenerator Utilizing in-situ Chemically Welded Silver Nanowire Network as Electrode for Mechanical Energy Harvesting and Body Motion Monitoring. Nano Energy, 59, 508-516.
- Liu, W., Huang, K., Wang, T.,Zhang, Z., Hou, J., (2020). A Broadband High-Efficiency RF Rectifier for Ambient RF Energy Harvesting," IEEE Microw.e Wirel. Comp. Lett., vol. 30, no. 12, pp. 1185-1188, Dec. 2020, doi: 10.1109/LMWC.2020.3028607.
- MSP430FR597x(1), MSP430FR587x(1) Mixed-Signal Microcontrollers (Rev. B), http://www.ti.com/lit/ds/slase66b/slase66b.pdf, (Accessed on 05/04/2021).
- Olgun, U., Chen, C.-C., Volakis, J.L., 2012. Design of an Efficient Ambient WiFi Energy Harvesting System. IET Microw. Antennas Propag., 6(11), 1200–1206.
- Ostaffe, H., 2010. Power out of Thin Air: Ambient RF Energy Harvesting for Wireless Sensors. http://powercastco.com/PDF/Power-Out-of-Thin-Air.pdf
- Papotto, G., Carrara, F., Palmisano, G., 2011. A 90-nm CMOS Threshold-Compensated RF Energy Harvester, Solid-State Circuits. IEEE Journal Solid-State Circuits , 46(9), 1985 – 1997.
- Paradiso, J.A., Starner, T., 2005. Energy Scavenging for Mobile and Wireless Electronics. IEEE Pervasive Comput., 4 (1), 18–27.
- Rebello, J., 2010. Global Wireless Subscriptions Reach 5 Billion. Available: http://www.isuppli.com/Mobile-and-Wireless-communications/News/Pages/Global-Wireless-Subscriptions-Reach-5-Billion.aspx
- Rehman, M. U., Ahmad W., Qureshi, M. I., Khan, W. T. 2017. A Highly Efficient Tri Band (GSM1800, WiFi2400 and WiFi5000) Rectifier for Various Radio Frequency Harvesting Applications, 2017 Progress in Electromagnetics Research Symposium - Fall (PIERS - FALL), 2017, 2039-2044.
- Sample, A., Smith, J, 2009. Experimental Results with Two Wireless Power Transfer Systems. Proc. IEEE RWS, 16–18.
- Song, G. J., Kim, K.-B., Cho, J. Y., Woo, M. S., Ahn, J. H., Eom, J. H., Ko, S. M., Yang, C. H., Do Hong, S., Jeong, S. Y. 2019. Performance of a Speed Bump Piezoelectric Energy Harvester for an Automatic Cellphone Charging System. Applied Energy, 247, 221-227.
- Yan, H., Montero, J. G. M., Akhnoukh, A., de Vreede, L. C. N., Burghart, J. N., 2005. An integration Scheme for RF Power Harvesting. 8th Annu. Workshop Semiconductor Advances Future Electron. Sensors, Veldhoven, the Netherlands.
SINGLE LAYER RECTIFIER CIRCUIT DESIGN FOR GSM AND ISM BAND RF ENERGY HARVESTING SYSTEMS
Yıl 2021,
Cilt: 9 Sayı: 2, 359 - 365, 20.06.2021
Aysu Belen
,
Mehmet Ali Belen
Öz
With the expansion of wireless communication systems, the amount of signal in our environment are also increased. RF harvesting systems are designs that aims to harness these available energy in the environment. The main application of these systems, is to provide aid or extend the battery life of communication systems with low power consumption. Herein, design of a single stage RF harvester design with operation band of 1.8-2.5 GHz had been studied. Due to the available GSM and ISM band signals, the proposed design would have good performance results. For design of rectifier stage of RF harvester, Microstrip inter-digital capacitor and microstrip stub designs had been used. With a 0 dBm input power, the designed RF harvester had obtained output voltage of (38/141) mV with a load of 100/100K ohm and (125.6/199) mV for load of 100/100K ohm at 1.8 and 2.4 GHz respectively. The output impedance value of the RF harvester had been take taken between 100-100k ohm to evaluate the performance of the design for different load values.
Kaynakça
- Belen, M.A. 2018. RF Enerji Hasatlama Sistemleri için Çift Bandli Greinacher Doğrultucu Devre Tasarimi. Mühendislik Bilimleri ve Tasarım Dergisi 6, 2, 348–353.
- Cheng, Y.-C., Chawathe, Y., LaMarca, A., Krumm, J., 2005. Accuracy Characterization for Metropolitan-Scale Wi-Fi Localization. Proc. Third Int. Conf. on Mobile Systems, 233–245.
- Curty, J.-P., Joehl, N., Krummenacher, F., Dehollain, C., Declercq, M., 2000. A model for m-power rectifier analysis and design. IEEE Trans. Circuits Syst. I, 52 (12), 2771–2779.
