Araştırma Makalesi
BibTex RIS Kaynak Göster

Ca2+ SALINIMI YARDIMIYLA SİLİS DUMANLI VE UÇUCU KÜLLÜ HARÇLARIN H2SO4 DİRENCİNİN İNCELENMESİ

Yıl 2022, Cilt: 10 Sayı: 1, 180 - 187, 23.03.2022
https://doi.org/10.21923/jesd.927608

Öz

Literatürde F sınıfı uçucu külün asit direncini artırdığı konusunda fikir birliği bulunmasına karşın, silis dumanının asit direncini artırıp artırmadığı konusunda bir fikir birliği oluşmamıştır. Bu çalışmada, seyreltilmiş H2SO4 çözeltisi kullanılarak silis dumanlı ve F sınıfı uçucu küllü kendiliğinden yerleşen harçların asit dirençleri, Ca2+ iyon salınımı dikkate alınarak incelenmiştir. Uçucu küllü numunelerde, Portland çimentosu ile F sınıfı uçucu külün yer değiştirme oranları ağırlıkça %25, %30 ve %35’tir. Silis dumanlı numunelerde, Portland çimentosu ile silis dumanın ağırlıkça yer değiştirmeleri %5, %10 ve %15’tir. Tüm yer değiştirme oranlarında F sınıfı uçucu kül içeren harçların asit dirençleri, silis dumanı içeren harçlardan daha iyi olmuştur. %30 F sınıfı uçucu kül içeren harcın asit direnci, hem silis dumanlı hem de F sınıfı uçucu kül içeren diğer numunelerden daha yüksektir. %5 ve %10 silis dumanı içeren harçların asit direnci ise, %15 silis dumanlı harç ve Kontrol numunelerinden daha büyük olmuştur. F sınıfı uçucu külden elde edilen sonuçlar ile diğer araştırmacıların sonuçları uyum içerisindedir. Ancak silis dumanlı numunelerin sonuçları kısmen literatürle uyum içerisinde olmuştur.

Destekleyen Kurum

Harran Üniversitesi Bilimsel Araştırmaları Destekleme Birimi (HÜBAK)

Proje Numarası

16197

Teşekkür

Katkılarından dolayı HÜBAK’na teşekkür ederiz.

Kaynakça

  • American Society for Testing and Materials. Standard Test Method for Compressive Strength of Hydraulic Cement Mortars. ASTM International, 2013.
  • Chang, Z.T., Song, X.J., Munn, R., Marosszeky, M., 2005. Using limestone aggregates and different cements for enhancing resistance of concrete to sulfuric acid attack, Cem Concr Res 35(8), 1486–1494.
  • Durning, T.A., Hicks, C., 1991. Using microsilica to increase concrete's resistance to aggressive chemicals, Concr Inter 13(3), 42–48.
  • EFNARC (2005). The European guidelines for self-compacting concrete: Specification, production and use.
  • Hewlett, P., Lea's chemistry of cement and concrete. Elsevier, 2003.
  • Kawai, S., Williams, M. Y., Nishoni, W., 2008. Deterioration of cement hydrates containing mineral admixtures due to sulphuric acid attack, in: 11DBMC Int. Conf. Durab. Mater. Components,: pp. 1203–1205.
  • Mehta, P.K., 1985. Studies on chemical resistance of low water/cement ratio concretes, Cem Concr Res. 15, 969–978.
  • Mindess, S., Young, J.F., Darwin, D. Concrete. Prentice Hall, Upper Saddle River, NJ, 2003.
  • Monteny, J., Belie De, N., Taerwe, L., 2003. Resistance of different types of concrete mixtures to sulfuric acid, Mater Struct 36(4), 242–249.
  • Monteny, J., Vincke, E., Beeldens A., De Belie N., Taerwe L., Van Gemert D., 2000. Chemical, microbiological, and in situ test methods for biogenic sulphuric acid corrosion of concrete, Cem Concr Res. 30 (4), 623–634.
  • Rozière, E., Loukili, A., 2011. Performance-based assessment of concrete resistance to leaching, Cem Concr Compos 33, 451–456.
  • Taylor, H.F.W., Cement Chemistry. Thomas Telford, London, 1997.
  • Torraca, G., Lectures on Materials Science for Architectural Conservation. The Getty Conservation Institute, Los Angeles, 2009.
  • Turk, K., 2012. Viscosity and hardened properties of self-compacting mortars with binary and ternary cementitious blends of fly ash and silica fume. Constr Build Mater, 37, 326–334.
  • Uchikawa, H., 1986. Effect of blending components on hydration and structure formation. 8th Int. Congr Chem Cem 1, 250–280.