- Gilbert, J.M., Balouchi, F., 2008. Comparison of energy harvesting systems for wireless sensor networks. Int. J. Autom. Comput., 5 (4), 334–347.
- Gozel, M. A., Kahriman, M., Kasar, O. (2019). Design of an Efficiency-Enhanced Greinacher Rectifier Operating in the GSM 1800 Band by using Rat-Race Coupler For RF Energy Harvesting Applications. International Journal of RF and Microwave Computer-Aided Engineering, 29 (1), 1-8.
- Hagerty, J.A., Helmbrecht, F.B., McCalpin, W.H., Zane, R., Popovic, Z.B., 2004. Recycling ambient microwave energy with broadband rectenna arrays. IEEE Trans. Microw. Theory Tech., 52(3), 1014–1024.
- Kasar, O., Kahriman, M., Gozel, M. A. (2019). Application of Ultra Wideband RF Energy Harvesting by Using Multisection Wilkinson Power Combiner. International Journal of RF and Microwave Computer‐Aided Engineering, 29 (1), 1-8.
- Kasar, O , Kahriman, M , Gözel, M . (2019). Wilkinson Güç Birleştirici Kullanarak İki Girişli RF Enerji Hasatlama Devresi ve DC Yük Analizi. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10 (1), 68-72.
- Le, T., Mayaram, K., Fiez, T., 2008. Efficient Far-Field Radio Frequency Energy Harvesting For Passively Powered Sensor Networks. IEEE J. Solid-State Circuits, 43 (5), 1287–1302.
- Liang, X., Zhao, T., Jiang, W., Yu, X., Hu, Y., Zhu, P., Zheng, H., Sun, R., Wong, C.-P. (2019). Highly Transparent Triboelectric Nanogenerator Utilizing in-situ Chemically Welded Silver Nanowire Network as Electrode for Mechanical Energy Harvesting and Body Motion Monitoring. Nano Energy, 59, 508-516.
- Liu, W., Huang, K., Wang, T.,Zhang, Z., Hou, J., (2020). A Broadband High-Efficiency RF Rectifier for Ambient RF Energy Harvesting," IEEE Microw.e Wirel. Comp. Lett., vol. 30, no. 12, pp. 1185-1188, Dec. 2020, doi: 10.1109/LMWC.2020.3028607.
- MSP430FR597x(1), MSP430FR587x(1) Mixed-Signal Microcontrollers (Rev. B), http://www.ti.com/lit/ds/slase66b/slase66b.pdf, (Accessed on 05/04/2021).
- Olgun, U., Chen, C.-C., Volakis, J.L., 2012. Design of an Efficient Ambient WiFi Energy Harvesting System. IET Microw. Antennas Propag., 6(11), 1200–1206.
- Ostaffe, H., 2010. Power out of Thin Air: Ambient RF Energy Harvesting for Wireless Sensors. http://powercastco.com/PDF/Power-Out-of-Thin-Air.pdf
- Papotto, G., Carrara, F., Palmisano, G., 2011. A 90-nm CMOS Threshold-Compensated RF Energy Harvester, Solid-State Circuits. IEEE Journal Solid-State Circuits , 46(9), 1985 – 1997.
- Paradiso, J.A., Starner, T., 2005. Energy Scavenging for Mobile and Wireless Electronics. IEEE Pervasive Comput., 4 (1), 18–27.
- Rebello, J., 2010. Global Wireless Subscriptions Reach 5 Billion. Available: http://www.isuppli.com/Mobile-and-Wireless-communications/News/Pages/Global-Wireless-Subscriptions-Reach-5-Billion.aspx
- Rehman, M. U., Ahmad W., Qureshi, M. I., Khan, W. T. 2017. A Highly Efficient Tri Band (GSM1800, WiFi2400 and WiFi5000) Rectifier for Various Radio Frequency Harvesting Applications, 2017 Progress in Electromagnetics Research Symposium - Fall (PIERS - FALL), 2017, 2039-2044.
- Sample, A., Smith, J, 2009. Experimental Results with Two Wireless Power Transfer Systems. Proc. IEEE RWS, 16–18.
- Song, G. J., Kim, K.-B., Cho, J. Y., Woo, M. S., Ahn, J. H., Eom, J. H., Ko, S. M., Yang, C. H., Do Hong, S., Jeong, S. Y. 2019. Performance of a Speed Bump Piezoelectric Energy Harvester for an Automatic Cellphone Charging System. Applied Energy, 247, 221-227.
- Yan, H., Montero, J. G. M., Akhnoukh, A., de Vreede, L. C. N., Burghart, J. N., 2005. An integration Scheme for RF Power Harvesting. 8th Annu. Workshop Semiconductor Advances Future Electron. Sensors, Veldhoven, the Netherlands.