INVESTIGATION OF H2SO4 RESISTANCE OF MORTARS WITH SILICA FUME AND FLY ASH BASED ON Ca2+ LEACHING

Yıl 2022, Cilt: 10 Sayı: 1, 180 - 187, 23.03.2022
https://doi.org/10.21923/jesd.927608

Öz

Although there is a consensus in the literature that class F fly ash increases acid resistance, there is no consensus on whether silica fume increases acid resistance. In this study, acid resistances of self-compacting mortars with silica fume and class F fly ash were investigated using diluted H2SO4 solution based on Ca2+ leaching. In the samples with class F fly ash, the replacement ratios of Portland cement with class F fly ash were 25%, 30% and 35% by weight. In the samples with silica fume, the replacement ratios of Portland cement with silica fume were 5%, 10% and 15% by weight. Acid resistances of mortars with class F fly ash at all replacement ratios were better than those of silica fume. The acid resistance of the mortar containing class F fly ash at 30% replacement ratio was higher than other mortars with silica fume or class F fly ash. Acid resistances of mortars with silica fume at 5% and 10% replacement ratios were much higher than those of silica fume at 15% replacement ratio and the control sample. The results obtained with class F fly ash in this study were in agreement with the results of other researchers. However, the results of the samples with silica fume were partially in agreement with the literature.

Proje Numarası

16197

Kaynakça

  • American Society for Testing and Materials. Standard Test Method for Compressive Strength of Hydraulic Cement Mortars. ASTM International, 2013.
  • Chang, Z.T., Song, X.J., Munn, R., Marosszeky, M., 2005. Using limestone aggregates and different cements for enhancing resistance of concrete to sulfuric acid attack, Cem Concr Res 35(8), 1486–1494.
  • Durning, T.A., Hicks, C., 1991. Using microsilica to increase concrete's resistance to aggressive chemicals, Concr Inter 13(3), 42–48.
  • EFNARC (2005). The European guidelines for self-compacting concrete: Specification, production and use.
  • Hewlett, P., Lea's chemistry of cement and concrete. Elsevier, 2003.
  • Kawai, S., Williams, M. Y., Nishoni, W., 2008. Deterioration of cement hydrates containing mineral admixtures due to sulphuric acid attack, in: 11DBMC Int. Conf. Durab. Mater. Components,: pp. 1203–1205.
  • Mehta, P.K., 1985. Studies on chemical resistance of low water/cement ratio concretes, Cem Concr Res. 15, 969–978.
  • Mindess, S., Young, J.F., Darwin, D. Concrete. Prentice Hall, Upper Saddle River, NJ, 2003.
  • Monteny, J., Belie De, N., Taerwe, L., 2003. Resistance of different types of concrete mixtures to sulfuric acid, Mater Struct 36(4), 242–249.
  • Monteny, J., Vincke, E., Beeldens A., De Belie N., Taerwe L., Van Gemert D., 2000. Chemical, microbiological, and in situ test methods for biogenic sulphuric acid corrosion of concrete, Cem Concr Res. 30 (4), 623–634.
  • Rozière, E., Loukili, A., 2011. Performance-based assessment of concrete resistance to leaching, Cem Concr Compos 33, 451–456.
  • Taylor, H.F.W., Cement Chemistry. Thomas Telford, London, 1997.
  • Torraca, G., Lectures on Materials Science for Architectural Conservation. The Getty Conservation Institute, Los Angeles, 2009.
  • Turk, K., 2012. Viscosity and hardened properties of self-compacting mortars with binary and ternary cementitious blends of fly ash and silica fume. Constr Build Mater, 37, 326–334.
  • Uchikawa, H., 1986. Effect of blending components on hydration and structure formation. 8th Int. Congr Chem Cem 1, 250–280.
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İnşaat Mühendisliği
Bölüm Araştırma Makaleleri \ Research Articles
Yazarlar

Paki Turgut 0000-0002-3711-4605

Kazım Türk 0000-0002-6314-9465

Feridun Demir 0000-0001-6372-6958

Nuray Karadaş 0000-0003-3164-0724

Proje Numarası 16197
Yayımlanma Tarihi 23 Mart 2022
Gönderilme Tarihi 25 Nisan 2021
Kabul Tarihi 23 Eylül 2021
Yayımlandığı Sayı Yıl 2022 Cilt: 10 Sayı: 1

Kaynak Göster

APA Turgut, P., Türk, K., Demir, F., Karadaş, N. (2022). Ca2+ SALINIMI YARDIMIYLA SİLİS DUMANLI VE UÇUCU KÜLLÜ HARÇLARIN H2SO4 DİRENCİNİN İNCELENMESİ. Mühendislik Bilimleri Ve Tasarım Dergisi, 10(1), 180-187. https://doi.org/10.21923/jesd.927608